
CHEMICAL PLUME DETECTION

FOR HYPERSPECTRAL IMAGING

Abstract. This paper details various aspects of the detection and iden-
tification of chemical plumes in long wave infrared (LWIR) data. The
lack of well defined edges and the dynamic nature of a gas cloud leads
to challenges in detection, particularly when the cloud diffuses and be-
comes thin. Contemporary graph segmentation algorithms are investi-
gated to track the movement of the gaseous cloud as it spreads through
the surround environment. Semi-supervised hyperspectral unmixing is
explored as an alternative to probabilistic detectors for the identification
of particular chemical signatures. Also, false color representations are
explored as a method of visualizing high dimensional LWIR data.

1. Introduction

The detection of chemical plumes in the atmosphere is a problem that
has significant applications to defense, security and environmental protec-
tion. The accurate identification and tracking of airborne toxins is crucial
to combat the use of chemical gases as weapons, prevent fatalities due to
accidental leakage of toxic gases and avoid contamination of the atmosphere.
Identification of harmful gases with high fidelity is needed to provide warn-
ings in threatening situations. In these grave scenarios it is crucial to cor-
rectly pinpoint the source of these fumes and track the diffusion of dangerous
plumes into the atmosphere. Laboratory measured signatures of dangerous
chemicals are available to assist in chemical plume identification. However,
testing and training data is not readily available due to the inherent dan-
ger of these real world situations. Instead, open air testing with surrogate
chemicals is conducted to study the diffusion of chemical plumes. The de-
veloped plume detection methods must meet strict requirements to ensure
the fidelity of a detector.

The hyperspectral data set in this report is used to develop image process-
ing algorithms for chemical plume detection. The objective is to implement
different plume detection and segmentation algorithms to analyze the hyper-
spectral video sequences to find a reliable and robust method that identifies
the gaseous plume emissions. To qualify as a viable technique, it is desirable
for a detector to be accurate and computationally efficient. Various image
processing algorithms have been tested to attempt to visualize the long wave
infrared data, and subsequently unmix the dominant signatures in the scene
and also separate the chemical plume from the terrain in the background.
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2. Overview

The data we are working with consists of calibrated hyperspectral data
cubes collected during 2006 from the Dugway Proving Ground in Utah.
Each dataset is a video sequence with between 100-300 frames.

Since it is not in the interest of public health to release toxic chemicals into
the atmosphere, the samples that were released were non-toxic and chosen
to have emissivity signatures close to those of known toxic chemicals. They
were taken with an Fourier Transform Infrared based long wave infrared
sensor.

The hyperspectral data set analyzed for this project was provided by
the Applied Physics Laboratory at Johns Hopkins University. The hyper-
spectral data consists of a series of video sequences recording the release of
chemical plumes into the atmosphere. Figure 1 shows the three long wave
infrared spectrometers (named Romeo, Victory and Tango) placed at dif-
ferent locations to track the release of known chemicals. The frame rate of
these sensors is 0.2 Hz and for each instance in time, the long wave infrared
sensor took three dimensional hyperspectral data. Each of these data cubes
has two spatial dimensions of 128 × 320 pixels, while the third dimension is
the spectral dimension, measuring the spectral radiance at 129 wavelength
channels in the electromagnetic spectrum. Each layer depicts a particular
frequency of the long wave infrared starting at 7,830 nm and ending with
11,700 nm.

Figure 1. Placement of the three long wave infrared spec-
trometers less than 3 kilometers from the plume release.

The ground-based long wave infrared sensors measure the spectral radi-
ance of the scene. Radiance measures the amount of radiation emitted from
a surface, and is technically defined to be the electromagnetic flux per unit
projected area per unit solid angle. In particular, the spectral radiance mea-
sures radiance at particular wavenumbers in the electromagnetic spectrum
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in units of Wm−2sr−1cm. The long wave infrared data set is not visible to
the human eye without further image processing. The high dimensionality
and type of data in this hyperspectral data set posed significant challenges
in computation time of each algorithm. Without the capability to directly
visualize the chemical plume emissions, there is no immediate ground truth
or standard to quantify, evaluate and compare the success of different de-
tectors.

2.1. Objectives. The ultimate goal of this line of research is to detect and
identify chemical plumes with a high level of accuracy. This project investi-
gates many different methods to achieve each of these tasks. Since ground
truth about the presence of the chemical plume is not available for this
data set, an evaluation of the effectiveness of each method will inherently be
somewhat subjective. The emphasis of the discussion of each method will be
a qualitative assessment of the results and computational efficiency. This re-
port provides an overview of the problem, a survey of methods for detection
and identification, and highlight new avenues for potential research.

2.2. Three-Layer Model. The three-layer model is a simple method to de-
scribe the different components that comprise the spectral radiance measure-
ment for each pixel in the long wave infrared hyperspectral image. Figure 2
illustrates the different objects, or layers, that contribute to the spectral
radiance measurement of the long wave infrared spectrometer.

Figure 2. Three-layer model depicting the spectral radiance
signal received by the long wave infrared sensor.

