Back-analysis of soil parameters of the Malutang II concrete face rockfill dam using parallel mutation particle swarm optimization

Yufeng Jia, Shichun Chi *

The State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology, Dalian 116024, China
Institute of Earthquake Engineering, Dalian University of Technology, Dalian 116024, China

A R T I C L E I N F O

Article history:
Received 5 March 2014
Received in revised form 21 November 2014
Accepted 23 November 2014
Available online 27 December 2014

Keywords:
Earth-rockfill dam
Back-analysis
Parallel algorithm
Mutation particle swarm optimization

A B S T R A C T

Deformation control is a central problem in earth-rockfill dam design. The finite element method (FEM) is the primary method used to analyze and predict the deformation of earth-rockfill dams. The parameters of the constitutive model of soil used in earth-rockfill dams determine the FEM analysis results. Using prototype monitoring displacements, the soil parameters of the Malutang II concrete face rockfill dam were back-analyzed using parallel mutation particle swarm optimization. The calculated displacements of the back-analyzed soil parameters are consistent with the prototype monitoring results. The parallel mutation particle swarm optimization has a high optimization rate and can be used in large-scale practical engineering applications. The back-analysis results indicate that the deformation moduli of rockfills in the Malutang II are affected by construction situation.

1. Introduction

Deformation control is a central problem in earth-rockfill dam design. The accuracy of deformation control affects the deformation coordination among all areas in the dam body. Discordant deformation of a concrete face rockfill dam (CFRD) will cause the concrete slab to separate and break off from the cushion layer. Discordant deformation of a core wall rockfill dam will aggravate the core wall arching effect and will cause the clay core wall to break, which can even cause the dam body to failure. Furthermore, discordant deformation also affects the stress distribution in the dam body, which also influences the soil dynamic characteristics and dam earthquake response.

The finite element method (FEM) is the primary method used to analyze and predict the deformation of earth-rockfill dams. The parameters of the constitutive model of soils used in dams determine the FEM analysis results. These parameters are usually measured in the laboratory using the triaxial compression tests and the maximum particle sizes in the samples are less than 60 mm. However, the maximum particle sizes of soils in earth-rockfill dams may be as large as 1 m. The particle size affects the deformation properties of gravelly materials [4]. The rockfill shear deformation modulus increases as the particle sizes become larger for a given sample diameter and increases with the sample diameter for a given particle gradation [5,6]. Furthermore, in situ soil compaction differs from that observed in laboratories. In laboratory tests, the mass of the samples is accurately measured for each particle size group. The gradation, dry density, compaction degree, and porosity of the samples are well controlled. In situ soil compaction is controlled by compaction operation parameters and randomly sampled in situ tests. The compaction operation parameters, such as the number of compaction passes, the pavement or lift thickness, the roller velocity, and the excitation force, must be monitored and compared with compaction quality standards during the entire compaction operation. After compaction, soil samples are randomly selected from the compaction area. The gradation, dry density, compaction degree, and porosity of these samples are examined and compared with the design values. However, the use of a limited number of spot samples to represent the construction quality of the entire work area can be unreliable and sometimes misleading [7]. The compaction operation parameters are strongly affected by the engineers, supervisors and extensive management, making it difficult to ensure the compaction quality [8,9]. Hence, the resulting soil density and structure in the dam differ from those of laboratory samples. Finally, the rockfill used in situ is produced by quarry blasting. The particles contain many cracks, which can cause considerable particle breakage if they experience high stress. Particle breakage modifies the soil skeleton structures and affects the deformation characteristics. However, the smaller particles in the laboratory contain fewer cracks and generate less particle breakage. Thus, the parameters of a constitutive model that are determined in the laboratory may differ from those in situ.
Displacement back-analysis is an effective method for verifying and modifying soil parameters. Back-analyzed soil parameters can be used in deformation and stress analyses of earth-rockfill dams during construction and operation, which are beneficial to earth-rockfill dam safety operation, seismic safety assessment, and enforcement design.

Because the mechanical properties involved are complex, soil constitutive models are strongly nonlinear. It is difficult to directly calculate the soil parameters by inverting the earth-rockfill dam FEM displacement calculation. Thus, displacement back-analysis is applied by optimizing the soil parameters. The deviation between the calculated earth-rockfill dam displacements and the prototype monitoring values becomes an objective function. The optimal values of the soil parameters to be determined are progressively approximated through iteration by minimizing the fitness values of the objective function. During the soil parameter optimization, time-consuming FEM calculations are performed; thus, the rate of convergence is slow, and the back-analysis fails for larger-scale problems.

