
NoSQL Systems for Big Data Management

Venkat N Gudivada

Weisburg Division of Computer Science

Marshall University

Huntington, WV, USA

gudivada@marshall.edu

Dhana Rao

Biological Sciences Department

Marshall University

Huntington, WV, USA

raod@marshall.edu

Vijay V. Raghavan

Center for Advanced Computer Studies

University of Louisiana at Lafayette

Lafayette, LA, USA

vijay@cacs.louisiana.edu

Abstract—The advent of Big Data created a need for
out-of-the-box horizontal scalability for data management
systems. This ushered in an array of choices for Big
Data management under the umbrella term NoSQL. In this
paper, we provide a taxonomy and unified perspective
on NoSQL systems. Using this perspective, we compare
and contrast various NoSQL systems using multiple facets
including system architecture, data model, query language,
client API, scalability, and availability. We group current
NoSQL systems into seven broad categories: Key-Value,
Table-type/Column, Document, Graph, Native XML, Native
Object, and Hybrid databases. We also describe application
scenarios for each category to help the reader in choosing
an appropriate NoSQL system for a given application. We
conclude the paper by indicating future research direc-
tions.

Keywords-Data Models, NoSQL, NewSQL, Big Data, Graph
Databases, Document Databases, Native XML Databases

I. Introduction

Until recently, relational database management sys-
tems (RDBMS) were the mainstay for managing all types
of data irrespective of their naturally fit to the relational
data model. The emergence of Big Data and mobile
computing necessitated new database functionality to
support applications such as real-time logfile analysis,
cross-selling in eCommerce, location based services,
and micro-blogging. Many of these applications exhibit
a preponderance of insert and retrieve operations on a
very large scale. Relational databases were found to be
inadequate in handling the scale and varied structure
of data.
The above requirements ushered in an array of

choices for Big Data management under the umbrella
term NoSQL [1], [2], [3]. NoSQL (meaning ‘not only
SQL’) has come to describe a large class of databases
which do not have properties of traditional relational
databases and are generally not queried with SQL
(structured query language). NoSQL systems provide
data partitioning and replication as built-in features.
They typically run on cluster computers made from
commodity hardware and provide horizontal scalability.
Developing applications using NoSQL systems is

quite different from the process used with RDBMS [4].

NoSQL databases require developer-centric approach
from the application inception to completion. For exam-
ple, data modeling is done by the application architect
or developer, whereas in RDBMS based applications,
data architects and data modelers complete the data
modeling tasks. They begin by constructing conceptual
and logical data models. Database transactions and
queries come into play only in the design of a phys-
ical database. In contrast, NoSQL database approaches
begin by identifying application queries and structure
the data model to efficiently support these queries. In
other words, there is a strong coupling between the
data model and application queries. Any changes to the
queries will necessitate changes to the data model. This
approach is in stark contrast to the time-tested RDBMS
principles of logical and physical data independence.
Traditionally, data is viewed as a strategic and shared

corporate resource with well established policies and
procedures for data governance and quality control. In
contrast, NoSQL systems promote data silos, each silo
geared towards meeting the performance and scalability
requirements of just one or more applications. This
runs against the ethos of enterprise data integration,
redundancy control, and integrity constraints [5].
Given the above backdrop, following are the contribu-

tions of this paper. We provide a taxonomy and unified
perspective to help the reader understand the func-
tionality, strengths and limitations of NoSQL databases.
Using this perspective, we compare and contrast vari-
ous NoSQL systems using multiple facets which include
system architecture, data model, query language, client
API, scalability, and availability. We group the current
NoSQL systems into seven broad categories: Key-Value,
Table-type/Columnar, Document, Graph, Native XML,
Native Object, and Hybrid databases. Members of these
categories are not always disjoint, with some systems
falling into more than one category. We also describe
application scenarios for each category to help the
reader choose an appropriate NoSQL system for a given
application. We conclude the paper by indicating future
research direction.
We begin with a discussion of the principal features

2014 IEEE 10th World Congress on Services

978-1-4799-5069-0/14 $31.00 © 2014 IEEE

DOI 10.1109/SERVICES.2014.42

206

2014 IEEE 10th World Congress on Services

978-1-4799-5069-0/14 $31.00 © 2014 IEEE

DOI 10.1109/SERVICES.2014.42

206

2014 IEEE 10th World Congress on Services

978-1-4799-5069-0/14 $31.00 © 2014 IEEE

DOI 10.1109/SERVICES.2014.42

190

bari
Typewriter
1

bari
Typewriter

bari
Typewriter
2

bari
Typewriter
3

bari
Typewriter
4

bari
Typewriter
5

bari
Typewriter
6

bari
Typewriter
7

bari
Typewriter
1

of NoSQL systems (section II). In section III, we describe
concepts that are essential to understanding NoSQL
systems from both a technical standpoint and business
perspective. Sections IV through X describe the classes
of NoSQL systems along with their application scenar-
ios. Section XI concludes the paper.