For the chemical plumes released in this data set, the three layers are the
background, the chemical plume and the atmosphere. Each layer has its own
radiance L(ν), and transmittance τ(ν). The transmittance is the ratio of
light leaving a surface relative to the amount of light entering the medium.
Both the background and plume spectral radiances must pass through other
mediums before reaching the long wave infrared spectrometer. Therefore,
the spectral radiance measurement of the sensor can be represented as

(2.1) L(ν) = τatm(ν)Lp(ν) + τp(ν)τatm(ν)Lb(ν) + Latm(ν)
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Before analyzing the hyperspectral data, this model can be further simpli-
fied for the given data set. Since the ground-based long wave infrared spec-
trometers are placed within two kilometers of the chemical plume release
site, the spectral radiance of the atmosphere is very small in comparison to
the other spectral radiance terms, and therefore can be dropped from this
equation. In addition, it is assumed that the atmospheric transmittance
does not significantly affect the spectral radiance because of the short path
length, allowing most of the signal to pass through. These assumptions
reduce the equation into the two layer model equation

(2.2) L(ν) = τp(ν)Lb(ν) + Lp(ν)

Thus, according to this model the spectral radiance of the scene measured
by the LWIR sensors is a sum of the light emitted by the chemical plume and
background mediums at 129 wavelengths in the electromagnetic spectrum.

2.3. Data Conversion. The first step in data processing is to convert the
hyperspectral data from spectral radiance to emissivity. The emissivity of a
surface is a measurement of the light leaving a surface relative to that of a
perfect blackbody, ranging between 0 and 1. As described in [3] provided by
the Johns Hopkins University Applied Physics Laboratory, Planck’s black-
body equation directly relates the spectral response of a surface to emissivity
and temperature,

(2.3) B(ν, T ) =
2hc2ν3

exp(hcνkT )− 1

where B(ν, T ) is the spectral exitance at a given wavenumber ν and tem-
perature T , h is Planck’s constant, c is the speed of light, and k is Boltz-
mann’s constant. The algorithm for this conversion was provided by the
Johns Hopkins Applied Physics Laboratory, and the calculation makes as-
sumptions about atmospheric conditions to convert the data. Specifically,
the assumption that the temperature of the entire scene is the same is an in-
accurate approximation. The temperatures of the distant mountains in the
background, the foreground of the desert into which the plume was released
and the emitted chemical plume itself are different temperatures. Due to this
approximation, there are resultant outliers in the emissivity data, outside of
the expected 0 to 1 emissivity range. To clean the data set, a median filter
was implemented on the outlier pixels prior to running the plume detection
and segmentation algorithms.

The spectral signature of a given pixel at a specific wavenumber is a
mixture of multiple materials at different temperatures in the hyperspectral
image. The resultant pixel emissivity can be modeled by the expression
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(2.4) ε(ν) =
N∑
i=1

βiεi(ν)

where βi are the percent of each material present in the pixel, εi is the
emissivity signature for the ith material, ν is the wavenumber and N is the
number of material components for a given pixel. The emissivity signature
of each material varies with respect to temperature, so that a library of spec-
tral signatures for a particular material varies based on testing conditions
including temperature and wavenumber.

3. Filtering/Preprocessing

3.1. Background subtraction. Due to the high dimensionality and type
of data, the chemical plume emissions are not visible in the raw data of
spectral radiance nor in the converted emissivity data. A useful method
for preprocessing is to perform background subtraction on the data. For the
video sequences of chemical plume emissions, this method is effective because
the gaseous plume is the only moving object in the image. Background
subtraction calculates the difference between the previous frame of data
and the current frame so that the resulting difference creates a disturbance
map that identifies motion in the image. This simplistic approach may yield
a noisy disturbance map when there is a high degree of variability between
individual frames.

As a result, a modified real-time algorithm for background subtraction has
been implemented for the Johns Hopkins Applied Physics Laboratory data
set. This computation of the disturbance field creates a temporal average
image that is a running weighted average of previous frames.

(3.1)
At = (1− w)It + wAt−1

δt = It −At−1

The approach gives greater weight to more recent frames and decreases the
noise that arises from background subtraction. In the equation shown above,
At denotes the temporal average at time t, It is the current frame of data, δt
is the disturbance field and w represents the history weight factor, ranging
from 0 to 1. After summing along the spectral dimension, a two dimensional
disturbance map results in this background subtraction algorithm as can be
seen in Figure 3.

The advantages of background subtraction are that this computation is
relatively quick and is viable for implementation in real time, making it
highly applicable to airborne toxin detection in real world applications.
Compared to other segmentation techniques, the calculated disturbance map
yields useful results, especially in data sets in which the mountainous back-
ground interferes with other segmentation algorithms. However, this method
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since it is a motion detector, it is not a robust standalone plume detection
technique, especially if there are other types of movement in a given image.

Figure 3. Grayscale disturbance map of aa12 Victory chem-
ical plume release.

3.2. False color representation. In order to obtain a better visualization
of the dataset, principle component analysis (PCA) is used to reduce the
dimension of the data from 129 to 3. This means that for each pixel, there
are now 3 channels as opposed to the original 129 wavelengths in the spectral
dimension. This allows for a false color representation of the data, where
the first principal component is labeled to be red, the second component is
blue, and third component green. This allows for a color visualization of the
data in which the foreground, background and chemical plume.