In recent years, several more effective back-analysis methods have been developed. These methods primarily achieved improved back-analysis effectiveness by using intelligent optimization algorithms and intelligent computing techniques or a combination thereof. Intelligent optimization algorithms can accelerate the soil parameter optimization and thus avoid unnecessary fitness value calculations [10–16]. Intelligent computing techniques calculate the fitness values faster than the FEM [17,18]. However, the results of intelligent optimization algorithms are affected by the initial parameter values, and a local minimum or premature convergence is often obtained [17]. Intelligent computing techniques also require many FEM calculations for training, which consume a considerable amount of time. Furthermore, the results of intelligent computing techniques are affected by the training process, and the solution is sometimes unstable. Recently, a parallel algorithm was used in geotechnical engineering back-analyses [19–21].

These parallel algorithm back-analysis methods use intelligent optimization algorithms to optimize the parameters and accelerate the fitness value calculations using a parallel FEM with a multicore central processing unit (CPU). The parallel FEM operates at two different levels. One of the parallel FEM levels simultaneously calculates the fitness values of the multi-group parameters using multiple cores. The other parallel FEM level calculates the fitness values of one group of parameters with multiple cores. The former has a higher effectiveness and a simpler program structure than the latter. The latter can perform larger-scale calculations, but its program structure is complicated, with lower calculation effectiveness in comparison to the former.

The Malutang II CFRD was built in 2009. The displacements measured in situ for this dam differ greatly from the values calculated using the FEM with soil parameters determined by a laboratory triaxial test. Thus, these soil parameters cannot be used to establish a reliable deformation and stress state of the dam to monitor the operation and to analyze the seismic safety.

In this paper, the soil parameters of the Malutang II CFRD were back-analyzed using an intelligent parallel algorithm back-analysis method, in which the soil parameters are optimized by mutation particle swarm optimization (MPSO) and the fitness values of the particle swarm are calculated using a parallel FEM.

2. Malutang II CFRD

The Malutang II CFRD is located along the Panlong River in the Yunnan province of China (Fig. 1). Along the crest, the dam is 154 m high and 493.4 m long; the upstream dam slope is 1:1.4, and the downstream integrated dam slope is 1:1.3. The storage capacity is 5.36×10^8 m3, and the installed capacity of electric power plant is 300 MW. A typical section of this dam is shown in Fig. 2. Fig. 2 shows that the dam materials include main rockfill, secondary rockfill, transition, cushion, weighted cover and concrete face slab.

3. Displacement monitoring system

A detailed settlement monitoring system was established to monitor the deformation of the Malutang II CFRD [22]. Vertical displacements in the dam body were measured using settlement gauges distributed throughout typical cross-sections at 0 + 233.159. Twenty-two hydraulic overflow settlement gauges along three monitoring lines were placed in typical sections, of which 19 survived (at elevations of 522, 556, and 590 m). Two other monitoring gauges assessing the settlement and horizontal displacement were distributed on the downstream slope of typical sections at elevations of 565 and 595 m. The layout of the displacement gauges in typical section is presented in Fig. 3; the gauge positions are listed in Table 1.

![Fig. 1. General view of the Malutang II CFRD.](image1)

![Fig. 2. Typical section of the Malutang II CFRD at 0 + 233.159.](image2)
4. Objective function of the back-analysis

The fitness value of the objective function is the basis of the back-analysis. According to displacements of dam body, the objective function is developed, which is expressed as followed

\[F(y) = \sum_{i=1}^{m} \sum_{j=1}^{m} \left(\frac{y_i^j - y_i}{y_i} - 1.0 \right)^2 \]

where \(F(y) \) is the fitness value, \(m \) is the number of monitoring lines, \(m_i \) is the number of monitoring gauge displacements in one monitoring line, and \(y_i^j \) and \(y_i \) are the calculated and the prototype monitoring displacement, respectively, at the \(i \)-th displacement in the \(j \)-th monitoring line. The settlements in the middle area of the dam are much larger than the settlements at the bottom and the top of the dam. Thus, the term \(\frac{y_i^j}{y_i} \) in Eq. (1) minimizes the magnitude error of the displacements measured in situ. Fig. 3 shows that there are more monitoring gauges at EL522m than at the other two monitoring lines. The \(\frac{1}{m} \) term in Eq. (1) eliminates the gauge number difference among the monitoring lines. The weight of the each monitoring gauge displacement in every monitoring line is the same.

4.1. Displacement calculation

The displacement of Malutang II was calculated using the FEM. To calculate the displacement, Duncan and Chang’s E–B model was used to simulate the stress–strain characteristics of the soil [23].

4.1.1. Constitutive model and soil parameters

The Duncan and Chang’s E–B model is a simple and practical nonlinear elastic model. It is recommended by Chinese Design specification for rolled earth-rockfill dams (DL-5395-2007) to calculate displacement and stress of earth-rockfill dam. The Chinese Specification of soil test (SL237-1999) also provides techniques, which are used to determine soil parameters used in the Duncan and Chang’s E–B model according to triaxial test results. The Chinese engineering practices indicate that the Duncan and Chang’s E–B model can well simulate the settlements of earth-rockfill dams, whose computational accuracy satisfies the demand for engineering. However, many new constitutive models have been developed, which are more sophisticated than the Duncan and Chang’s E–B model. But the parameters of these constitutive models are difficult to determine and these constitutive models are also complex to use.