II. Principal Features of NoSQL

The need for NoSQL database solutions primarily
emanated from the requirements of eCommerce, mobile
computing and location based services, Web services,
and social media applications. eCommerce applications
require predictive analytics, personalization, dynamic
pricing, superior customer service, fraud and anomaly
detection, real-time order status through supply chain
visibility, and Web server access log analysis. All of
the above functions are characterized by massive data
which need to be fused from multiple sources and
processed in real-time.

A. Big Data Characteristics

Data that is too big and complex to capture, store,
process, analyze, and interpret using the state-of-the-
art tools and methods is referred to as Big Data. It
is characterized by five Vs: Volume, Velocity, Variety,
Value, and Veracity. Data size (Volume) is in the order
of terabytes or even petabytes, and is rapidly heading
towards exabytes. Velocity refers to the speed at which
the data is generated. Enterprise Big Data is typically
heterogeneous (Variety) and is comprised of structured,
semi-structured, and unstructured data. Value refers
to extracting useful and actionable information from
massive data sets. Due to diversity in sources and evo-
lution of data through intermediate processing, issues
of security, privacy, trust, and accountability need to be
addressed using secure data provenance (Veracity).

B. Flexible Data Models

All RDBMS databases are based on the relational data
model. In contrast, each class of NoSQL system employs
a different data model. NoSQL data models inherently
support horizontal data partitioning across processors
in a cluster or even processors across data centers.
RDBMS applications typically work with fixed

database schema, though the schema may evolve
slowly. Schema change is a well managed activity and
the application goes through rigorous software testing.
In contrast, many NoSQL systems treat schema as a con-
struct that inherently evolves over time. These systems
also require schema that allows great variation in row
data without incurring the NULL value problems.
A NoSQL data model closely reflects an individual

application need rather than needs of several appli-
cations. The data model naturally mirrors the way a

subject matter expert (SME) thinks about the data in
the domain in the context of a specific application. In
other words, a NoSQL application works with a data
model that is specifically designed and optimized for
that application.

C. Eventual Consistency

Create/Insert, Read, Update, and Delete (CRUD) are
four operations that databases are expected to provide
and execute efficiently. NoSQL data models are struc-
tured to support massively concurrent insert and read
operations relative to updates. The notion of eventual
consistency is embraced to support extremely fast insert
and read operations. Eventual consistency implies that
applications are aware of the non-repeatable read issue
due to latency in consistency. Some NoSQL systems
employ data models to efficiently support only insert
and read to the exclusion of update and delete.

D. Partial Record Updates

RDBMS data models are optimized for row-wise pro-
cessing based on the assumption that applications
process most of an entity’s attributes. In contrast,
some NoSQL data models are designed to efficiently
perform column-wise processing to support computing
aggregates on one or two attributes across all entities.
For example, data models of column-oriented NoSQL
databases resemble a data warehouse star schema
where the fact table at the center stores de-normalized
row data and each dimension table stores all columns
of a column-family.

E. Application Synthesized Relationships

RDBMS data models are designed to capture one-to-
one, one-to-many, and many-to-many relationships be-
tween entities. In contrast, many NoSQL data models do
not explicitly and inherently model relationships (graph
data model based NoSQL systems are an exception).
Most NoSQL systems do not support relational join
operation. NoSQL applications are expected to synthe-
size relationships by processing the data. If the data
is inherently rich in relationships, many NoSQL data
models are a poor fit.

F. Optimized MapReduce Processing

In RDBMS applications, employing MapReduce pro-
cessing requires moving the data from the RDBMS to
another memory address space within the same ma-
chine or to a different one. In contrast, some NoSQL
systems feature MapReduce as a native functionality to
obviate the data movement.

