
International Journal of Computational Intelligence Research.
ISSN 0973-1873 Vol.3, No.3 (2007), pp. 219-229
© Research India Publications http://www.ijcir.info

A Method to Edit Training Set Based on Rough

Sets

Yailé Caballero1, Rafael Bello2, Yanitza Salgado1 and María M. García2

1Department of Computer Science. University of Camaguey, Cuba
yailec@yahoo.com

2Department of Computer Science. Universidad Central de Las Villas, Cuba

{rbellop, mmgarccia}@uclv.edu.cu

Abstract: Rough Set Theory (RST) is a technique for data
analysis. In this paper, we use RST to improve the performance
of the k-NN method and the MLP neural network. The RST is
used to edit the training set. We propose two methods to edit
training sets, which are based on the lower and upper
approximations. Experimental results show a satisfactory
performance of the k-NN method and MLP using these
techniques.

Keywords: k-NN method, MLP, Rough Set Theory, data
analysis, edit training set.

I. Introduction

Machine learning is an important area inside Computer
Science. Generally, this is a process that consists of use
training sets in order to obtain knowledge automatically
about it, and according to the results it could be classified
into lazy or inductive learning. An example of lazy learning
is the IBL and an inductive one is the Multilayer Perceptron
Artificial Neural Network.

A major goal of Machine learning is the classification of
previously unseen examples. Beginning with a set of
examples, the system learns how to predict the class of each
one based on its features. The selection of examples from a
domain to include in a training set is a present problem in all
of the computational models for learning from examples.
This is known as the edition of training sets.

Instance-based learning (IBL) is a machine learning
method that classifies new examples by comparing them to
those already seen and are in memory. This memory is a
Training Set (TS) of preclassified examples, where each
example (also called object, instance or case) is described by
a vector of features or attributes values. A new problem is
solved by finding the nearest stored example taking into
account some similarity functions; the problem is then
classified according to the class of its nearest neighbor.

Nearest neighbor methods regained popularity after Kibler
and Aha showed that the simplest of the nearest neighbor
models could produce excellent results for a variety of
domains. A series of improvements was introduced in the
IB1 to IB5 [1]. IBL method is often faced with the problem
of deciding how many exemplars to store, and what portion
of the instance space it should cover.

An extension to the basic IBL paradigm consists in using
the K nearest neighbors instead of just the nearest one, the
class assigned is that of the majority of those K neighbors,
taking into account the distance (or similarity) between the
problem and each nearest neighbor [2].

There are many Artificial Neural Network models that
had been used in classification problems, such as:
McCulloch and Pitts, Perceptron, Multi-Layer Perceptron
(MLP), Adaline, Madaline, Hamming net, among others.
MLP is recognized as the best artificial neural network used
in classification from examples.

The presence of mistaken labeled prototypes in the
training set is a problem that affects seriously the efficiency
of the classification methods. There are some problems that
can occur during the training such as mistakes while labeling
the prototypes or noisy patterns that can appear due to
troubles while getting the data. These prototypes appear
usually in zones near the decision region and have a negative
influence in the learning process, because it increases the
error rate of the classification. Besides, there is a high
computational cost associated to the application of
classification methods to the whole set of prototypes.

A functional scheme of classification that takes as
reference set an edited set (SE) and the whole set of
prototypes (S) is shown in Figure 1. SE is a prototypes
edited set, and it had been built from S through some edition
method. R indicates the reference set that is used in the
classification method. [3].

220 Yailé Caballero et al

Figure 1. Classification’s Schema.

Data reduction is realized in two directions. First one

consists of the reduction of the attribute quantity that is used
to describe the objects. The second one is the decrease of the
objects quantity to include in the training set.

Rough Set Theory (RST) has been an excellent
mathematical tool for data analysis and it has offered an
exciting theoretic base for the solution of many problems
within knowledge discovery [4], [5], [6], [7], [8], [9] and
[10]. Several toolkits based on rough sets to data analysis
have been implemented, such as Rosetta [11] and [12], and
ROSE [13].

Rough Sets theory was proposed by Z. Pawlak in 1982
[14]. The rough set philosophy is founded on the assumption
that some information is associated with every object of the
universe of discourse [15] and [16]. A training set can be
represented by a table where each row represents objects and
each column represents an attribute. This table is called
Information System; more formally, it is a pair S= (U, A),
where U is a non-empty finite set of objects called the
Universe and A is a non-empty finite set of attributes. A
Decision System is any information system of the form
SD=(U, A∪{d}), where d∉A is the decision attribute.
Classical definitions of lower and upper approximations
were originally introduced with reference to an indiscernible
relation which assumed to be an equivalence relation.

Let B⊆A and X⊆U. B defines an equivalence relation and
X is a concept. X can be approximated using only the
information contained in B by constructing the B-lower and
B-upper approximations of X, denoted by B*X and B*X
respectively, where B*X={ x : [x]B ⊆X } and B*X={ x :
[x]B ∩ X≠φ }, and [x]B denotes the class of x according to
B-indiscernible relation. The objects in B*X are sure
members of X, while the objects in B*X are possible
members of X.

Rough set model has several advantages to data analysis.
It is based on the original data only and does not need any
external information; no assumptions about data are
necessary; it is suitable for analyzing both quantitative and
qualitative features, and the results of rough set model are
easy to understand [17]. An important issue in the RST is
about feature reduction.

All the computational models that realize inferences from
examples have the problem of the selection of the examples
from the domain that must be included in the training set.

