
1041-4347 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2016.2553665, IEEE
Transactions on Knowledge and Data Engineering

1

Discriminative Link Prediction using Local,
Community and Global Signals

Abir De, Sourangshu Bhattacharya, Sourav Sarkar, Niloy Ganguly Soumen Chakrabarti
{abir.de,sourangshu,sourav.sarkar,niloy}@cse.iitkgp.ernet.in soumen@cse.iitb.ac.in

IIT Kharagpur IIT Bombay

Abstract—Predicting plausible links that may emerge between pairs of nodes is an important task in social network analysis, with over
a decade of active research. Here we propose a novel framework for link prediction. It integrates signals from node features, the
existing local link neighborhood of a node pair, community-level link density, and global graph properties. Our framework uses a
stacked two-level learning paradigm. At the lower level, the first two kinds of features are processed by a novel local learner. Its outputs
are then integrated with the last two kinds of features by a conventional discriminative learner at the upper-level. We also propose a
new stratified sampling scheme for evaluating link prediction algorithms in the face of an extremely large number of potential edges, out
of which very few will ever materialize. It is not tied to a specific application of link prediction, but robust to a range of application
requirements. We report on extensive experiments with seven benchmark datasets and over five competitive baseline systems. The
system we present consistently shows at least 10% accuracy improvement over state-of-the-art, and over 30% improvement in some
cases. We also demonstrate, through ablation, that our features are complementary in terms of the signals and accuracy benefits they
provide.

Index Terms—Social Network, Link Prediction

F

1 INTRODUCTION

The link prediction (LP) problem [26] is to predict future
relations that can form between nodes in a social network,
given historical views of the network up to the present
time. E.g., one may wish to predict that a user will like a
restaurant or a book, or that two researchers will coauthor
a paper, or that a user will endorse another on LinkedIn,
or that two users will become “friends” on Facebook. Apart
from the obvious recommendation motive, LP can be useful
in social search, such as Facebook Graph Search1, as well as
ranking goods or services based on not only real friends’
recommendations but also that of imputed social links.
Driven by these strong motivations, LP has been intensively
researched in recent years; Lu and Zhou [31] provide a
comprehensive survey which also points to several scopes
for improvement.

There are three major aspects of a LP task:
Features capturing complementary pieces of information

from nodes, edges and other graph attributes.
Model and algorithm utilizing the features to score / rank

the potential edges as future edges.
Evaluation metric which measures the utility of the tech-

nique towards a set of applications.
Here we make contributions in each of these three aspects.
Before describing our contributions, we elaborate on the
above.

1.1 Features

Node features: Given a potential edge between nodes u and
v of a social network, the features we extract from nodes
are usually guided by the problem domain. E.g., one may

1. https://www.facebook.com/about/graphsearch

use the genre of movies in movie-movie networks, and title
words or salient keywords in papers for citation networks.

Broadly, three sets of features can be derived from a
network structure: (a) local features, (b) global features, and
(c) community Features.

Local features are derived from linkage information
in the immediate network vicinity of u and v, such as
the existence of many common neighbors. The well-known
Adamic-Adar (AA) [1] predictor is based on the number of
common neighbors between two nodes. Preferential attach-
ment (PA) assigns more weight to potential links between
high degree nodes [4].

Global features between two nodes are devised to cap-
ture non-local effects of links, such as effective conductance,
hitting time, commute time [12], etc. These are often deeply
related to the non-local community structure of the social
network. In this work, we use the Katz score [21], a length-
weighted count of the number of paths between two ver-
tices, as a global feature. Other prominent features used
in the literature are local and cumulative random walks
[31] (LRW and CRW), which depend on the steady state
visit probability of each node and its cumulative version
over time (see Section 2.2). The random walk paradigm has
also been combined [3] with edge features for enhanced
accuracy, called supervised random walk (SRW). These ap-
proaches are described in Section 2 in greater detail and
evaluated as baselines.

Community features: Communities or graph clusters are
usually characterized by a larger density of links within
a community and sparse links across communities. These
show up as block structure in adjacency matrices, when
rows and columns are suitably reordered, using methods
such as co-clustering [11], cross-association [6], stochas-
tic block models [17], etc. Co-clustering [11] is a popular
technique, which exposes rich block structure in a dyadic

1041-4347 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2016.2553665, IEEE
Transactions on Knowledge and Data Engineering

2

Figure 1: Overview of LCG: LCG is a two level link pre-
dictor. In this first level, it combines local structure and
node features to obtain locality dependent feature weights
and feature scores (LL). In the second level, LL is combined
with community, local and global signals to learn the final
discriminative link prediction model.

relation, expressed as a matrix. We will use co-clustering to
derive community features.

1.2 Model outline

The main idea behind the technique proposed in this paper
is to combine signals from all four feature types (node
features, local neighborhood features, community level fea-
tures, and global graph features) to learn a unified model.
We combine the features in two levels. Figure 1 shows a high
level block diagram of our LP system. At the lower level, we
learn a local model for similarity of nodes across edges (and
non-edges). At the higher level, a support vector machine
combines the local signal with non-local signals suitably
tuned into feature values: the output of co-clustering [11]
capturing community level signal, and various global graph
based signals, e.g. Katz score [21].

To the best of our knowledge, this is the first LP system
which uses a two-level learning framework. Another salient
feature of our system is the local dissimilarity model. We
designed it after recognizing that node features have to be
interpreted in the context of the local network to determine
the similarity between a pair of nodes. For example, “ro-
mantic” movies may be closely tied to actors who work in
them, while the director may be more important for “sci-
fi” movies. The computation of node similarity is posed
as a problem of learning weights of a locally constrained
linear programming formulation at the lower level. We
show that this local learning leads to improved performance
on real life datasets. A third important feature is our use of
community-level link density signals to further inform our
LP algorithm.

1.3 Evaluation overview

We perform exhaustive experimentation with seven pub-
lic datasets (NetFlix, MovieLens, CiteSeer, Cora, WebKb,
Conflict and Protein-network). When comparing against the
state of the art benchmark techniques (SRW, AA, CRW)

using mean average precision (MAP), we see that the pro-
posed method (LCG) and its precursor, CCLL, outperform
the existing methods by a large margin. This, together with
our detailed feature ablation studies, suggest that features
at multiple granularities are responsible for the boost in
accuracy. Moreover, in-depth exploration using feature ab-
lation studies further confirm the complementarity of these
features.

For several of these co-occurrence (say, movie-movie)
networks we also have the data of the underlying bipar-
tite (user-movie) network. We test the performance of the
algorithms based upon the extent to which they can predict
the links of a user in the bipartite network, which can be
used in a recommendation application. Interestingly, the
performance ranks of existing algorithms change under the
new condition, however, LCG still performs best.