207207191

bari
Typewriter
2

bari
Typewriter
3

bari
Typewriter
4

bari
Typewriter
5

bari
Typewriter
6

bari
Typewriter

bari
Typewriter

bari
Typewriter

bari
Typewriter
7

bari
Typewriter

bari
Typewriter
8

bari
Typewriter
9

bari
Typewriter
10

G. Native Support for Versioning

Mainstream, off-the-shelf RDBMS do not provide sup-
port for data versioning. However, an RDBMS data
model can be designed to support versioning of an
attribute by including two additional attributes (begin
date and end date). This is a convoluted approach with
strong performance penalties. In contrast, some NoSQL
data models are designed to provide native support for
versioning.

H. New Query Languages

RDBMS SQL queries in practice tend to be complex,
involve joins across multiple tables, consume substan-
tial database resources to execute, and are expensive
to write, debug, and maintain. In contrast, many NoSQL
systems avoid SQL altogether. Some provide a SQL-like
query language such as XQuery, while others require
writing programs for querying the database.
NoSQL databases take a multi-faceted approach

to querying including allowing only simple queries
through interfaces such as REST API, caching data in
main memory, or using database stored procedures as
queries. For example, in document-oriented NoSQL sys-
tems, a database query is a JSON document (technically,
a JavaScript expression) specified across all the docu-
ments in the collection. For graph model based NoSQL
systems, queries involve traversing graph structures.
Interfaces for graph traversal include JavaScript-based
interface (JIG), and special query languages such as
SPARQL, RDFS++, and Cypher.

I. Horizontal Scalability

RDBMS for Big Data applications are forced to use
distributed storage. Reasons for this include data that
exceeds the disk size limits, need for partitioned table
storage, recovery from hard disk failures through data
redundancy, and data replication to enable high avail-
ability. A typical RDBMS query requires join operations
across multiple tables. How fast a query is processed
is limited by how quickly data can be moved from
hard disks to primary storage, and the amount of data
moved. Database update operations are usually run as
database transactions. If the table data is partitioned,
update operations run slowly due to contention for
exclusive locks.
Securing and releasing write locks, coordinating this

across various disks, and ACID (atomicity, consistency,
isolation, and durability) compliance slows down trans-
action throughput. Long running transactions exacer-
bate the transaction throughput further. Vertical scaling
is often proposed as a solution to the transaction
throughput problem, which involves adding more CPUs,
more cores per CPU, and additional main memory.

However, vertical scaling quickly reaches its satura-
tion point. Other techniques for improving transaction
throughput include relaxing ACID compliance and using
methods such as disabling database logging.

Horizontal scalability, in contrast, refers to scaling
by adding new processors complete with their own
disks (aka nodes). Closely associated with horizontal
scaling is the partitioning of data. Each node/processor
contains only a subset of the data. The process of
assigning data to each node is referred to as sharding,
which is done automatically in some NoSQL systems.
It is easier to achieve horizontal scalability with

NoSQL databases. The complexity involved in enforc-
ing ACID compliance simply does not exist for most
NoSQL systems as they are ACID non-compliant by
design. Furthermore, only insert and read operations
dominate in NoSQL databases as update and delete
operations fade into insignificance in terms of volume.
NoSQL systems also achieve horizontal scalability by
delegating two-phase commit required for transaction
implementation to applications. For example, MongoDB
does not guarantee ACID compliance for concurrent
operations. This may infrequently result in undesirable
outcomes such as phantom reads.

III. NoSQL Concepts

NoSQL databases draw upon several concepts and
techniques to realize flexible data modeling and associ-
ated query languages, and horizontal scalability. These
concepts include but are not limited to shared-nothing
architecture, Hash trees, consistent hashing, REST API,
Protocol buffers (Protobuf), Apache Thrift, JSON and
BSON, BASE, MapReduce, vector clocks, column family,
keyspace, memory-mapped files, and the CAP theorem.

A. Shared-Nothing Architecture

In this architecture, each node is self-sufficient and
acts independently to remove single point of resource
contention. Nodes share neither memory nor disk stor-
age. Database systems based on shared-nothing ar-
chitecture can scale almost linearly by adding new
nodes assembled using inexpensive commodity hard-
ware components. Data is distributed across the nodes
in a non-overlapping manner, which is called sharding.
Though this concept existed for long with its roots in
distributed databases, it gained prominence with the
advent of NoSQL systems.