This problem in known as the training sets edition.
The object reduction techniques pursue as objective the

elimination of patterns or prototypes for decreasing the size
of the learning matrix. It is about decreasing the
computational work and, at times, it is disposed or ready to
pay with a little less precision of the system, but with more
computational efficiency.

The Editing techniques are applied to eliminate the
prototypes that induce an incorrect classification, even
though it is certain that they produce elimination of
prototypes, their fundamental objective is to obtain a
training sample of better quality to have a better precision
with the system.

The aspects that have the most interest in the k-NN
method are the reduction of the classification error and the
reduction of the computational cost. The k-NN method is
very sensitive to the presence of incorrectly labeled
examples or objects close to the decision’s boundary;
incorrect instances are liable to create a region around them
where new examples wil l also be misclassified [1], [4], [5]
and [6]. Moreover, the search for the nearest neighbour can
be a very costly task, above all, in high dimension spaces. A
major problem of instance-based learners is that
classification time increases as more examples are added to
training set (TS).

The use of rough set in editing training sets is analyzed in
this paper. In section II, we study the editing training sets.
Two methods for editing training set based on the lower
approximation and upper approximation concept are
presented in section III. Experimental results show a
satisfactory performance of k-NN using these techniques in
section IV. A form to ratify with another model the edition
possibilities based on approaches, is the use of a neural
network, specifically a MLP was used, this experimental
results are in section V.

II . Techniques for Editing and Reducing
Training Sets

In [18] appears one of the first attempts of reduce the size of
training sets. This algorithm is especially sensitive to noise,
because the noisy cases will be usually bad classified by its
neighbours and will be kept. This situation causes two
problems: The first is that the reduction of the storage is
prevented because the noisy cases are retained. The second
problem is that the exactitude of the generalization is
debilitated because the noisy cases, usually the exceptions,
will cover more space than in the input, and that could cause
more mistakes in classification than before the reduction.

Aha in [1], [19] presented some Instance-based Learning
algorithms that use sample models, each concept is
represented by sample set, each sample could be an
abstraction of the concept or an individual instance of the
concept.

Between these algorithms are the following ones:

A Method to Edit Training Set Based on Rough Sets 221

IB1:
IB1 (Instance Based learning algorithm 1) was the 1-NN

algorithm and was used as bottom line.
 IB2:
IB2 is an incremental algorithm. Kibler and Aha in [20]

had called this the Growth Algorithm. This one is similar to
the Hart Condensed NN, but IB2 don’t build the S set with a
case of each class and don’t repeat the process after the first
step through the training set. Mean that IB2 won’t classify
correctly all the cases in T. This algorithm retains the
border points in S while deleting the inner points that
surround it by the same class members. Like the CNN, IB2
is highly sensitive to noise, because the noisy cases usually
will be bad classified and often will be saved on that way
while the more trusted cases will be deleted.

Shrink algorithm
Kibler and Aha in [20] also presented an algorithm that

starts with S=T and deletes any case that could be still
classified correctly by the remaining subgroup. The idea is
similar to the Reduced Nearest Neighbor rule (RNN), but in
this case the algorithm consider if the deleted instance could
be classified correctly, while the RNN takes into account if
the other instances classification could be damaged by the
elimination of those instances.

IB3:
IB3 is another incremental algorithm that try to solve the

IB2 problem of save noisy cases by retaining only cases bad
classified but acceptable. IB3 has reduced noise sensitivity.

IB4:
In order to attend some no relevant attributes, Aha in [19]

extends the IB3 algorithm to the IB4 one through the
construction of a set of attribute weights for each class. This
requires fewer cases to obtain a good generalization when
there are irrelevant attributes in a dataset.

IB5:
Aha in [19] also extends the IB4 to manage the addition

of new attributes to the problem after the training had begun.
TI BL:
Zhang in [21] used a different approach that was called

Typical Instance Based Learning (TIBL). TIBL algorithm
tried to save instances near the center instead of the border
ones in order to obtain a more drastic reduction in the
storage and more smooth decision limits. The algorithm is
more robust in presence of noise.

MCS:
Brodley in [22] introduce a Model Class Selection

(MCS), this is a system which uses a learning algorithm
bases in instances (that pretends to be near to IB3) and it is
part of a greater hybrid learning algorithm. It trends to avoid
noise.

Random Mutation Hill Cli mbing:
Skalak in [23] used the Random Mutation Hill Climbing

with the purpose to select the cases to use in S. This method
solves part of the problem.

Encoding Length (ELGrow):
Cameron-Jones in [24] used a heuristic of codification

length to determine how good could be the S set to describe
T. This algorithm isn’t incremental, but to distinguish from
other techniques it’s called Growing Encoding Length
algorithm or El_Grow.

Explore
Cameron-Jones in [24] also presents the Explore method

that begins by growing and pruning S by the use of El_Grow
method. Generalization of the Explore precision method is
empirically strong and its storage reduction is better than
most of the other algorithms.

In [25], [26], [27], [28], [29] and [30] appear various
techniques of reducing the training sets, with the purpose of
reducing the training sets based on the nearest neighbor
theory. Six new methods called DROP 1-5 and DEL are
reported in [27] which can be used to reduce the number of
instances in the training sets.

Editing algorithms from the training sample are described
in [31], which are focused on the detection and elimination
of noisy or atypical patterns in order to improve the
classification’s exactitude. Some of these are ENN (Wilson
in 1972), All k-NN (Tomek in 1976) and Generalized
Editing Algorith m (Koplowitz and Brown in 1978).
Another editing method is Multiedit Algorith m (Devijver
and Kittler in 1980) [32].