While this visualization is incredibly clear, there is flickering inconsis-
tency in the RGB display. From frame to frame, the values for each color
components shifts due to noise, variance in the data from frame to frame
and possible artifacts from the LWIR sensor, causing the color to shift con-
stantly between frames. To remedy this situation, the Midway Equalization
method[4] was utilized, a modified version that takes advantage of how the
video is taken in discrete time, as opposed to a continuous one. The Mid-
way Equalization method is used to equalize the histogram representation
of data.
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Algorithm for Midway Equalization[4]

Input: RGB Image
• Load all of the video frames into storage, F1, F2, .., FN
• Separate each of the frames into its color components,
F1 ⇒ {F11, F12, F13}
• Sort each colored component frame, F11, F12, F13

• Obtain the average of each colored component
F11 F12 F13

+ F21 F22 F23

+ ... ... ...
+ FN1 FN2 FN3

˜FN1
˜FN2

˜FN3

⇒ ˜FN1/N ˜FN2/N ˜FN3/N

• Replace all of the values in F11 with the new values in ˜FN1/N ,
perform this for all the other frames and colors

Output: Equalized Image

Figure 4 shows the resulting application of Midway Equalization. The
original video flickers between frames, as shown, each of the 3 original frames
have a different coloring, the first is predominantly green, second blue, and
third red. After the equalization, each of the 3 images are similar shades
of purple and pink. This provides continuity for the video sequence and
displays movement of the plume more clearly as the scene changes from
frame to frame.

4. Detection

The development of remote sensing technology has allowed scientists to
measure the light that is reflected and absorbed in a scene at various wave-
lengths in the electromagnetic spectrum and determine the materials that
are present. Various algorithms have been developed for identifying ma-
terials and extracting spectral signatures within an image. The extension
of still hyperspectral images to video sequences for this data set increases
the amount of computation needed to generate results on a frame by frame
basis. For example, extraction of all material signatures present in a scene
can be computationally expensive to perform, especially per frame.
In the application of chemical plume detection in video sequences, it is not
necessary to perform complete background estimation and unmixing tech-
niques. In our case, we are given a library of the emissivity signatures of
the chemical gases collected in a laboratory and know which chemical is
present in each video sequence. In a sense, this is a type of semi-supervised
unmixing. The task is to identify pixels in each frame that contain traces of
the chemical plume, using the provided characteric emissivity signatures.
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Original Image Midway Equalized Image

Figure 4. Results of the Midway Equalization

4.1. Estimation of background signatures.
The estimation of emissivity signatures that are to be classified as back-
ground is a process referred to in literature as background endmember extra-
ction. For the case of LWIR hyperspectral video, background signatures
must be updated at least every few frames. This is a byproduct of the
underlying physics and the inherent nature of emissivity signatures. Since
the spectral signature of the gas is known, we need to estimate other sig-
natures present in the scene that are different from that of the plume. For
each method of endmember extraction, background subtraction was used to
determine which pixels to consider. Any nonzero pixels in the disturbance
map indicated movement and possible presence of the gas plume, and was
therefore excluded from background endmember extraction.
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4.1.1. Automatic Target Generation Process (ATGP).

Finding pixels that are very distinct from one another will provide a good
representation of signatures that are present in an image without any prior
knowledge of materials in a scene. This can be done through an iterative
process of orthogonal projections. The algorithm is as follows

• Initialize with a random pixel, ε0
• Find pixels εi, such that
εi = arg maxx ‖(I − Ui−1(UTi−1Ui−1)−1UTi−1))x‖2
where Ui−1 = [ ε1 ε2 . . . εi−1 ] is the subspace spanned by the previ-
ously found distinct pixels, and x is a pixel in the image.

Note that the initial random pixel, ε0, is not retained in this process. The
purpose of the orthogonal projections is to identify pixels that are not well
represented in the span{Ui−1}. These pixels are considered distinct, and
stored as another column in Ui. This procedure will show preference to
pixels that have very large magnitude, so normalization is required before
forming these orthogonal projections.

4.1.2. Principle Components Analysis (PCA).
Treating the image A as a data matrix where columns correspond to pixels
and rows correspond to spectral bands, the principle components transform
may be found by creating the covariance matrix AAT and computing eigen-
values and eigenvectors. The resulting eigenvectors correspond to directions
in which the data set A has the greatest variance. That is, the first prin-
ciple component (the eigenvector corresponding to the largest eigenvalue)
captures the direction that captures the most variance within the data. In
the case of a hyperspectral image these directions are the dominant spectral
signatures.

4.2. Adaptive Matched Subspace Detector (AMSD).
The Adaptive Matched Subspace Detector is a probabilistic detection scheme
that uses a generalized likelihood ratio test to choose between the hypotheses

H0 : x = Sbub + n (Target absent)
H1 : x = Stut + Sbub + n = Sx+ n (Target present)

where n ∼ N (0, σ2wI), x is a pixel in the image, St is a matrix of tar-
get signatures, Sb is a matrix of background signatures, and u is a vector
of abundances of the spectral signatures in S. The first hypothesis, H0,
corresponds to the situation when the pixel x may be represented by only
background pixels plus noise. The hypothesis H1 says that the target signa-
ture is needed in addition to the background to fully represent the pixel. A
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hypothesis test is constructed using a generalized likelihood ratio, given by

(4.1) L (x) =

(
xTP⊥b x

xTP⊥S x

)L/2
where, the matrix PS is the projection onto the subspace spanned by S. To
make compare L (x) to a given threshold `0, and pick H0 if L (x) < `0 and
H0 otherwise. In order to ensure linear independence (that is uncorrelated)
of the numerator and denominator the ratio

(4.2) TAMSD(x) =
xT (P⊥b − P⊥S )x

xTP⊥S x
= L (x)L/2 − 1

is used. Further information on the probability distribution associated with
equation (4.2) may be found in [6].