1.4 Contributions and roadmap

Section 2 describes related work. Section 3 defines the LP
problem and describes the proposed learning framework.
We first propose a local model from similarity between
neighboring nodes. We demonstrate that such a local model
captures the feature importance better than any global
weight-based state-of-the-art counterpart. Second, we real-
ize that community structure inherent in social networks can
be exploited as a signal. Consequently, we turn co-clustering
signals into suitable surprise values. Third, we combine
these signals along with two local-link based signals and
another global signal via a SVM to develop the improved
LP algorithm. In Section 4 we describe various evaluation
methodologies, including application-specific evaluation. In
Section 5 we describe experimental results and present
the evaluation of the proposed methods vis-a-vis existing
methods. Through detailed analysis of each feature and
extensive feature ablation study, we show that the four types
of features: node, local, community and global are com-
plementary and help in achieving significant improvement
over state-of-the-art methodology. In section 6, we conclude
with references. A preliminary version of parts of the work
described here was reported in [10].

2 RELATED WORK

LP has been studied in different guises for many years, and
formalized, e.g., by Liben-Nowell and Kleinberg [26]. Lu
and Zhou [31] have written a comprehensive survey. Lu
et al. [30] attempts to address the fundamental question of
predictability of links using structural consistency.

2.1 Local similarity

If each node u is associated with a feature vector θu,
these can be used to define edge feature vectors f(u, v) =
f(θu, θv), which can then be involved in an edge pre-
diction through logistic regression (i.e., Pr(edge|u, v) =

1
1+e−ν·f(u,v)

), or a SVM (predict an edge if ν · f(u, v) > 0).
Obviously, this class of models misses existing neighbor-
hood information.

To decide if nodes u and v may get linked, one strong
signal is the number of common neighbors they already
share. Adamic and Adar (AA) [1] refined this by a weighted

1041-4347 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2016.2553665, IEEE
Transactions on Knowledge and Data Engineering

3

counting: common neighbors who have many other neigh-
bors are dialed down in importance:

simAA
i,j =

∑
k∈Γ(i)∩Γ(j)

1

log d(k)
, (1)

where d(k) is the degree of common neighbor k.
The resource allocation (RA) predictor [46] is a slight

variation which replaces log d(k) with d(k) in (1). RA pun-
ishes the high-degree common neighbors more heavily than
AA. Among ten local similarity measures, Lu and Zhou
found [31, Table 1, page 9] RA to be the most competitive,
and AA was close.

2.2 Random walks and conductance

AA, RA, etc. are specific examples of three general principles
that determine large graph proximity between nodes u and
v: (a). Short path(s) from u to v. (b). Many parallel paths
from u to v. (c). Few distractions (high degree nodes) on
the path(s). Elegant formal definitions of proximity, that
capture all of the above, can be defined by modeling the
graph (V,E) (|V | = N, |E| = M) as a resistive network
and measuring effective conductance, or equivalently [12],
modeling random walks [24], [36], [35] on the graph and
measuring properties of the walk.

Many link predictors are based on such proximity esti-
mates. The earliest, from 1953 [21] is Katz score (see section
3.6). Lu and Zhou [31] describe several other related vari-
ants. In their experiments, the best-performing definitions
were local [36] and cumulative (called “superposed” by Lu
and Zhou) random walks [28] (LRW and CRW), described
next.

Suppose qu is the steady state visit probability of node
u (degree divided by twice the number of edges in case of
undirected graphs). Let πu(0) be the impulse distribution
at u, i.e., πu(0)[u] = 1 and πu(0)[v] = 0 for v 6= u. Define
φu(t+ 1) = C>πu(t), where C is the N ×N row-stochastic
edge conductance (or transition probability) matrix. Then

simLRW
uv (t) = quπu(t)[v] + qvπv(t)[u]. (2)

For large t, the two rhs terms become equal, and LRW
similarity is simply twice the “flow” of random surfers on
the edge {u, v}. Lu and Zhou claimed [31, Table 3, page
16] that LRW is competitive, but the following cumulative
random walk (CRW) is sometimes more accurate.

simCRW
u,v (t) =

t∑
τ=1

simLRW
u,v (τ). (3)

Unlike Katz score,CRW does not converge with increasing
t, so t is chosen by validation against held-out data.

Many other variants of Katz score for measuring sim-
ilarity between vertices have been proposed. Transferring
similarity [34], is a decayed sum of weighted-distances
between nodes. Here the distance is a correlation measure
between the ratings of two nodes. Leicht-Holme-Newmann
similarity [25] assigns high similarity between two nodes
if their neighbors are similar. Yet another the measure is
the matrix forest index [7] which uses laplacian matrix
instead of adjacency matrix. Average commute time was
proposed by Fouss et al.[14] as a measure of vertex similarity

and shows a connection with graph laplacian which gives
interpretability and helps easy computation of the similarity
measure. All these measures yield similar performances as
Katz measure [21], for link prediction.

Although some of these approaches may feel ad-hoc,
they work well in practice; Sarkar et al. [33] have given
theoretical justification as to why this may be the case.

Recently, Gong et al. [15] have proposed a framework
called Social Attribute Network, where node attributes are
considered, and extend the existing random walk based
algorithms to this framework. However, they do not learn
local functions of node attributes. Instead they use fixed
rules to derive networks using node attributes.

2.3 Supervised random walk (SRW)

One of the first approaches to blend node features with
graph structure is supervised and discriminative [3], and
based on personalized PageRank [19]. Recall that f(u, v) is
an edge feature vector. The raw edge weight is defined as
a(u, v) = a(w · f(u, v)) for a suitable monotone function
a(·) > 0. The probability of a random surfer walking from
u to v is set to

Pr(u→ v)
def
= C(u→ v) = C[v, u] =

a(u, v)∑
v′ a(u, v′)

.

where C ∈ RN×N is called the edge conductance matrix. If we
are trying to predict out-neighbors of source node s, we set
up a teleport vector rs defined as rs[u] = 1 if u = s and
0 otherwise, then find the personalized PageRank vector
PPVs, defined by the recurrence

PPVs = αC PPVs +(1− α)rs.

During training, for source node s, we are given some actual
neighbors g and non-neighbors b, and we want to fit w so
that PPVs[g] > PPVs[b].

SRW is elegant in how it fits together edge features
with visible graph structure, but the latter is exploited in
much the same way as Katz or LRW. Specifically, it does
not receive as input regional graph community information.
Thus, SRW and our proposal exploit different sources of
information. Unifying SRW with our proposal is left for
future work.