Wilson in 1972 developed the Edited Nearest Neighbor
(ENN). This technique consists in applying the k-NN (k > 1)
classifier to estimate the class label of every prototype in the
training set and discard those instances whose class label
does not agree with the class associated to the majority of
the k neighbors. The benefits –improvements of the
generalization accuracy- of Wilson’s algorithm have been
supported by theoretical and empirical evaluations [31]. In
this algorithm S starts out the same as T, and then each
instance in S is removed if it does not agree with the
majority of its k nearest neighbors (with k=3, typically). This
edits out noisy instances as well as close border cases,
leaving smoother decision boundaries. It also retains all
internal points, which keeps it from reducing the storage
requirements as much as most other reduction algorithms.
The Repeated ENN (RENN) applies the ENN algorithm
repeatedly until all instances remaining have a majority of
their neighbors with the same class, which continues to
widen the gap between classes and smoothes the decision
boundary.

Tomek in 1976 extended the ENN with his All k-NN
method of editing. This algorithm works as follows: for i=1
to k, flag as bad any instance not classified correctly by it’s i
nearest neighbors. After completing the loop all k times,
remove any instances from S flagged as bad. In his
experiments, RENN produced higher accuracy than ENN,
and the All k-NN method resulted in even higher accuracy
yet. As with ENN, this method can leave internal points

222 Yailé Caballero et al

intact, thus limiting the amount of reduction that it can
accomplish. These algorithms serve more as noise filters
than serious reduction algorithms.

Koplowitz and Brown in 1978 obtained the Generalized
Editing Algorithm. This is another modification of the
Wilson’s algorithm. Koplowitz and Brown were concerned
with the possibility of too many prototypes being removed
from the training set because of Wilson’s editing procedure.
This approach consists in removing some suspicious
prototypes and changing the class labels of some other
instances. Accordingly, it can be regarded as a technique for
modifying the structure of the training sample (through re-
labeling of some training instances) and not only for
eliminating atypical instances.

In 1980 the Multiedit algorithm by Devijver and Kittler
emerged. In each iteration of this algorithm, a random
partition of the learning sample in N subsets is made. Then
the objects from each subset are classified with the following
subset applying the NN rule (the nearest neighbor rule). All
the objects that were classified incorrectly from the learning
sample in the previous step are eliminated and all the
remaining objects are combined to constitute a new learning
sample TS. If in the last I iterations no object has been
eliminated from the learning sample, then end with the final
learning sample TS. On the contrary, return to the initial
step.

We have studied the performance of these algorithms
when we use k-NN methods. The results are shown in table
1.

There are different aspects that characterize the editing
and reducing techniques of examples, such as:

Representation: It is necessary to decide if a subset of
the original instances is retained or if it is modified using it
to create a new representation.

Direction of the search of instances: The construction
of the subset S from the training set E can be done in an
incremental form (begin with S being empty and start adding
cases according to some criteria), a decrement form (begin
with S=E and starts eliminating examples from S according
to some criteria) or in batches (decide if each instance
complies with the elimination criteria before separating any
of them).

Type of points of the space to retain: The set of cases
forms a universe divided into regions, which you can have as
a criteria to retain the instances situated in the boundaries of
the regions, those that are situated in the center or in the
interior of the regions, or another set of points.

Volume of the reduction: One of the objectives of the
elimination of examples is to reduce the necessary stored
memory.

Increment of speed: Another objective is to increase the
processing velocity starting from the set of instances.
Typically a reduction of the amount of examples will
produce a decrease of the processing time.

Precision of the generalization: The success of the
reduction algorithm is to be able to reduce the number of
instances without significantly reducing the capacity of
generalization of the processing of the algorithm.

Tolerance to noise: The reduction algorithms are also
different in respect to their effectiveness in the presence of
noise in the data.

Learning of speed: The ideal is to have a complexity of
O(n2) or faster.

Incremental growth: After obtaining the set S from E it
should be possible to decide in an incremental form the
addition of new instances to the training set while these are
being obtained.

III . Rough Sets Theory in Training Sets
Edition

Rough Sets Theory provides efficient tools to work with this
solution choices.

 Rough Sets Theory makes possible to try as many
quantitative data as qualitative one, and there is no need to
eliminate the inconsistencies previous to analysis. Another
advantage of this approach is that the output information
could be used to determine the attribute relevance and to
generate relations among them (in rule forms). Besides,
there is no need to make suppositions about the attribute
independence neither other knowledge about data nature
[33]. Besides, multiple applications had been developed by
using Rough Sets Theory [34], [35].

A. Two methods for editing training set based on rough
sets

There are two important concepts in Rough Sets Theory:
Lower and Upper Approximation of decision systems.
Lower approximation group’s objects that certainly belong
to its class, this guarantee that object inside lower
approximation have no noise.

We have studied the application of rough sets for the
edition of training sets. We propose two methods for editing
training sets by using upper and lower approximations. First,
we use the lower approximations of classes to create the
edited training set.

The basic idea of employing rough sets for editing
training sets is the following: in the training set we put the
examples of the initial decision system that belong to the
lower approximation of each class, that is, given an
application’s domain with m classes and the equivalence
relation B, then,

 TS = B*(D1) ∩ B*(D2) ∩ ... ∩ B*(Dm)
This is equivalent to saying that the training set wil l be the

positive region of the decision system. In this manner,
objects that are incorrectly labeled or very near to the
decision’s boundary can be eliminated from the training set
which affect the quality of the inference/deduction. Studies
on multiediting presented in [36] show that isolated objects

A Method to Edit Training Set Based on Rough Sets 223

included in other regions or near to the decision’s boundary
are frequently eliminated.