It is noted in the literature that these types of detectors have a high rate
of false alarms. Also, this implementation used PCA as a means of back-
ground endmember extraction. As mentioned previously, PCA occasionally
returns signatures close to the signature of the plume. Both of these issues
contribute to noise in the final result.

4.3. L1 Unmixing.
The purpose of unmixing is to calculate the abundance of particular emis-
sivity signatures that each pixel is made up of. So for a given m× n matrix
A where columns are spectral signatures, the solution of

(4.3)
minu ‖Au− f‖22 + η|u|1

s.t. u ≥ 0

where f is a pixel in the image, will result in u giving the abundance of
each signature in A. The parameter η controls how sparse the solution is.
Note that if sparsity is not desired in the solution (ie η = 0), this becomes
a non-negative least squares problem. The minimization problem (4.3) is
solved numerically using a particular type of Split Bregman iteration de-
tailed in [5]. It is optimized for solving large numbers of small to medium
overdetermined problems (when m > n) with the same A, which results in
faster performance than MATLAB’s non-negative least squares solver.

4.4. Results.
In order to provide an idea of how well these algorithms perform under

different circumstances, the results of each will be presented for two different
stages of plume diffusion.

The AMSD detector had a very strong response to the plume when the
cloud is highly concentrated. This can be seen in the top image of figure
4.4 by the presence of red pixels in the area of the chemical release. Over
the course of the next several frames the plume diffuses quite rapidly. The
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Figure 5. Results of the AMSD algorithm. The top image
is an early frame in the sequence, before the plume had time
to diffuse. The bottom image is later in the video sequence,
after the plume has become thin.

AMSD detector results begins to detect quite a bit less plume over these
frames, as can be seen in the bottom image of 4.4.

It is interesting to note that the background signatures selected by both
the ATGP and PCA process are very similar. The results of unmixing before
the plume diffuses significantly may be seen in figures 4.4 and 4.4. When
the plume becomes more diffuse the L1 unmixing gets a stronger response
for the desired target signature when the background endmembers are se-
lected by the ATGP process. This can be seen by comparing 4.4 to 4.4 and
noting the intensity of the response in the top left image. Also notice that
both ATGP and PCA selected an endmember signature that was close to
the signature of the desired target.

4.5. Remarks.
When a chemical plume diffuses into the surrounding environment, the esti-
mation of background signatures without interference of the plume signature
is a challenge. Incorporating temporal information can improve consistency
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Figure 6. Results of L1 unmixing with selecting back-
ground endmembers by ATGP. Notice the clear detection
of the plume in the upper left image.

considerably. For example, taking into account 5-10 previous disturbance
maps and ignoring all pixels that changed over these frames accounts for
the dynamic motion of the plume, particularly since the frame rate is 0.2
Hz. However, when the plume becomes optically thin it becomes harder
to identify and ignore pixels that may be contaminated by its signature.
In this case it is much more difficult to guarantee that the estimated back-
ground signatures are independent of the signature of the plume. Both PCA
and ATGP produced background signature estimates that were considered
plume by L1 unmixing. The principle components change quite drastically
between frames in LWIR hyperspectral video sequences. It is also worth
noting that PCA was particularly sensitive to producing estimates close to
the the spectral signature of the plume if care is not taken to ensure the
remaining pixels have not been contaminated. Again, temporal information
may by used to improve these estimates. This also had the advantage of
improving consistency of the principle components of consecutive frames.

5. Segmentation
5.1. Introduction.
For our program, we utilized segmentation algorithms in order to try to
isolate the gas plume. Segmentation is the partitioning of data into clusters,
where each cluster represents a different element of the data. This process
has been utilized in image processing, where each cluster represents a subject
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Figure 7. Results of L1 unmixing with selecting back-
ground endmembers by PCA. Notice the clear detection of
the plume in the upper left image.

in the image. We chose to perform image segmentation on our data because
we were looking to separate all of the distinct components. The advantage
of segmentation algorithms is that they are able to work

Like other AI algorithms, there are supervised, semi-supervised, and un-
supervised methods of segmentation. A supervised method is one where
the user would do all the work, deciding if a pixel in an image belongs to
a person or if its a piece corn or etc. A semi-supervised method requires
user input for a few points, after which the algorithm would make decisions
on the remainder of the points. An unsupervised method requires no user
input and makes the determination of each cluster based solely on the data.
The ideal situation would an unsupervised method that is able to isolate the
gas plume, because we want the process to be automated.
Overview of segmentation methods

Method Supervision Average Run-time
K-Means Unsupervised <1 min

Spectral Clustering Semi-supervised or Unsupervised 5 min
Nyström Unsupervised <1 min

Ginzberg-Landau minimization Semi-supervised 1<2 min
A distance metric is required when utilizing these segmentation algo-

rithms. We decided to use the the Euclidean and Cosine distance.
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Figure 8. Results of L1 unmixing with selecting back-
ground endmembers by ATGP. .