2.4 Matrix factorization

Another approach is to formulate the problem of link predic-
tion as a regularized loss minimization problem [32], where
the loss comprises of 3 parts: Latent node features (ui), node
features (xi), and link features (zij), given in the first 3 terms
in the final problem:

min
U,Λ,V,w,b

1

O
∑n

i=1,j∈O
+

k∈O−
L(uTi Λ(uj − uk) + xTi V xj + wT zij)

+(bias+regularizer terms) (4)

Here O− and O+ are sets of positive and negative edges
ending with i. Λ captures the asymmetry in the influence
between ui and uj . This problem is not convex, but can be
solved using SGD. The main drawback of this model is its
inability to utilize the node features xi, since it tries to learn
a global V .

1041-4347 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2016.2553665, IEEE
Transactions on Knowledge and Data Engineering

4

Also, recently, Ermis et al. [13] have formulated link pre-
diction as a missing data completion problem from multiple
heterogeneous sources, and came up with a generalized
coupled tensor factorization approach. While they do not
use a supervised learning framework, it will be interesting
to explore use of signals from this approach in a learning
framework as a future work.

2.5 Probabilistic generative models
Stochastic block model (SBM): One of the two recent ap-
proaches that blend node features with linkage information
is by Ho et al., although it is pitched not as a link predictor,
but as an algorithm to cluster hyperlinked documents into
a Wikipedia-like hierarchy. Documents directly correspond
to social network nodes with local features. The algorithm
seeks to cluster similar documents into the same or nearby
topic nodes, and reward topic trees with dense linkages
between documents belonging to small topic subtrees rather
than span across far-away topic nodes. The model asso-
ciates a parameter φ(t) ∈ (0, 1) with each topic node t.
If documents u, v are attached to topic nodes t(u), t(v),
then the probability of a link between u, v is estimated as
φ(LCA(t(u), t(v))), where LCA is least common ancestor.
These probabilities can then be used to rank proposed
links. Guimera et al. [16] describe an interesting application
of SBMs in detecting both missing and spurious links in
experimentally generated biological networks.
Community detection from Node attributes and Links
(CESNA): The other recent approach, CESNA [43], gives
a joint generative model for node attributes and commu-
nity memberships which in turn is logistically combined to
give edge probability. While this model elegantly combines
graph structure with node attributes, we have observed that
generatively modeling all node attributes using community
signals results in unintended noise in the estimated param-
eters.

2.6 Co-clustering
Clustering one dimension of a dyadic relation (represented
as a binary matrix A, say) is synergistic with clustering
the other. For example, similar documents share similar
terms, and vice versa. Dhillon et al. [11] proposed the
first information-theoretic approach to group the rows and
columns of A into separate row and column groups (also
called blocks, assuming rows and columns of A have been
suitably permuted to make groups occupy contiguous rows
and columns) so as to best compress A using one link
density parameter per (row group, column group) pair. As
we shall see, co-clustering and the group link densities can
provide information of tremendous value to link prediction
algorithms, of a form not available to AA, RA, LRW or
CRW. However, the estimated block density is the result
of a global optimization, and cannot directly predict one
link. That requires combining the block density prior with
local information (reviewed above). That is the subject of
Section 3.

3 PROPOSED FRAMEWORK: LCG
We have reviewed in Section 2 several LP approaches.
Some (AA, RA, CRW) involve no learning, others [17]

propose generative probabilistic models that best “explain”
the current graph snapshot (and then the model parameters
of the “explanation” can be used to predict future links,
although they did not study this application). In recent
years, direct prediction of hidden variables through condi-
tional probability [23] or discriminative [37] models have
proved generally superior to modeling the joint distribution
of observed and hidden variables [39]. As we shall see in
Section 5, this is confirmed even among our comparisons of
prior work, where supervised random walk [3] is superior to
unsupervised approaches. However, before explaining our
scheme, we clearly define the LP problem. For clarity we
give the frequently used list of variables in Table 1 with
their explanations.

Variables Explanation
f(u, v) Feature map vector for the node-pair (u, v).
∆w(u, v) Reference Triangulated dissimilarity (LL)

between (u, v).
δuv w∗

uv · |θu − θv|. Actual dissimilarity between
(u, v).

Q Set of query nodes.
G(q) Good nodes (neighbors) for query q ∈ Q.
B(q) Bad nodes (non-neighbors) for query q ∈ Q.
σ Fraction of neighbors (non-neighbors) sam-

pled to train the discriminative model.

TABLE 1: List of variables with their explanations.

3.1 Problem definition

We are given a snapshot of a social network, represented
as a graph (V,E) with |V | = N and |E| = M . Let u ∈ V
be a node (say representing a person). Edges may represent
“friendship”, as in Facebook. Depending on the application
or algorithm, the graph may be directed or undirected. The
goal of LP is to recommend new friends to u, specifically, to
rank all other nodes v ∈ V \ u in order of likely friendship
preference for u. One ranking device is to associate a score
with each v, and sort them by decreasing score. LP algo-
rithms vary in how they assign this score. We can also think
about LP as associating a binary hidden variable with the
potential edge (u, v), then estimating the probability that
this variable has value 1 (or true), based on observations
about the currently revealed graph. The LP algorithm is
considered high quality if the user accepts many proposed
friends near the top of the ranked list.

3.2 Overview of two-level discriminative framework

LP can also be regarded as a classification problem: given
a pair of nodes u, v, we have two class labels (“link” vs.
“no link”) and the task is to predict the correct label. To
estimate a confidence in the (non) existence of a link, we
aggregate several kinds of input signals to feed into a two-
level discriminative model.

In the first level (section 3.3), we propose a local learning
process to determine effective similarity between two given
nodes. Unlike AA and other node-pair signals, our new
approach incorporates the fact that propensity of linkage
is not just a function of node similarity; it changes with
neighborhood.

1041-4347 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2016.2553665, IEEE
Transactions on Knowledge and Data Engineering

5

In the second level (section 3.7), the local learning
score is combined with other complementary signals (e.g.
local-links, community and global scores) to learn the final
discriminative link prediction model. In this upper level,
we use AA, PA as local-link candidates and Katz mea-
sure (Eq. 12) to incorporate the global signals. Apart from
these three signals, we harness the output of a co-clustering
of the graph’s adjacency matrix to derive yet more features.
To the best of our knowledge, co-clustering has never been
used in this manner for LP. Figure 1 gives an overview of
the two-level learner.

For each proposed node pair u, v, these signals will be
packed as features into a feature vector f(u, v) ∈ Rd for
some suitable number of features d. We estimate a global
model ν ∈ Rd, such that the score of existence of edge (u, v)
is directly related to ν ·f(u, v). f(u, v) will consist of several
blocks or sub-vectors, each with one or more elements.
• f(u, v)[LL] is the block derived from local similarity

learning (Section 3.3).
• f(u, v)[LE] is the block derived from local edge scores

and graph structure. We use the Adamic-Adar (AA)
score (1), preferential-attachment (PA) score described
in equation 11 below, or both.