Edit1RS Algorithm:
Step1. Construct the set B, B⊆A. Preferably, B is a reduct

from the decision system.
Step2. Form the sets Xi⊆U, such that all the elements of

the universe (U) that have value di in the decision’s attribute
is in Xi.

Step3. For each set Xi, calculate its lower approximation
B*(Xi).

Step4. Construct the edited training set as the union of all
the sets B*(Xi).

In the second case, we use lower approximations and
boundary region of classes to create the edited training set.

In the Edit1RS method only the elements which to the
lower approximations are taken into account. Also, it is
important to also take into consideration those elements that
are in the boundary (BNB). The Generalized Editing
Algorithm consists of removing some suspicious prototypes
and changing the class labels of some other instances.
Accordingly, it can be regarded as a technique for modifying
the structure of the training sample (through re-labeling of
some training instances) and not only for eliminating
atypical instances [31]. The second algorithm is proposed
taking into account these ideas.

Edit2RS Algorithm:
Step1. Construct the set B, B⊆A. Preferably, B is a reduct

from the decision system.
Step2. Form the sets Xi⊆U, such that all the elements of

the universe (U) that have value di in the decision’s attribute
is in Xi.

Step3. S = ø
Step4. For each set Xi do:
Calculate their lower approximation (B*(Xi)) and upper

approximation (B*(Xi)).

 S = S UB*(Xi).
Ti = B*(Xi) - B*(Xi).

Step5. Calculate the union of the sets Ti. T = U Ti is
obtained.

Step6. Apply the Generalized Editing method to each
element in T and the result is the set T’.

Step7. S = S UT’. The edited training set is obtained as
the resultant set in S.

The computational complexity of our algorithms don't
surpass O(ln2), near to the ideal value of O(n2), while in the
rest of the algorithms it is of O(n3).The Edit1RS and
Edit2RS algorithms based on the rough set theory are
characterized in the following way:

Representation: Retain a subset of the original
instances. In the case of the Edit2RS algorithm, this can
change the class of some instances.

Direction of the search of the instances: The
construction of the subset S from the training set E is
achieved in batch form. In addition, the selection is

achieved on a global vision of the training set not separated
by decision classes.

Type of point of the space to retain: The Edit1RS
algorithm retains the instances situated in the centre or
interior of the classes. The Edit2RS algorithm retains these
instances and others included in the boundary regions of the
classes.

Volume of the reduction: The volume of the reduction
depends on the amount of inconsistencies in the information
system; there will always be a reduction in the training set,
except if the information system is consistent.

Increment of speed: On decreasing the amount of
examples the velocity of the next processing is increased.

Precision of the generalization: In the majority of cases,
one of the algorithms or both of them increased significantly
the efficiency of the k-NN method.

Tolerance to noise: The rough set theory offers a pattern
oriented to model the uncertainty given by inconsistencies,
for which it is effective in the presence of noise. In fact, the
lower approximation eliminates the cases with noise.

Learning speed: The computational complexity of
finding the lower approximation is O(ln2), according to [34]
and [37], near to the ideal value of O(n2), and less than that
of the calculation of the coverage (O(n3)), so l (amount of
attributes considered in the equivalence relation) is in the
majority of the cases significantly smaller than n (amount of
examples).

Incremental growth: This is an incremental method so
for each new instance that appears it is enough to determine
if it belongs to some lower approximation of some class so
that it can be added or not to the training set.

In section VI the experimental results of these methods
are shown.

IV . k-NN method and Experimental results

The k Nearest Neighbor Algorithm is based on lazy learning
and uses a distance or similarity function to generate
predictions from stored instances.

It is called lazy because it stores the training set y left all
the processing for the classification stage. The input of the
classifier is an instance q of an unknown class. Each instance

},...,,{ ||21 Fxxxx =
is a point that belongs to

multidimensional space defined by the attribute set and the F
class of the instance x, inside the class set J. The attribute
could be from many types: real, integer, ordered symbolic,
symbols sets, boolean or fuzzy.

The mistake that can be made in the classification of the
instances of the training sets is known as Leaving One Out
Classification Error (LOOCE). The purpose of the classifier
is to minimize LOOCE coefficient. The way to calculate it
depends on if the class value is continuous or discrete. With
discrete values, it is calculated as:

224 Yailé Caballero et al

()∑ ∑
∈ ∈

−=
BCq Jj

jqjq pLOOCE ,,δ

This means, for each instance q that belongs to the base

cases and for each class that belongs to the class set J, it is
calculated the sum of the difference between the class

membership function jq,δ
 and the class probability function

jqp , defined as:





≠
=

=
jq

jq

c

c
jq 0

1
,δ

∑
∑

∈

∈
⋅

=

Kr

Kr
jr

jq rqsim

rqsim
p

2

2
,

,),(

),(δ

Where K is the more similar neighbour instance set.

When working with classes with continuous values,

LOOCE is defined as:

∑
∈

−=
BCq

qc pqLOOCE 2)(

Where cq
 is the class of instance q and qp

 is defined
as:

∑
∑

∈

∈

⋅
=

Kr

Kr
c

q rqsim

rqsimr
p

2

2

),(

),(

cr Is the class value of instancer .
The classification of instance using k-NN implies to

previously know the class value of q and the algorithm
returns the most probable class using the following formulas:

If the class value is discrete, k-NN returns:

jq
Jj

c pq ,max
∈

=
.