The Duncan and Chang’s E–B model had been used to calculate displacement and stress of the Malutang II CFRD in the design processes. The model suggested that the tangent modulus \(E_t \) is expressed as followed:

\[
\begin{align*}
E_t &= (1 - R_s S)^2 \cdot K \cdot P_o \cdot (\sigma_3/P_o)^n \\
S &= (1 - \sin \phi)(\sigma_1 - \sigma_3) \\
2c \cos \phi + 2\sigma_1 \sin \phi
\end{align*}
\]

where \(R_s \) is the failure ratio, \(S \) is the stress level, \(K \) is the modulus number, \(P_o \) is the atmospheric pressure equal to 101.3 kPa, \(\sigma_3 \) is the minor principal stress, \(n \) is the modulus exponent, \(\sigma_1 \) is the major principal stress, \(\phi \) is the friction angle, and \(c \) is the cohesion.

The nonlinear volume change is simulated using the bulk modulus, which is expressed as follows:

\[
B = K_b \cdot P_o \cdot (\sigma_3/P_o)^m
\]

where \(K_b \) is the bulk modulus number and \(m \) is the bulk modulus exponent.

Under unloading and reloading conditions, the tangent modulus \(E_t \) is replaced by the unloading–reloading modulus \(E_{ur} \), which is expressed as

\[E_{ur} = K_{ur} \cdot P_o \cdot (\sigma_3/P_o)^m \]

where \(K_{ur} \) is the unloading–reloading modulus number. The ratio \(K_{ur}/K \) varies from approximately 1.2 for stiff soils, such as dense sand, to approximately 3 for softer soils, such as loose sand [23].

The unloading and reloading conditions are determined using the loading function, which is expressed as

\[S_i = \frac{\sqrt{S_{sm}}}{\sigma_3/P_o} \]

The maximum \(S_i \) of the soil during loading is denoted by \(S_{sm} \). If \(S_i > S_{sm} \), the soil is under loading conditions, and the tangent modulus \(E_t \) is used. If \(S_i < 0.75S_{sm} \), the soil is under unloading and reloading conditions, and the unloading–reloading modulus \(E_{ur} \) is used. If \(S_{sm} > S_i > 0.75S_{sm} \), the tangent modulus is determined using linear interpolation [24].

\[E_i = E_t + (E_{ur} - E_t) \frac{S_i - 0.75S_{sm}}{0.25S_{sm}} \]

The Mohr–Coulomb envelopes for cohesionless soils are curved to some extent, and a wider range of pressure corresponds to a greater curvature, particularly for gravel and rockfill. For example, at the bottom near the center of a large dam, the rockfill may be confined under such a large pressure that the friction angle is

\[\phi = \phi_0 - \Delta \phi \cdot \log(\sigma_3/P_o) \]

where \(\phi_0 \) is the value of \(\phi \) for \(\sigma_3 = P_o \) and \(\Delta \phi \) is the reduction in \(\phi \) for a 10-fold increase in \(\sigma_3 \) [23]. Thus, the friction angle \(\phi \) and the cohesion stress \(c \) in Eq. (2) should be replaced by \(\phi_0 \) and \(\Delta \phi \), respectively, for rockfill materials.

There are eight parameters in Duncan and Chang’s E–B model: \(K, n, K_{ur}, K_b, m, R_s, c, \phi \) (or \(\phi_0 \) and \(\Delta \phi \)). The soil parameters used

![Fig. 3. Layout of the monitoring gauges in the 0 + 233.159 section of the Malutang II CFRD.](Image)

Table 1

<table>
<thead>
<tr>
<th>Positions of the monitoring gauges in the Malutang II CFRD.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dam 0 + 233.159</td>
</tr>
<tr>
<td>-----------------</td>
</tr>
<tr>
<td>EL522</td>
</tr>
<tr>
<td>EL556</td>
</tr>
<tr>
<td>EL590</td>
</tr>
<tr>
<td>EL595</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Elevation (m)</th>
<th>-151</th>
<th>-104</th>
<th>-80</th>
<th>-56</th>
<th>-28</th>
<th>0</th>
<th>35</th>
<th>64.8</th>
<th>70</th>
<th>105</th>
<th>145</th>
</tr>
</thead>
</table>
in Duncan and Chang’s E–B model for Malutang II were determined using a conventional consolidated-drained triaxial compression test. The stress–strain behavior during triaxial drained compression tests at different confining pressure values on the main rockfill is shown in Fig. 4. According to Duncan and Chang’s E–B model suggestion, stress–strain curves in Fig. 4(a) can be approximated reasonably by hyperbolas

$$\sigma_1 - \sigma_3 = e_1/(a + b\varepsilon_1)$$ \hspace{1cm} (8)

where $a = 1/E_i$, E_i is the value of E_t when e_1 equals 0; $b = (\sigma_1 - \sigma_3)_{ult}$ is asymptotic value of $\sigma_1 - \sigma_3$ when e_1 becomes infinity. The a or E_i and b or $(\sigma_1 - \sigma_3)_{ult}$ can be obtained using the stress–strain curves in Fig. 4(a) by Eq. (8).