B. Hash Trees and Consistent Hashing

A hash tree (aka Merkle tree) is a tree in which every
non-leaf node is labeled with the hash of the labels of
its child nodes. Hash trees enable efficient and secure
verification of data transmitted between computers for

208208192

bari
Typewriter
1

bari
Typewriter
2

bari
Typewriter
3

bari
Typewriter
4

bari
Typewriter
5

bari
Typewriter
6

bari
Typewriter
7

bari
Typewriter
8

bari
Typewriter
9

bari
Typewriter
10

veracity. They are also used to efficiently determine the
differences between a document and its copy.
In traditional hashing, a change in the number of

slots in the hash table results in nearly all keys
remapped to new slots. If K is the number of keys and
n is the number of slots, consistent hashing guarantees
that on average no more than K/n keys are remapped
to new slots.

C. REST API, Protobuf and Apache Thrift

Representational State Transfer (REST) is an HTTP
API. It uses four HTTP methods – GET, POST, PUT and
DELETE – to execute different operations. Many NoSQL
systems enable client interaction through this API.
Protocol buffers (Protobuf) is a method for efficiently

serializing and transmitting structured data. It is used
to perform remote procedure calls (RPC) as well as for
storing data. Thrift is a software framework and an
interface definition language (IDL) for cross-language
services and API development.

D. JSON and BSON

JavaScript Object Notation (JSON) is a lightweight,
text-based, open standard format for exchanging data
between a server and a Web application. Though it
is originally derived from the JavaScript language, it
is a language-neutral data format. BSON is a format
for binary-coded serialization of JSON-like documents.
Compared to Protobuf, BSON is more flexible with
schema but not as space efficient.

E. BASE Properties

In RDBMS, the consistency property ensures that all
transactions transform a database from one valid state
to another. Once a transaction updates a database item,
all database clients (i.e., programs and users) will see
the same value for the updated item.
ACID properties are to RDBMS as BASE is to NoSQL

systems. BASE refers to basic availability, soft state, and
eventual consistency. Basic availability implies discon-
nected client operation and delayed synchronization,
and tolerance to temporary inconsistency and its impli-
cations. Soft state refers to state change without input,
which is required for eventual consistency. Eventual
consistency means that if no further updates are made
to an updated database item for long enough period of
time, all clients will see the same value for the updated
item.

F. Minimizing Data Movement with MapReduce

MapReduce is a computational paradigm for pro-
cessing massive datasets in parallel if the computation
fits a pattern characterized by three steps: map, shard
and reduce. The map process involves several parallel

map processes concurrently processing different parts
of data and each process produces (key, value) pairs.
The shard process (second step) acts as a barrier to
ensure that all mapper processes have completed their
work, collects the generated key-value pairs from each
mapper process, sorts them, and partitions the sorted
key-value pairs. Next, the shard process assigns each
partition to a different reduce process (third step). Each
reduce process essentially receives all related key-value
pairs and produces one result.

G. Vector Clocks

A vector clock is an algorithm to reason about events
based on event timestamps. It is an extension of multi-
version concurrency control (MVCC) used in RDBMS to
multiple servers. Each server keeps its copy of vector
clock. When servers send and receive messages among
themselves, vector clocks are incremented and attached
with messages. A partial order relationship is defined
based on server vector clocks, and is used to derive
causal relationships between database item updates.

H. Column Families and Keyspaces

A column family is a collection of rows, and each row
can contain different number of columns. Row keys are
unique within a column family, but can be reused in
other column families. This enables storing unrelated
data about the same key in different column families.
Some NoSQL systems use the term column-family to
refer to a group of related columns within a row.
A keyspace is a data container. It is similar to the

schema concept in RDBMS. Keyspaces are used to group
column families together. Data replication is specified
at the keyspace level. Therefore, data with different
replication requirements reside in separate keyspaces.

I. Memory-Mapped Files

A memory-mapped file is a segment of virtual mem-
ory which is associated with an operating system file
or file-like resource (e.g., a device, shared memory) on
a byte-for-byte correspondence. Memory-mapped files
increase I/O performance especially for large files.