If the class value is continuous, k-NN returns:

qc pq =
.

The similarity between two instances is calculated as:

∑
=

⋅=
n

a
aaaa cqsimwcqsim

1

),(),(

Where asim
 is a function of similarity used to compare

the attribute a value for each instance n is the attribute

amount and aw
 the weight of attributea .

We have study the computational behavior of the
algorithms when they are employed in the k-NN method. We
have used decision systems constructed from the data bases
that were found in:

http://www.ics.uci.edu/~mlearn/MLRepository.html

The results that are shown in Table I allow you to
compare the efficiency reached by the k-NN method using
the original data bases, and the edited ones using various
methods from the edition of training sets algorithms
proposed by other authors and the two which are presented
in section III. We have considered two alternatives: (i) B
uses all features; (ii) B is a reduct. The LOOCE value was
10. A reduct is a minimal set of attributes from A that
preserves the partitioning of universe (and hence the ability
to perform classifications) [7]. We have used heuristic
methods to calculate reducts which decrease the
computational complexity [38] and [39].

By comparing the two methods based on the Rough Set
Theory the superior results obtained by the Edit2RS method
are appreciated. In order to verify efficiently the described
results previously the statistical test of Crossed Validation
was applied, for which each data set in 5 samples was
divided, at every moment 4 of them were taken to train and
the other to classify, so that each one of these sets was taken
to classify in one of the 5 experiments of the same There 20
were made run by each one of these experiments, table 1
represents the values of the average of the 100 values of
effectiveness in the classification for the test of Validation
Crossed for the bases including and each one of the exposed
algorithms.

A Student Test was applied to Cross Validation results
and the p-value obtained was less than 0.05 for each one of
the topics to demonstrate: i) The results of Edit2RS method
were better in classification than Edit1RS one, and ii)
Efficiency percents in classification for Edit1RS and
Edit2RS methods were better by using a reduct than working
with all the features. It’s possible to state that there are
significant differences between the results obtained by
Edit1RS method and Edit2 RS one.
The two methods based on the Rough Set Theory show
superior behavior to those results obtained without editing.
The achieved results with Edit1RS and Edit2RS are similar
to those achieved by the ENN, Generalized Editing method,
Multiedit method and All-KNN methods.

V. ML P Neural Network and Experimental
Results

The Multilayer Perceptron is an artificial neural network
model that simulates one of the human nervous system
functions: classification by using structural and functional
simulation of part of that system [40]. The MLP presents a
multilayer topology with continuous neuron model and the
backpropagation algorithm as learning method.

A Method to Edit Training Set Based on Rough Sets 225

Table 1. Results of the classification Effectivity with k-NN

Edited data set

EDIT1RS EDIT2RS

Name of
data base

Original

data
bases

ENN All_KN
N

Generalize
d Edit

Multi_
edit

B=All

features
B=Reduct B=All

features
B=Reduct

Ballons
 59.23 59.23 100.00 80.40 100.00 90.40 100.00 100.00 100.00

Breast_
Cancer 96.77 96.24 95.69 93.26 100.00 98.00 100.00 99.35 99.65

Bupa
 67.83 88.74 88.11 84.98 100.00 82.16 89.93 90.23 90.47

Dermato
logy 97.49 94.56 100.00 93.14 50.00 96.46 98.78 98.27 99.19

Ecoli
 76.61 81.54 91.89 96.49 95.71 98.28 98.06 97.70 100.00

Hayes_
Roth 23.48 70.37 66.66 22.11 100.00 85.29 100.00 70.27 84.62

Heart
 82.22 89.54 98.40 96.11 100.00 92.37 93.50 95.41 97.31

Iris
 94.66 100.00 100.00 92.66 100.00 98.94 100.00 100.00 98.66

Lung
Cancer 47.34 51.00 73.28 54.00 0.00 78.00 82.29 71.00 83.02

Pima
 73.05 80.00 80.00 90.36 90.36 94.33 96.64 95.43 100.00

Yeast
 59.03 71.43 70.00 81.75 91.01 90.03 93.76 90.00 99.74

The network must be trained first with a training set. At

the end of the training, it will be ready to recognize the
learned samples and to classify other new ones based on
generalizations made from the training set.

 The MLP is used with an activation function that is
evaluated with an input vector of real components that
identifies a certain pattern, “analyses” it and returns the class
or pattern that belongs to the vector.

During the training process, the MLP learns with the
samples that receive and classify every input of the training
set and in dependence of the amount of error it will rectify
itself in order to improve the next execution of the same
sample. The process of classify all the samples wil l be
repeated until a stopping criteria will be satisfied.

Training sets are very different and the networks must
learn it, also during the process some parameters are needed
with the purpose of adjust the algorithm to the features of the
each set and each network.

The arguments that establish boundaries during the MLP
training are:

• Stopping criteria
This parameter indicates when the training must be

stopped. There are many criteria to consider the end of the
learning process by the network:

1.-Generalization. In each iteration, the network optimizes

and estimates the generalization error computed from the
validation set until this one reaches a value less than a
specified quantity.

2.-Percent of samples learned. The network had learned a
case when it is classified with an error less than the
permissible one during the learning process. The network
wil l stop the training when it had learned a percent of the
specified training set.