$$R_f = (\sigma_1 - \sigma_3)/(\sigma_1 - \sigma_3)_{ult}$$ \hspace{1cm} (9)

where $(\sigma_1 - \sigma_3)_{ult}$ is a $\sigma_1 - \sigma_3$ at failure, which can be estimated from Fig. 4(a). The friction angle ϕ can be calculated by $\sin \phi = (\sigma_1 - \sigma_3)/(\sigma_1 + \sigma_3)$ for every σ_3, and then ϕ_0 and $\Delta\phi$ were determined according to relationship of $\phi - \sigma_3$, i.e., Eq. (7).

Fig. 5 shows the variation of initial tangent modulus E_i with σ_3, the values of K and n can be determined from this relationship $\lg(E_i/\sigma_3)-\lg(\sigma_3/\rho_3)$. The bulk modulus B_t is determined using the following function

$$B_t = \frac{\sigma_1 - \sigma_3}{3\varepsilon_v}$$ \hspace{1cm} (10)

Fig. 6 shows the variation of bulk modulus B_t with σ_3, the values of K_b and m can be determined. And all the soil parameters determined using indoor triaxial tests are listed in Table 2.

![Fig. 4. Stress-axial strain-volumetric strain behaviors during triaxial drained compression tests at different confining pressure values on main rockfill.](image)

![Fig. 5. $\lg(E_i/\sigma_3)-\lg(\sigma_3/\rho_3)$ curve.](image)

![Fig. 6. $\lg(R_f/\sigma_3)-\lg(\sigma_3/\rho_3)$ curve.](image)

![Fig. 7. Three-dimensional FE mesh of Malutang II.](image)

Table 2

<table>
<thead>
<tr>
<th>Material</th>
<th>K</th>
<th>n</th>
<th>R_f</th>
<th>ϕ (°)</th>
<th>$\Delta\phi$ (°)</th>
<th>K_b</th>
<th>m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main rockfill</td>
<td>1467</td>
<td>0.38</td>
<td>0.80</td>
<td>55.0</td>
<td>15.0</td>
<td>1570</td>
<td>0.23</td>
</tr>
<tr>
<td>Secondary rockfill</td>
<td>1042</td>
<td>0.53</td>
<td>0.80</td>
<td>50.7</td>
<td>10.5</td>
<td>933</td>
<td>0.08</td>
</tr>
<tr>
<td>Cushion</td>
<td>1963</td>
<td>0.35</td>
<td>0.74</td>
<td>55.3</td>
<td>13.2</td>
<td>1742</td>
<td>0.21</td>
</tr>
<tr>
<td>Transition</td>
<td>1583</td>
<td>0.35</td>
<td>0.74</td>
<td>57.6</td>
<td>16.5</td>
<td>1590</td>
<td>0.16</td>
</tr>
<tr>
<td>Weighted cover</td>
<td>1042</td>
<td>0.53</td>
<td>0.75</td>
<td>50.7</td>
<td>10.5</td>
<td>933</td>
<td>0.08</td>
</tr>
</tbody>
</table>

4.1.2. Finite element mesh and construction simulation

The three-dimensional finite element mesh of Malutang II is shown in Fig. 7; it is composed of 8284 elements. The interface between the slab and the cushion was simulated using Goodman contact elements [25], which were also applied to simulate the slab joints and the peripheral joints. The shear modulus of the interface element, which was calculated using a hyperbolic model proposed by Clough and Duncan [26], is expressed as
where \(\gamma_{w} \) is the bulk density of water, \(K_{yx} \) and \(K_{yz} \) are the tangential coefficients of the shear modulus, \(\sigma_{y} \) is the normal stress, \(\tau_{yx} \) and \(\tau_{yz} \) are the shear stresses, and \(K_{n}, n', R_{f}, \) and \(\phi \) are the modulus parameters. These parameters were determined from a direct shear test which conducted on an interface between the face slab and the cushion, where \(K_{n} = 4500, n' = 0.5, \phi = 32^\circ, \) and \(R_{f} = 0.65. \) The modules of the Goodman elements simulated the vertical joints between the face slabs using a water stop model [27]. The concrete face slab was simulated using a linear elastic model with an elastic modulus of 25.5 GPa and a Poisson ratio of 0.167.