J. CAP Theorem

Consistency, availability, and partition tolerance
(CAP) are the three primary concerns that determine
which data management system is suitable for a given
application. Consistency feature guarantees that all
clients of a data management system have the same
view of data. Availability assures that all clients can al-
ways read and write. Finally, partition tolerance ensures
that the system works well with data that is distributed
across physical network partitions. The CAP theorem
states that it is impossible for any data management

209209193

bari
Typewriter
1

bari
Typewriter
2

bari
Typewriter
3

bari
Typewriter
4

bari
Typewriter
5

bari
Typewriter
6

bari
Typewriter
7

bari
Typewriter
8

bari
Typewriter
9

bari
Typewriter
10

bari
Typewriter
11

bari
Typewriter
12

system to achieve all these three features at the same
time. For example, to achieve partition tolerance, a
system may need to give up consistency or availability.

IV. Key-Value Databases

The defining characteristics of key-value databases
include real-time processing of Big Data, horizontal
scalability across nodes in a cluster or data centers,
reliability and high availability. Their use cases include
applications where response is needed in milliseconds.
They are used for session management for Web appli-
cations; configuration management; distributed locks;
messaging; personalization of user experience and pro-
viding engaging user interactions in social media, mo-
bile platforms, and Internet gaming; real-time bidding
and online trading; Ad servers; recommendation en-
gines; and multi-channel retailing and eCommerce.
As the name suggests, these systems store data as

key-value pairs or maps (aka dictionaries). Though all
of them store data as maps, they differ widely in func-
tionality and performance. Some systems store data
ordered on the key, while others do not. Some keep
entire data in memory and while others persist data to
disk. Data can also be distributed across a cluster of
nodes.
Representative systems in this category include

Memcached, Aerospike, Redis, Riak, Kyoto Cabinet,
Membase, Amazon DynamoDB, CouchDB, BerkeleyDB,
EHCache, Apache Cassandra [6], and Voldermot. Ta-
ble I summarizes characteristics of some key-value
databases.
A hallmark of key-value database is rapid applica-

tions development and extremely fast response times
even with commodity type processors. For example,
100K - 200K simple write/read operations have been
achieved with an Intel Core 2 Duo, 2.6 GHz processor.
In another case, replacement of a RDBMS with Redis for
user profile management (100K+ profiles with over 10
filter attributes) was reduced from 3 - 6 sec to 50 ms.

V. Table-type/Column Databases

RDBMS are row-based systems as their processing
is row-centric. They are designed to efficiently return
entire rows of data. Rows are uniquely identified by
system generated row ids. As the name implies, column
databases are column-centric. Conceptually, a columnar
database is like an RDBMS with an index on every
column without incurring the overhead associated with
the latter. It is also useful to think of column databases
as nested key-value systems.
Column database applications are characterized by

tolerance to temporary inconsistency, need for ver-
sioning, flexible database schema, sparse data, partial

record access, and high speed insert and read opera-
tions. When a value changes, it is stored as a different
version of the same value using a timestamp. In other
words, the notion of update is effectively nonexistent.
Partial record access contributes to dramatic perfor-
mance improvements for certain applications. Colum-
nar databases perform aggregate operations such as
computing maxima, minima, average, and sum on large
datasets with extreme efficiency.
Recall that a column family is a set of related

columns. Column databases require predefining col-
umn families, and not columns. A column family may
contain any number of columns of any type of data,
as long as the latter can be persisted as byte arrays.
Columns in a family are logically related to each other,
and are physically stored together. Performance gain
is achieved by grouping columns with similar access
characteristics into the same family. Database schema
evolution is achieved by adding columns to column
families. A column family is similar to the column
concept in RDBMS.
Systems in this category include Google BigTable

(available through Google App Engine), Apache Cassan-
dra, Apache HBase, Hypertable, Cloudata, Oracle RDBMS
Columnar Expression, Microsoft SQL Server 2012 En-
terprise Edition. Table II summarizes characteristics of
some columnar databases.

VI. Graph Databases

A graph data model is at the heart of graph databases
[7]. In some applications, relationships between objects
is even more important than the objects themselves.
Relationships can be static or dynamic. Such data is
called connected data. Twitter, Facebook, Google, and
LinkedIn data are naturally modeled using graphs. In
addition, graph data models are used in other indus-
tries including airlines, freight companies, healthcare,
retail, gaming, oil and gas. Graph databases are also
popular for implementing access control and authoriza-
tion subsystems for applications that serve millions of
end users.
Graph databases include FlockDB, InfiniteGraph, Ti-

tan, Microsoft Trinity, HyperGraphDB, AllegroGraph,
Affinity, OrientDB, DEX, Facebook Open Graph, Google
Knowledge Graph, and Neo4J. Table III summarizes
characteristics of two graph databases.