• f(u, v)[CC] is the block derived from co-clustering (Sec-
tion 3.5).

• f(u, v)[GG] is the block derived from global graph
properties. We use the Katz measure defined in equa-
tion 12.

As we shall demonstrate in Section 5, these signals
exploit different and complementary properties of the net-
work. If y(u, v) ∈ {0, 1} is the observed status of a training
edge, we can find the weights (ν) using a SVM and its pos-
sible variations. The details will be discussed in Section 3.7.

To exploit possible interaction between features, we can
construct suitable kernels [5]. Given that we have very
few features, a quadratic (polynomial) kernel can be imple-
mented by explicitly including all quadratic terms. That is,
we construct a new feature vector whose elements are
• f(u, v)[i] for all indices i, and
• f(u, v)[i] f(u, v)[j] (ordinary scalar product) for all in-

dex pairs i, j.
We can also choose an arbitrary informative subset of these.
We will now describe the different blocks of features.

3.3 Learning local similarity
An absolute notion of similarity between u and v, based on
node features θu, θv , is not strongly predictive of linkage; it
also depends on the typical distribution of similarity values
in the neighborhood [9]. Also, the presence or absence of
edge (u, v) is rarely determined by nodes far from u and
v. Keeping these in mind, the first step of the algorithm
learns the typical (dis)similarity between u and v and their
common neighbors. We term this the reference dissimilarity.
We then use this to predict the chance of link (u, v) arriving.

Let Γ(u) be the (immediate) neighbors of u. We will
model the edge dissimilarity between u and v as

∆w(u, v) = wuv · |θu − θv|, (5)

where θu is a node feature vector associated with u, and
| · · · | denotes the element-wise absolute value of a vector, e.g.,

|(−2, 3)| = (2, 3), although other general combinations of θu
and θv are also possible [3]. wuv is the weight vector fitted
locally for u, v. (Contrast this with the global ν above, and
the final proposal in SRW [3] that fits a single model over all
node pairs.)

3.3.1 Finding wuv and reference dissimilarity

Throughout this work, and consistent with much LP work,
we assume that edges are associative or unipolar, i.e., there
are no “dislike” or antagonistic links. Similar to AA and
friends, when discussing node pair u, v, we restrict our
discussion to the vicinity N = Γ(u) ∪ Γ(v).

For A ⊆ V \ u, A 6= ∅, we extend definition (5) to the set
dissimilarity

∆w(u,A) =
1

|A|
∑
v∈A

∆w(u, v). (6)

We define ∆w(u,∅) = 0. ∆w(u,A) is the average dissim-
ilarity between u and A. Note that ∆w(u, {v}) is simply
∆w(u, v). Suppose we have to predict if the edge (u, v)
exists, given the training neighborhoods of u and v, called
Γ(u) and Γ(v); i.e., the subgraph we get to observe has
nodes {u, v} ∪ Γ(u) ∪ Γ(v) and already-materialized edges
between them. Node u has edges to nodes in Γ(u)∩Γ(v), but
not to nodes in Γ(v)\Γ(u). We therefore assert the constraint
that the average dissimilarity of u to Γ(u) ∩ Γ(v) must be
considerably smaller than that of u to Γ(v) \ Γ(u):

∆w(u,Γ(v) \ Γ(u)) ≥ β∆w(u,Γ(u) ∩ Γ(v))

and, by symmetry,

∆w(v,Γ(u) \ Γ(v)) ≥ β∆w(v,Γ(u) ∩ Γ(v))

Similarly, while edges from u to Γ(v) \ Γ(u) did not materi-
alize, edges from u to Γ(u) did. This leads to the constraints:

∆w(v,Γ(v) \ Γ(u)) ≤ α∆w(v,Γ(u) ∩ Γ(v))

∆w(u,Γ(u) \ Γ(v)) ≤ α∆w(u,Γ(u) ∩ Γ(v))

The key idea here is that, if there is an edge (u, v), we
want to choose wu,v such that ∆w(u, v) is low, relative to
node pairs that are not neighbors. Conversely, if (u, v) is
not an edge, we want the dissimilarity to be large relative to
nearby node pairs that are neighbors. We codify this through
the following four constraints:

∆w(v,Γ(v) \ Γ(u)) ≤ α∆w(v,Γ(u) ∩ Γ(v))

∆w(u,Γ(u) \ Γ(v)) ≤ α∆w(u,Γ(u) ∩ Γ(v)) (7)
∆w(u,Γ(v) \ Γ(u)) ≥ β∆w(u,Γ(u) ∩ Γ(v))

∆w(v,Γ(u) \ Γ(v)) ≥ β∆w(v,Γ(u) ∩ Γ(v))

Figure 2 illustrates the constraints. Here α, β are suitable
multiplicative margin parameters. Smaller (larger) value of
α (β) allows a lower (higher) dissimilarity between the con-
nected (disconnected) nodes. Here, we have experimentally
selected α and β.

Subject to the above constraints (7), we wish to choose
w so as to minimize ∆w(u, v). This is a standard linear pro-
gram, which, given the typically modest size of Γ(u)∪Γ(v),
runs quite fast.

1041-4347 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2016.2553665, IEEE
Transactions on Knowledge and Data Engineering

6

Figure 2: Local dissimilarity constraints. To find the score
for pair (u, v), ∆w(u, {5} ∪ {6}) + ∆w(v, {5} ∪ {6}) [panel
(b)] is estimated under the imposition of the dissimi-
larity functions of existing edges: ∆w(u, {1} ∪ {2}) and
∆w(v, {3}) are low [panel (c)] and those of non-existing
edges ∆w(v, {1}∪{2}) and ∆w(u, {3}) [panel (d)] are high.

3.3.2 Computation of LL features
The linear program outputs w∗uv , from which we can com-
pute

δuv = w∗uv · |θu − θv|. (8)

But is δuv larger than “expected”, or smaller? Plugging in
the raw value of δuv into our outer classifier may make it
difficult to learn a consistent model ν globally across the
graph. Therefore, we also compute the triangulated dissimi-
larity between u and v, using common neighbors i, as

∆̄w∗(u, v) =
∑

i∈Γ(u)∩Γ(v)

∆w∗(i, u) + ∆w∗(i, v)

|Γ(u) ∩ Γ(v)| (9)

= ∆w∗(u,Γ(u) ∩ Γ(v)) + ∆w∗(v,Γ(u) ∩ Γ(v)).

Finally, we return

f(u, v)[LL] = ∆̄w∗(u, v)− δuv. (10)

If f(u, v)[LL] is large and positive, it expresses confidence
that link (u, v) will appear; if it is large and negative, it
expresses confidence that it will not. Around zero, the LL
feature is non-committal; other features may then come to
the rescue.