 3.- Quantity of learned samples. The training stops when
the network had learned a specific number of samples.

4.- Number of iterations. The network will evaluate the
training set by a specific number of iterations in which the
error will be also rectified.

• Learning speed
The learning speed is a parameter used during training.

Usually is situated between 0.5 and 0.025. While it reaches
higher values, the training will be shorter.

• Initial weight influence
The value of this parameter usually oscillates between 0.1

and 0.8. The initial weight improves the learning process
because they allow noticing last changes made over the
network. It is proportional to the learning speed.

• Classification error
This parameter indicates the error that allows to the

network when classifying an example him of the training set,

226 Yailé Caballero et al

so that it considers that has been learned it. This parameter is
very important then in dependency of same the network will
make an effort more in learning or no. If the classification
error value is a big number, then the learning will be fast,
but the MLP will take a vague idea of each pattern and so
when classifying patterns that have not appeared to him
during the training can that does it of incorrect way.

• Feature selection criteria
During the training the network selects the simples from

the training set that it will tr y to learn. There are three ways
to select these examples:

 1.- Uniform: In this kina of selection, each pattern is
selected in a random way, but the probability of to be
selected is the same in each pattern. This strategy is the
simplest one; but it has as an inconvenient that the progress
or level of the learning reached in each moment is ignored. It
seems to be that this blind selection causes a non favorable
chaos in the update of the weights, because does not
consider at no moment nor the characteristics of the pattern
who is analyzing itself, nor the error that when classifying it
has been committed throughout the training.

For this reason, this strategy could be a slow training
process and even, it can oscillate near the minimum.

 2.- Sequentially: The samples are selected in the same
order that the appear in the training set. This form to take the
patterns does not consider the advances that the network
makes in specific patterns and causes that certain inertia in
the pick up of the knowledge is created. It is littl e advisable
to use this technique, unless the order of the examples in the
training set is not accidental, but totally intentional and
thought.

 3.-Repeat until learn. This strategy is of the type of
pedagogical selection. Each sample is presented to the
network. Each example is presented to the network in
dependency of the error that this one comet when classifying
it. Each simple is randomly selected and repeated until its
error is lower than the medium error of the network
increased in a determined factor. Usually, it happens when
the classification error is greater than 150% of the medium
error.

A MLP artificial neural network was used in a similar way
to the k-NN method but to obtain effectively classification
percents for each of the edited sets; results are shown in
graphic 1. The parameters used with the MLP were: the
stopping criteria were a generalization error of 0.02, the
learning speed 0.05, the weight influence 0.5 and feature
selection criteria of repeat until learn.

The results with Edit1RS and Edit2RS were the best
obtained when classifying the non edited training set; also,
the new method returned similar results in some cases and

superior to the ENN, All KNN, Generalized Edition and
Multiedit methods in other cases. A comparison between
Edit1RS and Edit2RS was made and Edit1 RS attending to
the results and the Edit2RS ones were the best. It was
demonstrated that the effectivity of the new methods is
superior when a reduct is used than when all features are
used.

Graph 1. Efficiency reached by the MLP

In order to verify eff iciently the described results

previously the statistical test of Crossed Validation was
applied, for which each data set in 5 samples was divided, at
every moment 4 of them were taken to train and the other to
classify, so that each one of these sets was taken to classify
in one of the 5 experiments of the same. We made 20 run by
each one of these experiments, table 2 represents the values
of the average of the 100 values of effectiveness in the
classification for the test of Validation Crossed for the bases
including and each one of the exposed algorithms.

The classifier used in this experimentation was a MLP. A
Student test was made to the results obtained with the
Crossed Validation Test and the p value for this was less
than 0.05 for each of the aspects to demonstrate. This is a
good reason to affirm that there are significant differences
for this bases and it could be said that:

Edit1RS and Edit2RS methods show better results in
classification than the training set without editing.

The results obtained in training sets by Edit1RS and
Edit2RS were in most of the cases superior to the ENN, All
KNN, Generalized Edition and Multiedit methods. Edit2RS
method had better results in classification than Edit1RS one.

For the methods Edit1RS and Edit2RS the percents of
effectiveness in the classification were better using a reduct
than working with all the attributes.

A Method to Edit Training Set Based on Rough Sets 227

Table 2. Results using MLP when applied cross validation test

Edited data set

EDIT1RS EDIT2RS

Name of
data base

Origin
al data
bases

ENN All_KN
N

Generalize
d Edit

Multi_
edit

B=All

features
B=Reduct B=All

features
B=Reduct

Ballons

58.33 53.23 100.00 78.00 100.00 90.00 100.00 100.00 100.00

Breast_
Cancer

93.20 97.89 98.13 96.56 100.00 98.69 99.00 97.33 99.89

Bupa

60.45 83.33 82.54 84.01 100.00 87.25 89.15 85.00 92.00

Dermatology 92.00 94.37 98.45 99.18 100.00 95.47 96.90 98.00 99.27

Ecoli

66.87 97.71 97.89 95.27 100.00 83..23 95.19 97.56 98.00

Hayes_
Roth

20.19 68.90 70.01 18.00 100.00 85.00 100.00 50.00 85.00

Heart

80.45 92.00 95.87 95.00 50.00 94.57 96.98 95.00 97.78

Iris

93.22 100.00 93.10 96.45 100.00 99.00 100.00 100.00 100.00

Lung Cancer 45.98 50.00 74.12 53.98 0.00 50.00 80.00 50.00 84.08

Pima

72.00 93.25 93.45 92.90 100.00 80.00 80.00 94.91 98.09

Yeast

55.00 91.90 93.55 90.00 96.10 70.40 70.00 92.00 97.00

VI. Conclusion

A study of the possibility of applying the elements of the
Rough Set Theory in data analysis when the k-NN method
and neural network MLP are used was presented in this
paper. Two methods for the edition of training sets are
proposed. Experimental results show that using rough sets to
construct training sets to improve the work of the k-NN
method and MLP are feasible. Our methods obtained similar
results to the methods with high performance and these
obtained the best result in some case. Therefore, we think
these new methods can be taking into account for editing
training sets in k-NN method and neural network MLP. The
results obtained with the Edit1RS and Edith2RS methods
were higher in the majority of cases when B is a reduct.