Overview of the different distance metrics
x = (x1, x2, ..., xn) , y = (y1, y2, ..., yn)

Euclidean distance d(x, y) =‖ x− y ‖=
√∑n

k=1(xi − yi)2

Cosine distance d(x, y) =‖ x− y ‖= 1− 〈x,y〉
‖x‖‖y‖

5.2. K-Means.
K-means is considered a basic method of segmentation and is usually one of
the first methods attempted on a new data set. It is an iterative algorithm
that attempts to segment the data into K clusters.

Algorithm for K-means

Input: Datacube
(1) Initialize k centers, labeled C1, C2, ..., Ck
(2) Calculate the distance between each point and each center
(3) Classify each point with a label, associated with the closest center
(4) Calculate the mean of the points in each cluster, and set that as

the new center
(5) Go to step (2) and repeat this process until the points do not

change clusters

Output: Classification for each data point
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Figure 9. Results of L1 unmixing with selecting back-
ground endmembers by PCA.

The algorithm has three areas where adjustments can be made, the number
of centers, initialization of centers, and the chosen distance metric. The
number of centers determines how many clusters we formulate. Choosing
k too large will result in trivial clusters that contain only one point and
could potentially break up clusters. Choosing k too small will result in a
clusters that are larger than they should be. Ideally, k is chosen such that it
is the same as the number of elements in an image. An example is a picture
with three distinct objects. Figure 10 shows the different effects of applying
k-means with different cluster sizes. It illustrates the biggest problem that
arises from applying k-means. If the correct number of clusters is not cho-
sen, the groupings become erratic and gives incorrect clusterings.

This shows the problem that comes when utilizing k-means. However it
is a very easy useful algorithm that will give information about the working
of a data set. Figure 11 shows some resulting k-means clustering utilizing
different distance metrics and k but the same starting centers. In the first
frame, there are 4 clear clusters, each different color is part of a different
cluster. The upper atmosphere (blue), lower atmosphere (brown), mountain
and plume (orange), and foreground (green). There are singular pixels that
are dark blue, resulting from outliers. Though none of the resulting clusters
shown in Figure 11 are able to capture the gas plume, a few very crucial
pieces of information is obtained. The left plots utilize the cosine distance,
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k clusters Graphics Comment

k = 1 Initialization of the data, pre-
clustering. Note the 3 distinct clus-
ters.

k = 2 Performing k-means with 2 clusters.
The blue cluster has 2 of the groups
in one cluster.

k = 3 Performing k-means with 3 clusters
on 3 clusters. This is correct seg-
mentation.

k = 4 Performing k-means with 4 clusters.
The bottom left cluster gets split in
two.

Figure 10. Sample of k-means

while the right plots utilize the euclidean distance. The plots on the left are
much more clear than the plots on the right. This tells us that the cosine
distance is much more suitable for our data than the euclidean. Another
key piece of information that is gleamed is that the emissivity signature of
the gas plume are very similar to those of the lowest level of atmosphere
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Cosine distance, with k = 5 Euclidean distance, with k = 5

Cosine distance, with k = 10 Euclidean distance, with k = 10

Figure 11. K-mean results on Emissivity

and the mountain. And lastly, there are outliers that exist in the data that
may play a factor in clustering. Playing around with the different values
for k and adjusting the starting centers do not yield any radically differing
results.

5.3. Spectral clusting.
Spectral clustering is another method of segmentation. The advantage

of spectral clustering as opposed to k-means is that it doesn’t try to force
any number of clusters. While it is very computationally simple, it is much
more time consuming then k-means. An overview of the algorithm found in
Luxborg[8] is given by:
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Algorithm for Spectral Clustering[8]

Input: Datacube
• Construct a fully connected similarity matrix
• Convert into the Laplacian matrix
• Calculate the normalized symmetric Laplacian
• Compute the smallest eigenvectors and eigenvalues

Output: Eigenvectors that represent different clusters and the
associated eigenvalues

This algorithm has a few problems that arise due to the nature of the hyper-
spectral data set. Each image consists of 128*320 frames, so constructing a
full similarity matrix is not possible. There is also a problem in computing
the smallest eigenvectors and eigenvalues of a matrix. The implemented
algorithm in matlab is very time consuming, many times longer than com-
puting the largest eigenvectors and eigenvalues.

Algorithm for Spectral Clustering[7]

Input: Datacube
• Construct a similarity matrix of the k nearest neighbors
• Compute the normalized similarity matrix
• Calculate the largest eigenvectors and eigenvalues of the

normalized similarity matrix

Output: Eigenvectors that represent different clusters and the
associated eigenvalues

5.3.1. Similarity Matrix[8].
The similarity value is a number representing how closely related two points
in Rn are to each other, 0 means there is no relation and 1 means they
are identical. An example of the similarity function is the Gaussian simi-
larity function (5.1). This function utilizes the distance metrics previously
discussed, euclidean or cosine. There is also a σ constant, that is used to
determine the Gaussian neighborhood. The larger the value of σ the more
connect the graph is, culminating in a σ =∞ where the similarity function
is always 1. Vice versa, the smaller the value of σ the more disconnected
the graph is, peaking when σ is 0, resulting in a graph that has completely
disconnected from all other points.

(5.1) S(xi, yj) = e
−d(xi,yj)

2

2σ2

The evaluation of the equation gets placed in (i, j) for the similarity ma-
trix.