3.4 Local link scores

As mentioned, we use the Adamic-Adar (AA) (1) and
preferential-attachment (PA) scores as local link scores.
The preferential attachment score is motivated from the
Barabasi-Albert preferential attachment model [4], which
states that the probability of connection to a node k is
proportional to its degree d(k). The score for an edge (u, v)
between nodes u and v, is given by the product of degrees:

simPA(u, v) = d(u)d(v), (11)

3.5 Co-clustering and “surprise”

Given a dyadic relation represented as a matrix, co-clus-
tering [11] partitions rows and columns into row groups and
column groups. We can think of the rows and columns of the

input matrix being reordered so that groups are contiguous.
The intersection of a row group and column group is called
a block. The goal of co-clustering is to choose groups so that
the blocks are homogeneous, i.e., edges within a block appear
uniformly dense, with no finer structure (stripes) based on
rows or columns. Co-clustering uses a data compression
formalism to determine the optimal grouping.

Consider a query node pair u, v where we are trying
to predict whether edge (u, v) exists. E.g., u may be a
person, v may be a movie, and we want to predict if u
will enjoy watching v. In this person-likes-movie matrix, as
a specific example, there may be row groups representing
clusters of people that like most movies, and there may
be column groups representing clusters of classic movies
that most people like. In general, the block in which the
matrix element [u, v] is embedded, and in particular, its
edge density ρ(u, v), gives a strong prior belief about the
existence (or otherwise) of edge (u, v), and could be the
feature f(u, v)[CC] in and of itself.

Although block density ρ(u, v) ∈ [0, 1], the penalty for
deviating from it in the ultimate link decision is not symmet-
ric (thanks again to graph sparsity). So a better formalism to
capture a co-clustering based feature is the “surprise value”
of an edge decision for node pair u, v. As an extreme case,
if a non-edge (value 0) is present in a co-cluster block where
all remaining elements are 1 (edges), it causes large surprise.
The same is the case in the opposite direction.

There are various ways of expressing this quantitatively.
One way of expressing it is that if an edge (u, v) is claimed
to exist, and belongs to a block with an edge density ρ(u, v),
the surprise is inversely related to ρ(u, v); in information
theoretic terms, the surprise is − log ρ(u, v) bits. (So if
ρ(u, v) → 0, yet the edge exists, the surprise goes to
+∞.) Similarly, if the edge does not exist, the surprise is
− log(1− ρ(u, v)) bits.

3.6 Global graph property

Given a graph G = (V,E) and two vertices u, v ∈ V , one
of the common ways of measuring similarity between u
and v is using global similarity indices [31]. For example,
one can define the similarity to be the average number of
steps taken by a random walker starting from u to reach v
(average commute time), or the steady state probability of a
random walk with restarts from vertex u, reaches vertex v,
etc. In this paper we use the oldest global measure of vertex
similarity called Katz score [21], which was also one of the
best performers in the comparison [31].

Let A be the adjacency matrix of graph G = (V,E), and
u, v be two vertices. The Katz similarity score between u and
v is given by:

simKatz(u, v) = βAuv + β2(A2)uv + · · · = (I− βA)−1 − I,
(12)

where 0 ≤ β < 1/λ1, is a user provided constant, and
λ1 is the largest eigenvalue of A. This score is effectively
a decayed count of the number of paths between u and v,
where the decay factor βk depends on the length of the path
k. simKatz(u, v) is used as a feature for the potential edge
(u, v) in the global model described below.

1041-4347 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2016.2553665, IEEE
Transactions on Knowledge and Data Engineering

7

3.7 Discriminative learner for global model

In order to obtain the best LP accuracy, the above signals
need to be combined suitably. For each edge, there are two
classes (present/absent). One possibility is to label these
+1,−1, and fit the predictor ŷuv = sign(ν · f(u, v)).

3.7.1 Loss function
ν can be learned to minimize various loss functions. The
simplest is 0/1 edge misclassification. However, as we have
discussed in Section 4.1, for ranking losses, it is better
to optimize the AUC, which is closely related [20] to the
pairwise loss. Joachims [20] offers to directly optimize for
several ranking objectives; we choose area under the ROC
curve (AUC), although we evaluate the resulting predictions
using MAP. During inference, given q, we find ν · f(q, v) for
all v 6= q and sort them by decreasing score. Moreover, by
encoding the loss as MAP, we obtain qualitatively similar
performance.

3.7.2 Feature map
We now finish up the design of f(u, v)[LE], f(u, v)[LL],
f(u, v)[CC] and f(u, v)[GG]. f(u, v)[LE] is a vector of
two components: f(u, v)[AA] given by the single scalar (1)
and f(u, v)[PA] given by the scalar (11). f(u, v)[LL] and
f(u, v)[GG] are single scalars as defined in (10) and (12),
respectively. f(u, v)[CC] has two scalar elements, one for
each surprise value:
• − log ρ(u, v) for the “link exists” case, and
• − log(1− ρ(u, v)) for the “edge does not exist” case.

Accordingly, ν will have two model weights for the CC
block, and these will be used to balance the surprise values
from training data. The soundness of the above scheme
follows from structured learning feature map conventions
[20], [37]. Thus, f(u, v) has a total of six elements.

4 EVALUATION PROTOCOL

As described informally in Section 3.1, a LP algorithm
applied to a graph snapshot is successful to the extent that in
future, users accept high-ranking proposed links. In practice,
this abstract view quickly gets murky, especially for graphs
without edge creation timestamps. In this section we discuss
the important issues guiding our evaluation protocol and
measurements.

4.1 Labeling vs. ranking accuracy

Regarding the LP algorithm’s output as a binary prediction
(edge present/absent) for each node pair, comparing with
the true state of the edge, and counting up the fraction
of correct decisions, is a bad idea. This is because most
potential edges are absent (label skew). The situation is
similar to ranking in information retrieval (IR) [27], where,
for each query, there are many fewer relevant documents
than irrelevant ones. In LP, a separate ranking is produced
for each node q from a set of nodes Q, which are therefore
called query nodes.

Fix a q and consider the ranking of the other N − 1
nodes. Some of these are indeed neighbors (or will end up
becoming neighbors). Henceforth, we will call q’s neighbors

as good nodes G(q) and non-neighbors as bad nodes B(q).
Ideally, each good node should rank ahead of all bad nodes.
Because the LP algorithm is generally imperfect, there will
be exceptions. The area under the ROC curve (AUC) is
widely used in data mining as a accuracy measure some-
what immune to class imbalance. It is closely related to the
fraction of the |G(q)| |B(q)| good-bad pairs that are in the
correct order in LP’s ranking. However, for the same reasons
as in IR ranking [27], AUC tends to be large and undiscern-
ing for almost any reasonable LP algorithm. Therefore, we
adapt mean average precision (MAP), a standard ranking
performance measure.