The computational complexity of our algorithms don't
surpass O(ln2), near to the ideal value of O(n2), while in the
rest of the algorithms it is of O(n3).

Acknowledgment

The authors would like to thanks VLIR (Vlaamse Inter
Universitaire Raad, Flemish Interuniversity Council,
Belgium) for supporting this work under the IUC Program
VLIR-UCLV.

References

[1] Aha, D.W. “Case-based Learning Algorithms”.
Proceedings of the DARPA Case-based Reasoning
Workshop. Morgan Kaufmann Publishers. 1991.

[2] García Zaldívar, José M. “KNN Workshop. Suite para
el Desarrollo de Clasificadores Basados en Instancias”.
Trabajo de Diploma. Universidad Central "Marta
Abreu" de Las Villas. Facultad de Matemática, Física y
Computación. 2003.

[3] Suárez-Inclán Rivero, Yadilka. Rodríguez Vallejo,
Lester. Análisis del uso de los Conjuntos Aproximados
en la edición de conjuntos de entrenamiento. Trabajo
de Diploma. Universidad Central "Marta Abreu" de
Las Villas. Facultad de Matemática, Física y
Computación. 2003.

[4] Domingos, P. “Unifying instance-based and rule-based
induction”. International Joint Conference on Artificial
Intelligence. 1995.

[5] Lopez, R.M. and Armengol, E. “Machine learning from
examples: Inductive and Lazy methods”. Data &
Knowledge Engineering 25, 1998, pp. 99-123.

[6] Barandela, R. “The nearest neighbor rule and the
reduction of the training sample size”. Proceedings 9th
Symposium on Pattern Recognition and Image
Analysis, Castellon, España, 2001, pp. 103-108.

228 Yailé Caballero et al

[7] Kohavi, R. and Frasca, B. “Useful feature subsets and
Rough set Reducts”. Proceedings of the Third
International Workshop on Rough Sets and Soft
Computing. 1994.

[8] Koczkodaj, W.W. “Myths about Rough Set Theory”.
Comm. of the ACM, vol. 41, no. 11, nov. 1998.

[9] Komorowski, J. “A Rough set perspective on Data and
Knowledge”. In The Handbook of Data mining and
Knowledge discovery, Klosgen, W. and Zytkow, J.
(Eds). Oxford University Press, 1999.

[10] Pal, S.K. and Skowron, A. (Eds). “Rough Fuzzy
Hybridization: a new trend in decision-making”.
Springer-Verlasg, 1999.

[11] Greco, S. “Rough sets theory for multicriteria decision
analysis”. European Journal of Operational Research
129, 2001, pp. 1-47.

[12] Pal, S.K.. “Web mining in Soft Computing framework:
Relevance, State of the art and Future Directions”.
IEEE Transactions on Neural Networks, 2002.

[13] Ohrn, A. and Komorowski, J. “Rosetta: A rough set
toolkit for analysis of data”. In Proc. Third Int. Join
Conference on Information Science, Durham, NC,
USA, march 1-5, vol. 3, 1997, pp. 403-407.

[14] Ohrn, A. “ROSETTA Technical Reference Manual”.
Department of Computer and Information Science,
Norwegian University of Science and Technology,
Trondheim, Norway.

[15] Predki, B. “ROSE- Software implementation of the
Rough Set Theory”. In Polkowski, L. and Skowron, A.
(Eds) Rough Sets and Current Trends in Computing,
Proceedings of the RSCTC98 Conference. Lectures
Notes in Artificial Intelligence vol. 1424, Berlin pp.
605-608.

[16] Pawlak, Z. “Rough sets”. International Journal of
Information & Computer Sciences 11, 1982, pp. 341-
356.

[17] Komorowski, J., Pawlak, Z. “Rough Sets: A tutorial”. In
Pal, S.K. and Skowron, A. (Eds) Rough Fuzzy
Hybridization: A new trend in decision-making.
Springer, 1999, pp. 3-98.

[18] Hart, P. E. “The Condensed Nearest Neighbor Rule”.
IEEE Transactions on Information Theory, 14, pp.
515-516. 1968.

[19] Aha, David W. “Tolerating noisy, irrelevant and novel
attributes in instance-based learning algorithms”.
International Journal of Man-Machine Studies, 36, pp.
267-287. 1992.

[20] Kibler, D. Aha, David W. “Learning representative
exemplars of concepts: An initial case study”.
Proceedings of the Fourth International Workshop on
Machine Learning, Irvine, CA: Morgan Kaufmann, pp.
24-30. 1987.

[21] Zhang, Jianping. “Selecting Typical Instances in
Instance-Based Learning”. Proceedings of the Ninth
International Conference on Machine Learning. 1992.