The construction stages of the Malutang II dam are presented in Fig. 8. According to the stages shown in Fig. 8, the construction of Malutang II was simulated with 26 loading steps in the FEM calculation, in which step 1–3 simulated stage I, step 4–10 simulated stage II and stage I slab, step 11–19 simulated stage III, and step 20–26 simulated stage IV and stage II slab. In the construction, water was sprinkled adequately to ensure the rockfill was rolled more easily to design density. However, the pore water pressure of the rockfill did not rise because of the large permeability coefficient.

4.2. Prototype monitoring displacements

The displacements measured in situ are also listed in Table 3. These displacements represent the total values recorded until Mar. 15th, 2009, immediately after the dam construction was completed, before the reservoir started impounding [28]. Furthermore, the displacements on L4 and L5 during construction are also recorded, which are shown in Fig. 9. The total number of measurements available for the back-analysis is 41.

The settlements measured in situ and the FEM-calculated values are shown in Table 3 and denoted by a dashed line in Fig. 9. Hence, the settlements in construction stage II cannot be used to directly calculate the fitness values. These settlements can be used as a constraint of the back-analysis. If the sum of the calculated settlements from V11 to V15 was smaller than the in situ measurements, then the fitness values were set to infinity.

5. Parameter-searching range in back-analysis

Figs. 8 and 9 show that the calculated settlements differ significantly from the in situ monitoring results, even though the scale effect of the triaxial test and the limitations of Duncan and Chang’s E–B model for these rockfill materials were back-analyzed according to the prototype monitoring displacements.

Table 3

<table>
<thead>
<tr>
<th>Monitoring gauges</th>
<th>Displacement (cm)</th>
<th>Measured</th>
<th>Calculated</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Triaxial test</td>
<td>Back-analysis</td>
</tr>
<tr>
<td>V1</td>
<td>29.1</td>
<td>8.5</td>
<td>16.7</td>
</tr>
<tr>
<td>V2</td>
<td>44.2</td>
<td>16.0</td>
<td>29.8</td>
</tr>
<tr>
<td>V3</td>
<td>27.9</td>
<td>17.7</td>
<td>33.2</td>
</tr>
<tr>
<td>V4</td>
<td>46.4</td>
<td>14.6</td>
<td>29.7</td>
</tr>
<tr>
<td>V5</td>
<td>15.5</td>
<td>12.2</td>
<td>26.2</td>
</tr>
<tr>
<td>V7</td>
<td>33.5</td>
<td>18.6</td>
<td>49.1</td>
</tr>
<tr>
<td>V8</td>
<td>56.5</td>
<td>22.5</td>
<td>57.1</td>
</tr>
<tr>
<td>V9</td>
<td>32.0</td>
<td>19.7</td>
<td>47.2</td>
</tr>
<tr>
<td>V10</td>
<td>42.1</td>
<td>12.3</td>
<td>26.9</td>
</tr>
<tr>
<td>V11</td>
<td>26.4</td>
<td>13.3</td>
<td>33.1</td>
</tr>
<tr>
<td>V12</td>
<td>99.2</td>
<td>21.5</td>
<td>55.3</td>
</tr>
<tr>
<td>V13</td>
<td>76.5</td>
<td>28.4</td>
<td>74.6</td>
</tr>
</tbody>
</table>

Fig. 9. Comparison of simulations based on triaxial test parameters and in situ measurements for settlements after construction (settlement amplified 20-fold).

Fig. 3 and Table 3 show that the observation points are primarily displaced by deformation of the main rockfill, the secondary rockfill, and the weight cover. Thus, the parameters of Duncan and Chang’s E–B model for these rockfill materials were back-analyzed according to the prototype monitoring displacements.

Table 3 and Fig. 9 show that the displacements calculated according to the parameters determined by the indoor triaxial tests are smaller than the in situ measurements. The largest measured settlement is 119.6 cm at V16, whereas the simulated settlement based on the triaxial test parameters is only 40.9 cm. The horizontal displacements at L4 and L5 are 6.4 and 28.2 cm, respectively, whereas the calculated displacements are 15.9 and 23.0 cm, respectively. The simulated displacements differ significantly from the in situ monitoring results, even though the scale effect of the triaxial test and the limitations of Duncan and Chang’s E–B model were eliminated.