VII. Document Databases

These databases are not the document/full-text
databases in the traditional sense. They are also not
content management systems. Document databases are
used to manage semi-structured data mostly in the
form of key-value pairs packaged as JSON documents.

210210194

bari
Typewriter
1

bari
Typewriter
2

bari
Typewriter
3

bari
Typewriter
4

bari
Typewriter
5

bari
Typewriter
6

bari
Typewriter
7

bari
Typewriter
8

bari
Typewriter
9

bari
Typewriter
10

bari
Typewriter
11

Table I
Key-Value Databases

Name Salient Characteristics

Memcached Shared-nothing architecture, in-memory object caching systems with no disk persistence. Automatic sharding but no
replication. Client libraries for popular programming languages including Java, .Net, PHP, Python, and Ruby.

Aerospike Shared-nothing architecture, in-memory database with disk persistence. Automatic data partitioning and synchronous
replication. Data structures support for string, integer, BLOB, map, and list. ACID with relax option, backup and recovery,
high availability. Cross data center replication. Client access through Java, Lua, and REST.

Cassandra Shared-nothing, master-master architecture, in-memory database with disk persistence. Key range based automatics data
partitioning. Synchronous and asynchronous replication across multiple data centers. High availability. Client interfaces
include Cassandra Query Language (CQL), Thrift, and MapReduce. Largest known Cassandra cluster has over 300 TB of
data in over 400-node cluster.

Redis Shared-nothing architecture, in-memory database with disk persistence, ACID transactions. Supports several data
structures including sets, sorted sets, hashes, strings, and blocking queues. Backup and recovery. High availability.
Client interface through C and Lua.

Riak Shared-nothing architecture, in-memory database with disk persistence, data teated as BLOBs, automatic data partitioning,
eventually consistency, backup and recovery, and high availability through multi data center replication. Client API
includes Erlang, JavaScript, MapReduce queries, full text search, and REST.

Voldemort Shared-nothing architecture, in-memory database with disk persistence, automatic data partitioning and replication,
versioning, map and list data structures, ACID with relax option, backup and recovery, high availability. Protocol Buffers,
Thrift, Avro and Java serialization options. Client access through Java API.

Table II
Column Databases

Name Salient Characteristics

BigTable A sparse, persistent, distributed, multi-dimensional sorted map. Features strict consistency and runs on distributed
commodity clusters. Ideal for data that is in the order of billions of rows with millions of columns.

HBase Open Source Java implementation of BigTable. No data types, and everything is a byte array. Client access tools: shell
(i.e., command line), Java API, Thrift, REST, and Avo (binary protocol). Row keys are typically 64-bytes long. Rows are
byte-ordered by their row keys. Uses distributed deployment model. Works with Hadoop Distributed File System (HDFS),
but uses filesystem API to avoid strong coupling. HBase can also be used with CloudStore.

Cassandra Provides eventual consistency. Client interfaces: phpcasa (a PHP wrapper), Pycassa (Python binding), command line/shell,
Thrift, and Cassandra Query Language (CQL). Popular for developing financial services applications.

Table III
Graph Databases

Name Salient Characteristics

Neo4J In-memory or in-memory with persistence. Full support for transactions. Nodes/vertices in the graph are described using
properties and the relationships between nodes are typed and relationships can have their own properties. Deployed on
compute clusters in a single data center or across multiple geographically distributed data centers. Highly scalable and
existing applications have 32 billion nodes, 32 billion relationships, and 64 billion properties. Client interfaces: REST,
Cypher (SQL-like), Java, and Gremlin.

AllegroGraph Full read concurrency, near full write concurrency, and dynamic and automatic indexing of committed data, soundex
support, fine granular security, geospatial and temporal reasoning, and social network analysis. Online backups, point-in-
time recovery, replication, and warm standby. Integration with Solr and MongoDB. Client interfaces: JavaScript, CLIF++,
and REST (Java Sesame, Java Jena, Python, C#, Clojure, Perl, Ruby, Scala, and Lisp).

211211195

Each document is an independent entity with poten-
tially varied and nested attributes. Documents are in-
dexed by their primary identifiers as well as semi-
structured document field values. Document databases
are ideal for applications that involve aggregates across
document collections.
Systems in this category include MongoDB, CouchDB,

Couchbase, RavenDB, and FatDB. Document databases
often integrate with full-text databases such as Solr,
Lucene, and ElasticSearch. For example, ElasticSearch
provides real-time response to document queries in
JSON format; RavenDB uses Lucene. Table IV summa-
rizes characteristics of some document databases.