[22] Brodley, Carla E. “Addressing the Selective Superiority
Problem: Automatic Algorithm/Model Class

Selection”. Proceedings of the Tenth International
Machine Learning Conference, Amherst, MA, pp.
17-24. 1993.

[23] Skalak, D. B. “Prototype and Feature Selection by
Sampling and Random Mutation Hill Climbing
Algorithms”. In Proceedings of the Eleventh
International Conference on Machine Learning
(ML94). Morgan Kaufmann, pp. 293-301. 1994.

[24] Cameron-Jones, R. M. “Instance Selection by Encoding
Length Heuristic with Random Mutation Hill
Climbing”. In Proceedings of the Eighth Australian
Joint Conference on Artificial Intelligence, pp. 99-106.
1995.

[25] Ritter, G. L., Woodruff, H. B., Lowry, S. R. and
Isenhour, T. L. “An Algorithm for a Selective Nearest
Neighbor Decision Rule”. IEEE Transactions on
Information Theory, 21-6, November, 1975, pp.
665-669.

[26] Lowe, David G. “Similarity Metric Learning for a
Variable-Kernel Classifier”. Neural Computation, 7-1,
1995, pp. 72-85.

[27] Wilson, Randall and Martinez, Tony R. “Reduction
Techniques for Instance-Based Learning Algori thms”.
Computer Science Department, Brigham Young
University. USA. Machine Learning, V 38, 2000, pp
257-286. 1998

[28] Ainslie, M. C and Sánchez, J.S. “Space Partitioning for
Instance Reduction in Lazy Learning Algorithms”. In
2nd Workshop on Integration and Collaboration
Aspects of Data Mining, Decision Support and Meta-
Learning, 2002, pp 13-18.

[29] Lozano, M. Sánchez, J.S and Pla, F. “Training Set Size
Reduction by Replacing Neighbouring Prototypes”.
2003.

[30] Koggalage, R. and Halgamuge, S. “Reducing the
Number of Training Samples for Fast Support Vector
Machine Classification”. Vol. 2 No. 3, March 2004.

[31] Barandela, R., Gasca, E., and Alejo, R. “Correcting the
Training Data. Published in Pattern Recognition and
String Matching D. Chen and X. Cheng (eds.), Kluwer,
2002.

[32] Devijver, P. and Kittler, J. “Pattern Recognition: A
Statistical Approach”, Prentice Hall, 1982.

[33] Polkowski, L. “Rough sets: Mathematical foundations”.
Physica-Verlag, Berlin, Germany. 2002, p. 574.

[34] Deogun, J.S. “Feature selection and effective
classifiers”. Journal of ASIS 49, 5, 1998, pp. 423-434

[35] Tay, F.E. and Shen, L. “Economic and financial
prediction using rough set model. European”. Journal
of Operational Research 141, 2002, pp. 641-659.

[36] Cortijo, J.B. “Techniques of approximation II: Non
parametric approximation. Thesis”. Department of
Computer Science and Artificial Intelligence,
Universidad de Granada, Spain. October 2001.

[37] Bell, D. and Guan, J. “Computational methods for
rough classification and discovery”. Journal of ASIS
49, 5, 1998, pp. 403-414.

A Method to Edit Training Set Based on Rough Sets 229

[38] Bello, P.R. et al. “A model based on Ant Colony System
and Rough Set Theory to Feature Selection”. Genetic
and Evolutionary Conference (GECCO05). June 25-29,
2005. Washington, USA

[39] Bello, P.R. et al.. “Using ACO and Rough Set Theory to
Feature Selection”. 6th WSEAS Evolutionary
Computing Conference (EC05). June16-18, 2005.
Lisbon, Portugal.

[40] Bello Pérez, Rafael E. García Valdivia, Zoila Z. García
Lorenzo, María M. Reinoso Lobato, Antonio.
“Aplicaciones de la Inteligencia Artificial.”.
Universidad de Guadalajara, México. ISBN 970-27-
0177-5. 2002.

Author Biographies
Yailé Caballero. Her educational background is a Bachelor in Computer
Science (2001) at Central University of Las Villas (UCLV), she received
her degrees (MSc in Computer Science) from UCLV in 2005. She is a
Professor at Department of Computer Science at University of Camagüey
(UC), Cuba. She has taught more than 10 of pre and postgraduate courses

and she has received more than 20 postgraduate courses. She has presented
more than 30 papers in national and international scientific conferences
and she has published 25 papers in proceedings and scientific journals. Her
research interests include heuristics methods, machine learning techniques
and Soft Computing. She is the Head of Artificial Intell igence Group at
UC.

Rafael Bello. His educational background is a Bachelor in Mathematics
and Computer Science (1982) at Central University of Las Villas (UCLV),
he received his degrees (Ph. D. in Mathematics) from UCLV in 1988. He
has developed recycling scholarship at universities of Spain, Germany and
Belgium. He is a Professor at Department of Computer Science at UCLV,
Cuba, but he has been a visiting faculty at several Latin American
universities and Spain. He has taught more than 40 of pre and postgraduate
courses in those universities. He has presented more than 70 papers in
national and international scientific conferences and he has published 5
books and 68 papers in proceedings and scientific journals. His research
interests include heuristics methods, machine learning techniques and Soft
Computing. He is the Head of Artificial Intelligence Group at UCLV and
he became a Member of AAA I in 2004. He leads a Computer sciences
project between the Flemish Interuniversity Council (VLIR) and UCLV. He
has received awards from the Cuban Sciences Academic and other
important scientific societies.