At each node, given a score from the LP algorithm on
all other nodes as potential neighbors, and the “secret”
knowledge of who is or isn’t a neighbor, we compute the
following performance metrics.

4.1.1 Precision and recall
These are defined as

Precision(k) =
1

|Q|
∑
q∈Q

Pq(k) (13)

and Recall(k) =
1

|Q|Σq∈QRq(k), (14)

where |Q| is the number of queries, Pq(k) is Precision@k for
query q, and Rq(k) is Recall@k for query q. So Precision(k)
is the average of all Precision@k values over the set of
queries, and likewise with Recall(k).

4.1.2 Mean average precision (MAP)
First we define at query node q the quantity

AvP (q) =
1

L

N−1∑
k=1

Pq(k) rq(k) (15)

at each node, where N−1 is the number of nodes excluding
the query node itself, L is the number of retrieved relevant
items and ri(k) is an indicator taking value 1 if the item at
rank k is a relevant item (actual neighbor) or zero otherwise
(non-neighbor). Averaging further over query nodes, we
obtain MAP = 1

|Q|
∑
q AvP (q).

In the remainder of this section, we explore these impor-
tant issues:
• How should Q be sampled from V ? A related question

is, how to present precision, recall, MAP, etc., with
Q suitably disaggregated to understand how different
LP algorithms behave on different nodes q ∈ Q? (See
Section 4.2.)

• Many graphs do not have link timestamps. For these,
once Q is set, how should we sample edges incident on
Q for training and testing? (See Section 4.3.)

4.2 Query node sampling protocol

In principle, the ranking prowess of an LP algorithm should
be evaluated at every node. E.g., Facebook may recommend
friends to all users, and there is a potential satisfaction
and payoff from every user. In practice, such exhaustive
evaluation is intractable. Therefore, nodes are sampled;
usually |Q| � N . On what basis should query nodes be

1041-4347 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2016.2553665, IEEE
Transactions on Knowledge and Data Engineering

8

sampled? In the absence of the social network counterpart
to a commercial search engine’s query log, there is no single
or simple answer to this question. LP algorithms often target
predicting links that close triangles if/when they appear.
92% of all edges created on Facebook Iceland close a path of
length two, i.e., a triangle [3]. These nodes are sampled as
query nodes Q.

Besides providing comparison of overall performance
averaged over query nodes, in order to gain insight into
the dynamics of different LP algorithms, we need to probe
deeper into the structure of the network and check the
strength/weakness of the algorithm vis-a-vis various struc-
tures. In our work, we bucket the selected query nodes
based on

• the number of neighbors,
• the number of triangles on which they are incident.

4.3 Edge sampling protocol

If edges in the input graph have creation timestamps, we can
present a snapshot to the LP algorithm and simulate further
passage of time to accrue its rewards. Even this happier
situation raises many troublesome questions, such as when
the snapshot is taken, the horizon for collecting rewards,
etc., apart from (the composition of) the query node sample.

To complicate matters further, many popular data sets
(some used in Section 5) do not have edge timestamps.
One extreme way to dodge this problem is the leave-one-
out protocol: remove exactly one edge at a time, train the
LP algorithm, and make it score that edge. But this is
prohibitively expensive.

Rather than directly sample edges, we first sample query
nodes Q as mentioned in Section 4.2. This narrows our
attention to |Q| · (N − 1) potential edge slots incident on
query nodes. Fix query q. In the fully-disclosed graph, V \ q
is partitioned into “good” neighbors G(q) and “bad” non-
neighbors B(q). We set a train sampling fraction σ ∈ (0, 1).
We sample dσ|G(q)|e good and dσ|B(q)|e bad nodes and
present the resulting training graph to the LP algorithm.
(σ is typically 0.8 to 0.9, to avoid modifying the density
and connectivity of the graph drastically and misleading LP
algorithms.)

The good and bad training samples are now used to
build our models as described in Section 3. The training
graph, with the testing good neighbors removed, is used for
co-clustering. This prevents information leakage from the
training set. The remaining good neighbors and bad non-
neighbors are used for testing. In case |G(q)| = dσ|G(q)|e
or |B(q)| = dσ|B(q)|e, we discard q, introducing a small
bias after our sampling of Q. Effectively this is a “sufficient
degree” bias, which is also found in prior art [3, Section 4:
K,∆].

5 EXPERIMENTS

We compare LCG against several strong baselines such
as Adamic-Adar (AA) [1], Resource Allocation (RA) [31],
Cumulative Random Walk (CRW) [31], Supervised Random
Walk (SRW)[3], Matrix Factorization approach by Menon
and Elkan (ME) [32], CESNA [43] and Stochastic Block

Dataset N E n(a) davg

NetFlix 17770 20466 64 2.3034
Movielens 3952 5669 18 2.8689
CiteSeer 3312 4732 3703 2.7391

Cora 2708 5429 1433 3.89
WebKb 877 1608 1703 2.45
Conflict 230 320 3 2.5
Protein 2617 23710 76 9.1

TABLE 2: Summary of the datasets, where N is the number
of items, E is the total number of links, n(a) is the number
of features and davg is the average degree.

Model (SBM) [17]. RA computes the score in a similar man-
ner like AA, and therefore gives almost same performance.
Therefore, we omit RA and only present those for AA. Apart
from using LL as features to LCG and CCLL we run CCLL
[10] and LL [9] independently as baselines.

5.1 Dataset description
We used the following popular public data sets, also sum-
marized in Table 2.
• Netflix [18]: The Netflix dataset consists of 2649429 users
and 17770 movies. Each user has rated at least one movie.
Each movie has 64 features obtained by SVD from many fac-
tors. From the raw data we constructed a “social network”
of movies where two movies have an edge if they have at
least a certain number of common viewers. By choosing the
minimum number of common viewers to be 20, we obtain a
network with 17770 nodes and 20466 edges.
• Movielens [42]: It has 6040 users and 3952 movies. Each
user has rated at least one movie. Each movie has features
which are a subset of a set of 18 nominal attributes (e.g.
animation, drama etc.). From the raw data we constructed
a “social network” between movies where two movies have
an edge if they have at least a certain number of common
viewers. By choosing the minimum number of common
viewers to be 100, we obtain a network with 3952 nodes
and 5669 edges.
• CiteSeer [41]: The CiteSeer dataset consists of 3312 scien-
tific publications and the citation network consists of 4732
links. Each publication is tagged with a set of keywords.
Total number of keywords is 3703.
• Cora [41]: The Cora dataset consists of 2708 scientific
publications and the citation network consists of 5429 links.
Here the total number of keywords is 1433.
• WebKb [41]: The WebKb dataset consists of 877 scientific
publications and the citation network consists of 1608 links.
Here the total number of keywords is 1703.
• Conflict [32]: This is a network of military disputes be-
tween countries, denoted Conflict. This graph has an edge
between two countries if they have a conflict. Each node has
3 features, comprising of the country’s population, GDP and
polity.
• Protein [38], [32]: This network is a protein-protein inter-
action graph with 76 dimensional feature vector.