The alternative to evaluating all of the similarities and constructing a
fully connected similarity matrix is knearest neighbors or ε neighborhood.
k nearest neighbors is only using the k largest similarities of each row, as
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opposed to finding all N similarities. The ε neighborhood is using all points
that are larger than a set similarity. The results of spectral clustering with
these 2 alternative similarity matrices may not be as good, however certain
advantages are obtained. Using either of the two will result in a sparse ma-
trix, something that is required for this data set. The k nearest neighbors
similarity matrix allows for a customization on sparsity, whereas ε neighbor-
hood does not allow for strict controls on sparsity. Due to size constraints,
the k nearest neighbor was selected.

Aside form the standard Gaussian similarity function, there is a Self Tun-
ing Similarity function(5.2) that tries to maintain local scaling. The σi is
the kth nearest neighbor to xi and σj is the kth nearest neighbor to xj .

(5.2) S(xi, yj) = e
−d(xi,yj)

2

σiσj

Experiments were done to find the best combinations for σ, k, and simi-
larity function.

5.3.2. Results.

So now onto results. Figure 12 shows the resulting eigenvalues that come
from spectral clustering. The resulting eigenvalues give a lot of informa-
tion about the behavior of the clusters that are present in the eigenvectors.
The values plotted are the result of an eigenvalue/eigenvector solver that
arrange the eigenvalues in non-decreasing order. The fact that the eigenval-
ues present are not in non-decreasing order tells that normalized similarity
matrix might have some peculiarities. Looking at the self tuning cosine plot,
it appears to not converge to a solution, showing a possibly very ill condi-
tioned matrix. The rate of descent also gives information about the number
of trivial clusters that arise. In every image, there is a user perceived num-
ber of clusters that are present, these represent non-trivial clusters. In the
ideal situation, the eigenvalues should be 1 for all the important clusters,
shooting downward to 0 for all the trivial clusters. An example of a trivial
cluster would be a singleton point being clustered and the rest of the image
in another cluster, seen in the bottom right in figure 13. Because the self
tuning cosine has so many clusters at a 1, it shows that there are a number of
trivial clusters. Unfortunately due to the nature of the erratic eigenvalues,
the resulting eigenvectors are not reliable. The other 3 distance metrics, self
tuning euclidean, euclidean, and cosine, all turned out nicely, they each have
a gradual decreasing of values which translates to more non-trivial clusters
than the self tuning cosine.

Figure 13 shows some of the resulting eigenvectors of the self tuning co-
sine. As mentioned previously, there are a number of trivial clusters, wit-
nessed by the eigenvalues, and the results are not reliable. Figure 14 shows
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Self Tuning Cosine Self Tuning Euclidean

Cosine Euclidean

Figure 12. Eigenvalues of Spectral Clustering with Differ-
ent Distances

2nd Eigenvector 3rd Eigenvector

6th Eigenvector 15th Eigenvector

Figure 13. Eigenvectors of Spectral Clustering with Self
Tuning Cosine
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2nd Eigenvector 3rd Eigenvector

5th Eigenvector 12th Eigenvector

Figure 14. Eigenvectors of Spectral Clustering with Self
Tuning Euclidean

2nd Eigenvector 3rd Eigenvector

4th Eigenvector 8th Eigenvector

Figure 15. Eigenvectors of Spectral Clustering with Cosine
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2nd Eigenvector 3rd Eigenvector

9th Eigenvector 13th Eigenvector

Figure 16. Eigenvectors of Spectral Clustering with Euclidean

some of the resulting clusters of the self tuning euclidean. These are much
more reliable results because the eigenvalues behaved much more normally.
The second and third eigenvectors are shown to demonstrate the predom-
inant clusters that are formed. The second eigenvector separates the sky
from the mountain and the third separates the mountain and plume from
the other elements in the picture. The fifth eigenvector is an example of how
outliers get clustered together. The twelfth eigenvector is the desired plume,
plume in one cluster and everything else in the other cluster. One thing to
note is how the clustered areas are not clear and distinct, there are many
fuzzy areas. These results are quite similar to those shown by k-means. Fig-
ure 16 shows the results of the standard euclidean distance. The second and
third eigenvector are similar save for slight variations. The ninth eigenvector
is another example of outliers being clustered together and the thirteenth
eigenvector shows the proper clustering of the plume. Again the fuzzy clus-
ters are seen, similar to those of the k-means and spectral clustering with
self tuning euclidean. Lastly is figure 15 with the best results yet. Each of
the clusters have a clearly defined border, and the desired gas plume is seen
as early as the fourth eigenvector. However, an interesting cluster is seen in
the eighth eigenvector. It has a different shape from the fourth eigenvector,
however it inhabits the same area, giving rise to the notion that it might be
picking up something different from the gas plume, possibly dust that was
kicked up from the initial explosion.

The final verdict is that the cosine distance metric is best in the clustering
of data in both k-means and spectral clustering.
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σ = 0.001 σ = 0.01 σ = 0.1

σ = 1 σ = 10 σ = 100

σ = 1000

Figure 17. Eigenvalues of Spectral Clustering using Cosine
and different σ

Next is an examination on the different values of sigma and different sizes
of k for the k nearest neighbors in the similarity matrix. Figure 17 shows the
resulting eigenvalues for different sigma and figure 18 shows the eigenvalues
for different values of k. Due to the wild perturbations in the eigenvalues for
σ = 0.001, this gives rise to the same belief as the self tuning cosine and how
it has many trivial clusters. This gives the hypothesis that smaller values of
σ gives trivial clusters, which follows the idea that smaller σ values forces
the points to become disjoint. Examinations of the eigenvectors show that
values of σ aside from 0.001,0.01 seem to give the plume cluster and reduce
the trivial clusters. Investigations of the k nearest neighbors gives interesting
results. It is believed that the more connections you draw between points the
better the clustering, however there are high frequency oscillations in later
eigenvalues which means the corresponding eigenvalues are not dependable.