Figs. 8 and 9 show that the calculated settlements and the in situ measurement values in stage III have the largest difference,
followed by the differences in stages I and IV. The monthly construction speed was 2.0×10^5 m3 in stage I, 2.85×10^5 m3 in stage II, and 2.47×10^5 m3 in stages III and IV [29]. The measured displacements and the construction record indicate that the rapid construction reduced the consolidation time [29], modified the structure of the rockfill, and caused the rockfill density to be unevenly distributed. The uneven density of the rockfill affected the rockfill deformation modulus and the dam body displacement. According to the construction record, the main rockfill and the secondary rockfill were separated into three parts corresponding to the three construction rates. Thus, the main rockfill types I, II, and III represent the main rockfill types that are constructed in stages I, II, and III & IV, respectively. The same notation is applied for secondary rockfill. Fig. 8 and Table 2 show that the weighted weighting parameter, d is the hyperspace boundary. If the mutational particle value is better than the p_{best} fitness values, the particle will replace p_{best}. The mutation-particle location is expressed as

$$x_{mi}^r(t) = \begin{cases} x_i(t) + \left[u - x_i(t) \right] \cdot \left[1 - \text{rand} \left(1 - 1/T_{\text{max}} \right) \right] & \text{random}(0,1) = 0 \\ x_i(t) + \left[x_i(t) - l \right] \cdot \left[1 - \text{rand} \left(1 - 1/T_{\text{max}} \right) \right] & \text{random}(0,1) = 1 \end{cases}$$

(14)

where u is the hyperspace upper boundary, l is the hyperspace lower boundary, and rand is a random number generated according to a uniform distribution in $(0,1)$, T_{max} is the maximum iteration number, d is a system parameter equal to 2, and $\text{random}(0,1)$ is a random number equal to 0 or 1 [33].

<table>
<thead>
<tr>
<th>Material</th>
<th>K</th>
<th>n</th>
<th>R_l</th>
<th>φ (°)</th>
<th>$\Delta \varphi$ (°)</th>
<th>K_b</th>
<th>m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main rockfill I</td>
<td>700–2200</td>
<td>0.15–0.40</td>
<td>0.60–0.90</td>
<td>45.0–55.0</td>
<td>5.0–16.0</td>
<td>300–1800</td>
<td>0.05–0.30</td>
</tr>
<tr>
<td>Main rockfill II</td>
<td>300–2200</td>
<td>0.15–0.45</td>
<td>0.60–0.90</td>
<td>300–1500</td>
<td>0.10–0.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Main rockfill III</td>
<td>800–2200</td>
<td>0.15–0.45</td>
<td>0.60–0.90</td>
<td>500–1800</td>
<td>0.05–0.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Secondary rockfill I</td>
<td>700–1500</td>
<td>0.20–0.60</td>
<td>0.60–0.90</td>
<td>40.0–50.0</td>
<td>5.0–16.0</td>
<td>300–1800</td>
<td>0.05–0.50</td>
</tr>
<tr>
<td>Secondary rockfill II</td>
<td>300–1500</td>
<td>0.15–0.60</td>
<td>0.60–0.90</td>
<td>200–1200</td>
<td>0.05–0.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Secondary rockfill III</td>
<td>700–1500</td>
<td>0.15–0.60</td>
<td>0.60–0.90</td>
<td>300–1500</td>
<td>0.05–0.50</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

6.2. Procedures of the MPSO displacement back-analysis

The searching ranges of the 34 soil parameters listed in Table 4 constituted a 34-dimensional searching space. A particle location $x_{i}(t) = (x_{i1}, x_{i2}, \ldots, x_{im})$ in the 34-dimensional searching space is a group of 34 soil parameters. So in the MPSO displacement back-analysis, the back-analysis of the 34 soil parameter was changed to search a best location using the particle swarm in the 34-dimensional searching space. The procedure of the MPSO displacement back-analysis includes the following steps.

(1) Generate m particles with random locations in the 34-dimensional searching space. The m different particles, each of whose particle location has 34 soil parameters, constitute a particle swarm. Set the values of w, c_1, c_2, T_{max}, and Tolerance, and assign t to 0.

(2) Calculate displacements of the rockfill dam using the FEM according to a particle location $x_{i}(t) = (x_{i1}, x_{i2}, \ldots, x_{im})$, which is consisted by the 34 soil parameters. According to the calculated displacements and the prototype monitoring displacements of the rockfill dam, calculate the fitness value of each particle location $x_{i}(t)$ using Eq. (1).

(3) According to these fitness values, the p_{best} and g_{best} of the particle swarm were determined. According to the p_{best} and g_{best}, the m particles were accelerated using Eqs. (12) and (13). The particle location $x_{i}(t)$ was updated to $x_{i}(t+1)$.

(4) Calculate displacements of the rockfill dam using the FEM according to an updated particle location $x_{i}(t+1) = (x_{i1}, x_{i2}, \ldots, x_{im})$. According to the calculated displacements...
and the prototype monitoring displacements, calculate the fitness value of each updated particle location \(x_i(t+1) \) using Eq. (1).

(5) Replace \(p_{best} \) of each particle with the updated location \(x_i(t+1) \) if the latter’s fitness value is less than that of \(p_{best} \). Replace \(g_{best} \) with \(p_{best} \) if the latter’s fitness value is less than that of \(g_{best} \).

(6) According to the update \(p_{best} \) and \(g_{best} \), generate mutational particles \(x_i^m(t) = (x_{i1}^m, x_{i2}^m, \ldots, x_{ik}^m) \) using Eq. (14).