5.2 Performance comparison
Table 3 gives a comparative analysis of MAP (Mean Aver-
age Precision) values for all datasets and algorithms, and

1041-4347 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2016.2553665, IEEE
Transactions on Knowledge and Data Engineering

9

Dataset LCG CCLL LL ME AA CRW SBM SRW CESNA
Netflix 0.6776 (24.86%) 0.6017 (10.85%) 0.4750 (-12.49%) 0.3431 0.5381 0.5428 0.1268 0.4564 0.4962
Movielens 0.8985 (10.73%) 0.8747 (7.80%) 0.8133 (0.23%) 0.3681 0.5341 0.5784 0.20 0.8114 0.5020
CiteSeer 0.8866 (33.34%) 0.7719 (16.09%) 0.7393 (11.19%) 0.2138 0.6649 0.5309 0.1452 0.6281 0.6445
Cora 0.8046 (28.24%) 0.7234 (15.30%) 0.6805 (8.46%) 0.2022 0.6135 0.4726 0.0583 0.6274 0.4772
WebKb 0.9262 (38.38%) 0.8583 (28.23%) 0.7505 (12.13%) 0.5468 0.6035 0.5736 0.3360 0.6693 0.3851
Conflict 0.8296 (13.02%) 0.7858 (7.06%) 0.7652 (4.25%) 0.3345 0.6149 0.7093 0.1123 0.7340 0.3976
Protein 0.8968 (15.14%) 0.8740 (12.21%) 0.8213 (5.44%) 0.1231 0.6424 0.7689 0.1954 0.7789 0.5129

TABLE 3: Mean average precision of proposed and baseline algorithms on all datasets when 90% of the links are used for
training. Numbers in brackets denote percentage improvement over nearest baseline (shown in italics).

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall →

P
re

c
is

io
n

 →

Netflix(90%)

 LCG

CCLL

LL

AA

CRW

SRW

CESNA

0 0.25 0.5 0.75 1
Recall →

Movielens(90%)

0.6 0.7 0.8 0.9 1
Recall →

Citeseer(90%)

0.5 0.625 0.75 0.875 1
Recall →

Cora(90%)

0.7 0.775 0.85 0.925 1
Recall →

WebKb(90%)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall →

P
re

c
is

io
n

 →

Netflix(80%)

LCG

CCLL

LL

AA

CRW

SRW

CESNA

0 0.25 0.5 0.75 1
Recall →

Movielens(80%)

0.6 0.7 0.8 0.9 1
Recall →

Citeseer(80%)

0.5 0.625 0.75 0.875 1
Recall →

Cora(80%)

0.7 0.775 0.85 0.925 1
Recall →

WebKb(80%)

Figure 3: Precision vs. recall curves for five data sets and algorithms when 90% of the links are used for training.

Figure 3 gives a more detailed view in terms of precision
vs. recall. We observe that, for all datasets, the overall
performance of LCG is substantially better than all other
methods compared here, including its old variant CCLL[10].
(For lack of space Figure 3 shows average precision-recall
variation for five datasets, we observe qualitatively similar
trends for two more datasets.)

Table 3 shows that performance of the stochastic block
model (SBM) is particularly poor. This was surprising to
us, given SBMs seem ideally suited for use in LP. Closer
scrutiny showed model sparsity as a likely culprit, at least in
case of Ho et al.’s formulation. They derive a tree-structured
hierarchical clustering of the social network nodes, where
the number of hierarchy nodes is much smaller than N , the
number of social network nodes. Their model assigns a score
to an edge (u, v) that depends on the hierarchy paths to
which u and v are assigned. Since the number of hierarchy
nodes is usually much smaller than the number of social
nodes, the scores of neighbors of any node have a lot of ties,
which reduces ranking resolution. Therefore, MAP suffers.
In contrast, the coarse information from co-clustering (CC)
is only a feature into our top-level ranker.

Both AA and CRW show comparable performances.
These methods only depend on link characteristics. AA
depends on the number of triangles a node is part of,
hence missing out the important node or edge feature
information. Regarding CRW, as t goes to ∞, it doesn’t
converge, and there is no consistent global t for best MAP.
SRW, which performs best among the baselines, uses node
and link features (PageRank) but not community based (co-
clustering) signal. Moreover, SRW learns only one global
weight vector, unlike wuv in LL, a signal readily picked
up by CCLL and LCG. We also found the inherent non-
convexity of SRW to produce suboptimal optimizations. LL
performs much better than SRW in all datasets except the
movie recommendation datasets. The poor performance of
LL on movie datasets can be attributed to lack of global
signal.

The performance of ME is surprisingly poorer than AA.
Although ui, xi in Equation 4 are fitted for each node i, the
important coupling model parameters Λ, w, V are globally
shared, which leads to underfitting. A serious drawback of
ME is that, unlike SRW, it does not consider any structural
property (neither local or global). As a result, the perfor-
mance of ME is worse than AA and SRW, since SRW atleast
captures strong global signals (although assign feature-
weights globally) and AA is a reasonably good local signal.
Moreover, even as the regularizer corresponding to V (Eq:
4) is increased to a very high value, we did not observe
a substantial decrease of predictive accuracy, which shows
that V as a single global parameter cannot make as much
profitable use of xi as our local models can.

CESNA performs much better than ME, but still fails to
beat AA in most cases. The broad idea of this predictor is
that if nodes u, v belong to many shared (latent) communi-
ties, the chance of existence of edge (u, v) is higher. More-
over it captures the interaction between network structures
and node attributes. Our scrutiny suggests that generatively
modeling node attributes from latent communities is the
likely culprit behind its poor performance. For example, in
citation networks, phrase “large datasets” may be present
in any paper on databases or data mining or Web search,
which have diverse citation community membership. In our
experience, modeling node attributes requires signals over
and above community memberships in many networks.

We observe that global signals like Katz-measure signif-
icantly boost the performance particularly in citation graph
(almost to 15% in Citeseer). In citation network, it is com-
mon that a paper from one domain cites a paper from other
domain even though they are different in content (features),
area/topic (community) and even in references (local-links).
Such links may be explained by a global signal which
measures the probability of reaching the destination node
from the source node. In case of movie-movie networks,
global signal often captures diversity in movies. For exam-
ple, two highly famous movies that are entirely different

1041-4347 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2016.2553665, IEEE
Transactions on Knowledge and Data Engineering

10

in all aspects can be watched by the same set of users.
Global signals like Katz measure often capture presence of
these links. We note that Netflix is a bigger dataset than
Movielens; so the variability and diversity in its movies is
quite high. Therefore LCG gives relatively higher boost in
performance in Netflix (0.6017→ 0.6776) than in Movielens
(0.8747→0.8985).