The resulting eigenvectors from spectral clustering with different values
for k is shown in figure 19. Only the clusterings with plume are shown,
however each of the eigenvectors were within the first 8 eigenvectors. As
the number of k increases, the clusterings of the plume start to degrade.
This is due to the fact that as the number of connections increase, the more
connections that are made. For the cliassification of plume, it seems best to
use a k between 10 to 20.
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k = 1 k = 10 k = 15

k = 20 k = 30 k = 50

k = 100

Figure 18. Eigenvalues of Spectral Clustering using Cosine
and different k

5.4. Nyström[2].

Due to the time consuming nature of full spectral clustering, alternatives
were looked at. Nyström method for approximating the eigenvalues and
eigenvectors of a matrix is a very fast algorithm that utilizes a random
sampling in order to perform the computations. Quite reminiscent of k-
means, the initialization of the sampling can change the outcome of the
computation, however increases the number of samples taken can reduce the
variations in results. The algorithm, outline below, is quite similar to that
of full spectral clustering, however time is saved because you do not need to
compute the k nearest neighbors, which ultimately requires you to find all
of the distances between each of the points. Analysis of the eigenvalues and
eigenvectors should be exactly the same as in full spectral clustering.

Figure 20 shows the different eigenvalue approximations and figure 21
shows the eigenvector approximations. The eigenvalues are different from
the spectral clustering eigenvalues, in that it is non-decreasing whereas spec-
tral clustering results in non-increasing eigenvalues. The analysis is still the
same. The incredibly steep increase of the eigenvalues shows that of the
approximated eigenvectors, only a few will contain non-trivial clusters. An
evaluation of the different sample size yields that there is very little difference
between sample sizes of 10, 40, and 100. However, the σ values run contrary
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k = 1 k = 10 k = 15

k = 20 k = 30 k = 50

k = 100

Figure 19. Eigenvectors of Spectral Clustering using Co-
sine and different k, only the eigenvectors with plume

to the results in full spectral clustering, the smaller values of σ result in a
more detailed image than the larger values. The results from Nyström are
ultimately not useful as a primary means of segmentation. The number of
non-trivial eigenvector clusterings is not enough to be able to isolate the
plume from the background. But, the results show promise when used as a
precursor for other methods, like the Ginzberg-Landau minimization.

Algorithm for the Nyström method[2]

Input: Datacube
• Select a random sample of the data points
• Construct a similarity matrix only using the random selection
• Construct a simliarity matrix between the selected points and the

remainining points
• Normalize the constructed similarity matrices
• Calculate eigenvectors and values

Output: Eigenvectors that represent different clusters and the
associated eigenvalues
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10 samples and σ = 1 10 samples and σ = 0.001

40 samples and σ = 1 40 samples and σ = 0.001

100 samples and σ = 1 100 samples and σ = 0.001

Figure 20. Eigenvalues resulting from Nyström method

5.5. Ginzberg-Landau minimization. The Ginzberg-Landau functional
is

(5.3) GL(u) =
ε

2

∫
|∇u|2dx+

1

ε

∫
W (u)dx

where W (u) is a double well potential, such as W (u) = (u2 − 1)2. When
minimizing (5.3) the double well potential term will force solutions to the
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10 samples and σ = 1 10 samples and σ = 0.001

40 samples and σ = 1 40 samples and σ = 0.001

100 samples and σ = 1 100 samples and σ = 0.001

Figure 21. Eigenvectors resulting from Nyström method

minimizers of W (u). The first term in equation (5.3), containing the spatial
gradient operator ∇, will incorporate smoothness into the solution. There-
fore, any sharp transitions between the two minimizers of W (u) will be
smoothed out. The solution that minimizes (5.3) will have regions close
to one of the minimizers of W (u), as well as an interface between the two
regions. Models with this property are referred to as ”diffuse interface”
models.
In order to use this technique to segment an image, this method is modified
to work on a graph. In order to do this the gradient term is replaced with
a non-local, graph version of the discretized Laplace operator, εu ·Lsu, and
a fidelity term is added. The resulting functional is,

(5.4) GL(u) = εu · Lsu+
1

ε

∫
W (u)dx+

∫
F (u, u0)

where F (u, u0), is the additional fidelity term. This method is a semi-
supervised segmentation algorithm and is initialized with a patch of the
region of interest, u0.
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5.6. Minimization Techniques.
5.6.1. Bertozzi-Flenner.
The functional (5.4) is minimized by applying the method of gradient descent
to

(5.5)
∂u

∂t
= −εLsu−

1

ε
W ′(u)− Cλ(x)(u− u0)

and evolving (5.5) to steady state by convex splitting methods. Note that
the fidelity term was taken to be 1

2Cλ(x)(u − u0)
2. For a more detailed

explanation of the method see [2].