(7) Calculate displacements of the rockfill dam using the FEM according to a mutational particle location \(x_i^m(t) \). According to the calculated displacements and the prototype monitoring displacements, calculate the fitness value of each mutational particle using Eq. (1).

(8) Replace \(p_{best} \) and updated particle location of each particle with the mutational particle location \(x_i^m(t) \) if the latter fitness value is less than \(p_{best} \).

(9) Update \(t \) with \(t+1 \). Finish the optimization if \(t \) equals \(T_{max} \) or if the fitness value of \(g_{best} \) is less than Tolerance. Update \(w \) with \(w_0 - (w_0 - 0.01) t / T_{max} \), and return to procedure (3) if \(t \) is less than \(T_{max} \).

The inertia weighting \(w \) affects the performance of the PSO. A higher \(w \) value will help in avoiding a local minimum, and a lower \(w \) will accelerate the convergence. A PSO with a linearly decreasing \(w \) can improve the effectiveness [34]. Hence, \(w \) is replaced by \(w_0 = (w_0 - 0.01) t / T_{max} \) in procedure (9), where \(w_0 \) is the initial value of \(w \) in procedure (1).

In the procedures of the MPSO displacement back-analysis, procedures (2), (4) and (7) calculate the fitness values of the particle swarm using the FEM. This process will be time-consuming if the fitness values of the particle swarm are calculated one by one with a serial calculation by one core. However, the fitness value calculations of each particle in each of these three procedures are completely independent. Therefore, the computation time can be reduced if the fitness values of multiple particles can be simultaneously calculated using a parallel FEM with multiple cores.

6.3. Parallel MPSO displacement back-analysis procedure

A parallel FEM was programmed in Fortran 90 using the Message Passing Interface (MPI). The MPI provides a set of interfaces that are designed to assist the library in constructing a virtual topology from the application’s communication pattern and in supporting remapping (reordering) of the processes to the available cores to optimize performance [35]. Communication among the cores is achieved by sending and receiving messages among the corresponding processes. In this case, one process sends the particle locations to the other processes and receives the fitness values of the particles from the others. This process is the master process. The initial generation, acceleration, and mutation of the particles are achieved by the master process. The other processes are slave processes, which calculate the fitness values of the particles using the FEM. The communications between the master process and the slave processes are shown in Fig. 10. Parameter \(k_1 \) in Fig. 10 indicates the number of slave processes.

The particle locations, which are sent by the master process, and the fitness values, which are sent by the slave process, occupy little internal memory. Thus, the communications among processes cost little time. The effectiveness of the entire parallel FEM calculation is determined by the FEM calculations of the slave processes. To avoid slave process idling, the particle number of the particle swarm is an integer multiple of \(k_1 \). Furthermore, the master process sends different particle locations. The calculation in each slave process costs different amounts of time. Thus, according to the slave process numbers, the master process sends the particle locations in the first message-sending turn. The master process freely receives fitness values from the slave processes. In the following message-sending turn, the master process sends the slave processes a new particle location after its fitness value is received. This “first come first served” principle avoids slave process idling generated by the FEM calculation. A flowchart of the parallel MPSO back-analysis is shown in Fig. 11.

The reliability of MPSO is examined by two benchmark functions, Griewank and Rosebrock. The formula and searching range of benchmark functions are listed in Table 5. The benchmark functions in three dimensions are shown in Fig. 12. Fig. 12 shows that the Griewank is a multimodal test function, while the Rosenbrock is a unimodal function, whose global optimum locates in a narrow valley.

In the examination, the searching hyperspace dimension \(k \), the particle swarm \(j \), the initial inertia weighting \(w_0 \), the acceleration
constants c_1 and c_2, and the maximum iteration number T_{max} were set as 30, 30, 1.0, 2.0, 2.0 and 2000. Each benchmark function was respectively performed by 50 times using the PSO and MPSO. The average best fitness value and dispersion of the examination were also listed in Table. 5. Fig. 13 shows the evolution of the logarithmic average fitness values for the PSO and MPSO. The MPSO achieved better results on all the benchmark functions than the PSO. The mutation of MPSO keeps the diversity of particle swarm and mitigates premature convergence.