VIII. Native XML Databases

These databases store documents in native XML for-
mat. Query languages supported include XQuery, XSLT,
and XPath. Some provide support for JSON. Systems
in this category include BaseX, eXist, MarkLogic Server,
and Sedna.
The distinguishing feature of MarkLogic Server is

security. For this reason, it is widely used in security
industry. It provides client access through REST and
Java and JSON is supported. REST API is partitioned into
three categories: client API for CRUD and search; man-
agement API for instrumentation; and packaging API for
configuration. MarkLogic Server recently rebranded as
Enterprise NoSQL.

IX. Native Object Databases

Object databases, as the name implies, use object
models to store data. These systems combine database
functionality with object-oriented programming lan-
guage capabilities. They allow creating and modifying
objects within the database system. Some systems are
tightly integrated with an object-oriented programming
language, while others feature database-specific pro-
gramming language. This eliminated the impedance
mismatch problem of RDBMS since the same data
model is used by the programming language and the
database. A subclass within object databases is called
object-relational. These systems combine traditional
RDBMS capabilities with object databases. Native object
databases are ideally suited for complex data often
found in computer-aided design, manufacturing, spa-
tial, graphics, and multimedia applications.
Query languages for object databases are typically

declarative. Object database queries typically run much
faster since no RDBMS joins are involved. Object Query
Language (OQL) is the result of standardization effort
spearheaded by the Object Data Management Group.
Current systems in this category include Versant

Object Database, Versant JPA, FastObjects, db4o, and
WakandaDB. The first three are marketed by Versant

and db4o is an open source system. Versant Object
Database targets applications with high performance
and concurrency requirements. Client access is pro-
vided through interfaces for Java, .NET and C++. Ver-
sant JPA is an object database with JPA 2.0 compliant
client interface. FastObjects primarily provides object-
based persistence for .NET applications.

X. Hybrid Systems

Systems in this category are those that evolved
from the traditional RDBMS or those that fall into
more than one category discussed above. Systems in
this category include PostgreSQL, VoltDB, OrientDB,
Aerospike, ArangoDB, and Spanner. On Amazon EC2,
VoltDB achieved 95 thousand transactions per second
(TPS) in a Node.js application running on 12 nodes;
and 34 million TPS with 30 nodes. Table V summarizes
characteristics of some hybrid databases.

XI. Conclusions

Unprecedented data volumes, connected data, perfor-
mance and scalability requirements of modern Big data-
driven applications effectively challenged the practice
that RDBMS is the only approach for data management.
Consistency, availability, and partition tolerance are
the three primary concerns that determine which data
management system is suitable for a given application.
Netflix moved from Oracle RDBMS to Apache Cas-

sandra, and achieved over a million writes per second
across the cluster with over 10,000 writes per second
per node while maintaining the average latency at less
than 0.015 milliseconds. Total cost of Cassandra set
up and running on Amazon EC2 was at around $60 per
hour for a cluster of 48 nodes.
Cisco recently replaced an Oracle RAC solution for

master data management with Neo4J. Query times were
reduced from minutes to milliseconds in addition to
expressing queries on connected data with ease. This
application has 35 million nodes, 50 million relation-
ships, and 600 million properties.
As the above two cases exemplify, NoSQL data mod-

els are designed for efficiently supporting insert and
read operations; storing sparse data and column-wise
processing; enabling disconnected client operation and
delayed synchronization; and tolerance to temporary
inconsistency and its implications.
A more typical scenario for NoSQL systems to gain

ubiquitous use will come from using an array of data
management systems, each naturally suited for the type
of data and operations, all data management systems
abstracted away through a Web or application server.
Furthermore, Web servers will manage access control
and authorization centrally. Also, the migration from

212212196

bari
Typewriter
1

bari
Typewriter
2

bari
Typewriter
3

bari
Typewriter
4

bari
Typewriter
5

bari
Typewriter
6

bari
Typewriter
7

bari
Typewriter
8

bari
Typewriter
9

bari
Typewriter
10

bari
Typewriter

bari
Typewriter

bari
Typewriter
11

bari
Typewriter
12

bari
Typewriter
13

Table IV
Document Databases

Name Salient Characteristics

MongoDB No transaction support. Only modifier operations offer atomic consistency. Lack of isolation levels may result in phantom
reads. Uses memory-mapped files storage. Support is available for geospatial processing and MapReduce framework.
Indexing, replication, GridFS, and aggregation pipeline. JavaScript expressions as queries. Client access tools: JS Shell
(command line tool), and drivers for most programming languages. Suitable for applications that require auto-sharding,
high horizontal scalability for managing schema-less semi-structured documents. Stores documents in BSON format and
data is transferred across the wire in binary format.