When running this method there are five parameters in the numerical
scheme:

(1) C: parameter in the convex splitting
(2) ε: interface width parameter in the G energy
(3) c1: parameter in front of the fidelity term
(4) ∆t: time step
(5) N : number of iterations in energy minimization

5.6.2. Modified MBO Scheme.
The paper by Merkurjev et al. proposes a modification of the MBO (Merri-
men, Bence, and Osher) scheme in order to minimize the Ginzberg-Landau
functional [REF]. The method is a two step process. The first step is solv-
ing a heat equation of a graph, and the second step is thresholding. More
specifically,

(1) y(x) = S(δt)un(x), where S(δt) is the evolution operator of the equa-
tion

∂z

∂t
= −Lsz − C1λ(x)(z − z0)

(2) Threshold,

un+1(x) =

{
1 if y(x) ≥ 0
−1 if y(x) < 0

This is repeated for a prescribed number of iterations, or until
‖unew−uold‖22
‖unew‖22

<

10−6 is satisfied. A full discussion of this method may be found in [1].
This method requires fewer parameters than the Bertozzi-Flenner method.
The convex splitting term, C, disappears entirely, and ε get absorbed into
∆t.
5.6.3. Results.

The Bertozzi-Flenner method took between one and two minutes per
frame and typically required approximately 400 iterations for the pixels in
the image to converge to 1 or -1. Using the smoothed disturbance map found
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Figure 22. (Top left) Disturbance map resulting from back-
ground subtraction. (Top right) Disturbance map after me-
dian filtering to remove noise. This was used to initialize the
Ginzberg-Landau segmentation (Bottom left) Results of the
Bertozzi-Flenner method

from background subtraction, this method effectively segments the plume
and detects the wisps at the edges of the diffusing gas. The algorithm is
highly dependent on the parameter values and the best results were obtained
with c1=100, c=5, ε=1 and dt=0.001.

Figure 23. (Top left) Disturbance map resulting from back-
ground subtraction. (Top right) Disturbance map after me-
dian filtering to remove noise. This was used to initialize the
Ginzberg-Landau segmentation (Bottom left) Results of the
Merkurjev et al. MBO scheme
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The Merkurjev et al. MBO scheme on average took between 5 and 10 sec-
onds per frame, and converged within 150 iterations. This method was able
to segment regions where the plume had become very thin that background
subtraction alone was not able to recognize. The method was initialized
with regions of concentrated gas picked up by background subtraction and
filtered to remove noise. See figure ?? for the disturbance map, initialization,
and results images.

6. Conclusion

This project dealt with the detection, identification, and segmentation
of gas plumes in long wavelength infrared hyperspectral data. Numerous
methods of detection and segmentation were applied, as well as a way to
visualize the hyperspectral data.

Hyperspectral data consists of wavelength channels for each pixel, trans-
forming simple image processing algorithms into difficult tasks, having to
deal with those channels. Our data consists pixels that are represented
with 129 channels, whereas a normal image has 3 channels for RGB. Since
there currently does not exist a way to visual data in R129, we used PCA
to project our data in 3 channels so that we can obtain a false color movie.
Due to flickering in the movie, we needed to apply the Midway Equalization
method to normalize the frames. With the removal of flickering, we were
able to obtain a very nice visualization of the data.

In image processing, background subtraction is a very simple method of
preprocessing. Taking two consecutive frames and obtaining the difference
between the two, allows for a disturbance map to be created, identifying
areas that are moving. We found that applying a weighted running av-
erage allowed for the best extraction of moving features. From here, the
disturbance map could be fed into semi-supervised methods of detection or
segmentation.

Our methods of detection required construction of dictionaries that con-
tained background signatures and target signatures. The methods for back-
ground extractions were PCA or ATGP, while we were given a dictionary
of target signatures. From here, the dictionaries were using in our detection
methods, one a statistical model and the other a method of unmixing. The
statistical model was one that attempted to determine the probability that a
pixel was either one of the background signatures or one of the target signa-
tures. Unmixing is the method of trying to determine which signatures are
present in each pixel. The L1 method of unmixing utilizes the dictionaries
to try to determine the amount of each element exists in the given pixel.
We would then see how much of the target gas is present and use that as a
method of detection.

Our last work was done in segmentation. We attempted four different
methods of segmentation, K-means, spectral clustering, Nyström method,
and the Ginzberg-Landau minimization. With the use of K-means, we were
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able to determine that the cosine distance metric works best with the data
as well as a peculiarity, outlier clusters. Unfortunately, the gas plume was
not able to be individually segmented using k-means. Spectral clustering
was attempted next, a modern algorithm that utilizes the eigenvalues and
eigenvectors to cluster the data into seperate groups. The results of spectral
clustering were quite promising, being able to isolate the gas plume from the
background signatures. The problem with this method is that it requires
user input to select the gas plume and that it is quite time consuming. An
alternative to full spectral clustering is the Nyström method. It utilizes a
random selection of points to approximate the eigenvalues and eigenvectors.
It is not able to form as many clusters as the spectral clustering, nor is it
able to isolate the gas, however it is many times faster. The results show
that while not sufficient for a stand alone segmentation method, Nyström is
good input for other methods, such as the Ginzberg-Landau minimization.
The Ginzberg-Landau minimization was the last method of segmentation
that we performed. It is able to isolate the gas plume, with the utilization
of the disturbance map found from background subtraction.
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