7. Parameters back-analysis

The rockfill parameters of Malutang II were back-analyzed using the parallel MPSO. The particle number of the particle swarm j, the initial inertia weighting w_0, the acceleration constants c_1 and c_2, the maximum iteration number T_{max} and Tolerance were set as 22, 1.0, 2.0, 2.0, 1000, and 0.3, respectively. The number of fitness value calculations performed by the FEM was $22 \times 1000 \times 2 = 44,000$. Seven slave processes were used to calculate the fitness values of the particle swarm. Four processes (equipped with a 3.41-GHz core) calculated the fitness value twice as fast as the others (equipped with a 2.33-GHz core). Hence, these 7 slave processes can perform 11 fitness value calculations as the 3 slower processes complete one. The particle swarm fitness value calculation required approximately 146 s for one iteration. Fig. 14 shows the relationship between the slave process number and the fitness value calculation time of the particle swarm for one iteration. The fitness value calculation time decreased as the number of slave processes in the parallel calculation increased. The results of the back-analysis are shown in Table 6. The FEM analysis was conducted using model parameters obtained from the back-analysis. The displacements calculated from the back-analysis parameters are listed in Table 3 in comparison with the in situ measurements and the calculated displacements based on triaxial test parameters. The fitness value of the calculated displacements for the triaxial test parameters was 1.162, while the value of the back-analysis parameters was 0.398. The calculated and the in situ measured settlements until Mar. 15th, 2009 are shown in Fig. 15. The calculated and the in situ measured displacements on L4 and L5 during construction are shown in Fig. 16. Fig. 16 shows that the displacements increase.

<table>
<thead>
<tr>
<th>Name</th>
<th>Formula</th>
<th>Range</th>
<th>Average best fitness (Standard deviation)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Griewank</td>
<td>$f_1(x) = \sum_{i=1}^{n} \frac{x_i^2}{4000} - \prod_{i=1}^{n} \cos \left(\frac{x_i}{\sqrt{i}} \right) + 1$</td>
<td>[-600,600]</td>
<td>PSO: 1.27E+01 (3.17E+01) MPSO: 1.84E+00 (1.80E+01)</td>
</tr>
<tr>
<td>Rosenbrock</td>
<td>$f_2(x) = \sum_{i=1}^{n} \left(100(x_i - x_i^2) + (x_i - 1)^2 \right)$</td>
<td>[-30,30]</td>
<td>PSO: 1.89E+04 (3.59E+04) MPSO: 1.08E+02 (8.98E+01)</td>
</tr>
</tbody>
</table>

(a) Griewank ($k=2$) | (b) Rosenbrock ($k=2$)

Fig. 12. Benchmark functions.

Fig. 13. Evolution of average fitness for PSO and MPSO.

Fig. 14. Time consumed by parallel calculations for one iteration.
with construction elevation. In the back-analysis, the y_{ci} on L4 and L5 were calculated according to the following function:

$$y_{ci} = \frac{1}{nL} \sum_{l=1}^{nL} y_{ci}^l$$

where nL is the number of loading steps, y_{ci}^l and y_{si}^l are the calculated displacement and the prototype monitoring displacement in the l-th loading step, respectively.

The settlements calculated using the back-analysis parameters are consistent in magnitude and distribution with the values measured in situ. Therefore, in general, the back-analysis results satisfactorily reflect the deformation properties of the dam.

Table 6 shows a comparison between the triaxial test parameters and the back-analysis parameters of the main rockfill and the secondary rockfill, respectively. The back-analyzed values of K and K_b are less than the triaxial test values, except for K and K_b in main rockfill III and in secondary rockfill III. The back-analyzed K and K_b of main rockfill III are the largest, and those of main rockfill I are larger than those of main rockfill II. Accordingly, main rockfill II has a higher construction speed than main rockfill III and main rockfill I, indicating that the construction speed significantly affects the deformation modulus of the main rockfill. This tendency is consistent with the distribution of the settlements measured in situ and the construction record [29]. Furthermore, the stress history of main rockfill II is different from main rockfill I and main rockfill II, which also affects its deformation modulus. The back-analyzed K and K_b of the secondary rockfill also followed this trend. Therefore, the settlements of V16, V18, and L5 are primarily generated by secondary rockfill II. The soft secondary rockfill II deformation below 525 m accounted for approximately 40% of the total settlement of these three points. The harder secondary rockfill III deformation between 525 m and 565 m accounted for approximately 30%. The secondary rockfill I and the main rockfill I deformation below 515 m accounted for approximately 30%.

This result is consistent with the distribution of the settlements measured in situ [22,29]. The back-analyzed results indicate that construction speed and stress history affect the deformation modulus and the displacement of the dam body.

8. Conclusion

The E-B model parameters of rockfill in the Malutang II CFRD were back-analyzed using a parallel MPSO. The displacements calculated from the back-analyzed parameters are consistent with the prototype monitoring results. The back-analyzed parameters can accurately describe the deformation characters of rockfill for use in safety operation, seismic safety assessment, and enforcement design. The parallel MPSO has a high optimization rate and can be used in large-scale practical engineering applications.

The back-analysis results indicate that the deformation modulus of rockfills in the Malutang II CFRD are affected by construction in situ, which should be considered in the back-analysis.

Acknowledgments

This research was supported by the National Natural Science Foundation of China (Nos. 51109027, 51179024, and 51379029) and the Fundamental Research Funds for the Central Universities (No. DUT12LK11).
References