CouchDB Open Source database written in Erlang. JSON format for documents. Client access tools: REST API, CouchApps (an
application server), and MapReduce. JavaScript is used for writing MapReduce functions.

Couchbase Incorporates functionality of CouchDB and Membase. Data is automatically partitioned across cluster nodes. All nodes
can do both reads and writes. Used in many commercial high availability applications and games.

Table V
Hybrid Databases

Name Salient Characteristics

PostgreSQL Recent versions provide support for JSON and key-value support through an add-on called hstore. Suitable for applications
that primarily depend on RDBMS for data management, but also face a need for scalable means for managing key-value
data.

VoltDB In-memory database running on a single thread. Eliminates the overheads associated with locking and latching in multi-
threaded environments. Uses snapshots to save data to the disk. Database can be restored to a previous state using
snapshots. Data is distributed across several servers. Supports transactions. Supports only a subset of ANSI/ISO SQL.
Migration to VoltDB will require rewriting some of the existing SQL queries. Client interfaces: JSON API, Java, C++, C#,
PHP, Python, Node.js, Ruby, and Erlang.

VoltCache A key-value database implemented on top of VoltDB. Client access is through a Memcached compatible API.

OrientDB Provides document, key-value, and graph databases functionality.

ArangoDB Provides document, key-value, and graph databases functionality.

Aerospike Hybrid system like OrientDB, but also provides traditional RDBMS functionality.

Google Spanner Multi-version, globally-distributed, and synchronously-replicated database. Spanner supports externally-consistent dis-
tributed transactions.

RDBMS to NoSQL systems is eased as the latter return
results in JSON format.
Though NoSQL systems are predominantly used for

new applications which are characterized by horizontal
scalability, high performance, relaxed and eventual con-
sistency, it is also likely that existing applications will
begin to use NoSQL through reegineering process. The
current upheaval in the data management systems will
help promote using the system that closely matches
the application needs. Services such as Amazon EC2
will make NoSQL systems more economical and within
reach for all organizations, both small and big.

References

[1] R. Cattell, “Scalable sql and nosql data stores,” SIGMOD
Rec., vol. 39, no. 4, pp. 12–27, May 2011.

[2] V. Benzaken, G. Castagna, K. Nguyen, and J. Siméon,
“Static and dynamic semantics of NoSQL languages,”
SIGPLAN Not., vol. 48, no. 1, pp. 101–114, Jan. 2013.

[3] F. Cruz, F. Maia, M. Matos, R. Oliveira, J. a. Paulo, J. Pereira,
and R. Vilaça, “MeT: Workload aware elasticity for NoSQL,

booktitle = Proceedings of the 8th ACM European Confer-
ence on Computer Systems, series = EuroSys ’13, year =
2013, isbn = 978-1-4503-1994-2, location = Prague, Czech
Republic, pages = 183–196, numpages = 14, publisher =
ACM, address = New York, NY, USA.”

[4] D. McCreary and A. Kelly, Making Sense of NoSQL: A guide
for managers and the rest of us. Manning Publications,
2013.

[5] C. Mohan, “History repeats itself: Sensible and NonsenSQL
aspects of the NoSQL hoopla,” in Proceedings of the 16th
International Conference on Extending Database Technol-
ogy, ser. EDBT ’13. New York, NY, USA: ACM, 2013, pp.
11–16.

[6] V. Abramova and J. Bernardino, “NoSQL databases: Mon-
goDB vs Cassandra,” in Proceedings of the International
C* Conference on Computer Science and Software Engi-
neering, ser. C3S2E ’13. New York, NY, USA: ACM, 2013,
pp. 14–22.

[7] I. Robinson, J. Webber, and E. Eifrem, Graph Databases.
O’Reilly, 2013.

213213197

bari
Typewriter
1

bari
Typewriter