A possible explanation of the superior performance of
LCG can be that the underlying predictive modules (LL,
AA, CC, KM) perform well in complementary zones which
LCG can aggregate effectively. In order to probe into this
aspect we make a detailed study of the performance of the
various algorithms with respect to various distribution of
work load (elaborated in Section 5.5).

Dataset TS
(%)

LCG CCLL CRW SRW CESNA

Netflix 80 0.5855 0.5263 0.4493 0.3849 0.4308
90 0.6776 0.6017 0.5428 0.5567 0.4962

Movielens 80 0.8827 0.8672 0.5018 0.7789 0.4641
90 0.8925 0.8740 0.5784 0.8114 0.5020

Citeseer 80 0.8197 0.7000 0.3295 0.5567 0.5629
90 0.8846 0.7719 0.5309 0.6281 0.6445

Cora 80 0.7453 0.6803 0.3400 0.5516 0.3881
90 0.8046 0.7203 0.4726 0.6274 0.4772

WebKb 80 0.8726 0.8309 0.4924 0.3360 0.2887
90 0.9249 0.8583 0.5468 0.5736 0.3851

Conflict 80 0.7908 0.7399 0.6578 0.7108 0.3779
90 0.8296 0.7858 0.7093 0.7340 0.3976

Protein 80 0.8910 0.8521 0.7674 0.7295 0.4682
90 0.8968 0.8740 0.7689 0.7789 0.5129

TABLE 4: Variation of Mean Average Precision with differ-
ent training set sizes.

5.3 Stability to sampling
Among all the discussed methods, LCG, CCLL ME, CESNA
and SRW use machine learning techniques. Hence in order
to train the model, we randomly select a certain fraction
of edges (say TS%) and the same fraction of non-edges
from the network. CRW is an unsupervised algorithm but
since it performs a global random walk, it is affected by the
sampling. The performance deteriorates when many edges
are removed. Table 4 show the variation of performance
with training sets of different sizes. We omit ME due to its
relatively poor performance.

We conducted the experiment with 80% and 90% train-
ing samples. When we decrease the sample size from 90%
to 80%, the performance deteriorates for all methods. But
the deterioration is much smaller in CCLL, LCG compared
to CRW, SRW and CESNA. This is because CCLL, LCG pick
up strong signals from the AA and LL features. AA and LL
work solely on local factors. Deletion of an additional 10%
of edges hardly affects AA or LL score.

When we change training set size from 90% to 80%,
the performance of LCG deteriorates a bit more than CCLL
(with the exception of Citeseer). This is because LCG picks
up a global signal; an additional 10% removal of edges
affects this global (KM) score, which results in significant
performance degradation.

5.4 Importance of various features
To understand the role of different features (local link
structure, non-local effects), we build our SVM model with

various sets of feature and investigate their importance
in various datasets. We report the percentage change of
these metrics upon adding different sorts (non-local/local)
of features. More formally we define

∆F (S) =
MAP(S ∪ F)−MAP(S)

MAP(S)

Here MAP(X) is simply the value of the metric for the
feature set X .

Tables 5 to 7 dissect the various features involved in
LCG. For lack of space we present results for first five
datasets. We observed similar trend for other datasets. While
the model using all five features (LL, CC, KM, PA, AA)
perform the best, removing PA from the set does not affect
the MAP score much. An explanation is provided below.

Non Local Effect (KM): As already mentioned, the im-
provement of LCG over CCLL is due to addition of the non-
local effect- the feature ablation study reiterates that. From
Table 5, we observe that non-local effect provides substantial
performance boost for all datasets. In case of Citeseer and
Cora, the MAP values increase by more than 10%. It is due
to the fact that in a citation network, a paper often refers
to another paper that is at more than 1-hop distance (i.e.
paper which is cited by related papers). So in case of citation
networks, it is often natural that a paper cites another
paper of different community. So the link emergence heavily
depends on the non-local/distant dynamics in the graph.
So Katz measure plays a major role in Link Prediction in
citation graphs.

Effect of Co-Clustering (CC): Table 6 reflects that CC is
a very strong signal for movie datasets. In these datasets,
links between popular movies cannot be explained with
LL or local link structures. Many users watch movies of
thoroughly different dimensions. On the other hand, many
users are more picky i.e. they only watch movies liked by
most of the people. Although LL, global or link structures
are unable to explain these connections, co-clustering picks
up strong signals from such instances and turn into suitable
scores. For Netflix, such signals are very dominant as the no.
of diversified movies is quite high. Therefore LL fares poorly
in Netflix but CC boosts its performance more significantly
than in other datasets.

Effect of Preferential Attachment (PA): The networks in
all the datasets follow power law. Thus it was reasonably
intuitive that PA would be a key factor for link emergence.
However it is surprising from Table 7 that the performance
of PA is very poor. A careful investigation reveals that the
sampling protocol is a likely culprit behind this. As we are
performing uniform sampling, it is highly probable that
the distribution of PA scores in the training and test sets
become different. That is, given a query node q, the test
set contains low degree neighbors while most of the high
degree neighbors are present in the training set. Thus the
SVM model favors PA to high degree neighbors- as a result
it fares poorly in evaluation.

5.5 Workload distribution

In this section, we bucket the query nodes according to
various categories and present some comparative analysis

1041-4347 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2016.2553665, IEEE
Transactions on Knowledge and Data Engineering

11

90% Sampling 80% Sampling
Dataset Netflix Movielens Citeseer Cora WebKb Netflix Movielens Citeseer Cora WebKb
∆KM (LL,CC) 7.1376 5.1043 15.2143 11.4442 7.8394 2.6494 1.6843 26.3476 12.9539 2.6592
∆KM (LL,CC,AA) 9.6440 2.1836 10.8804 10.6436 5.7512 5.8332 1.6951 16.7000 9.0842 4.4891
∆KM (LL,CC,PA,AA) 9.6440 2.1836 10.8804 10.6436 5.7512 5.8196 1.0764 17.7899 9.4420 1.6306

TABLE 5: Effect of Non-Local signal (Katz Measure) in %.

90% Sampling 80% Sampling
Dataset Netflix Movielens Citeseer Cora WebKb Netflix Movielens Citeseer Cora WebKb
∆CC (LL,PA) 21.5095 8.5959 4.3955 2.9195 5.4229 32.4761 6.7105 -2.3594 2.0064 2.7536
∆CC (LL,PA,KM) 23.0013 11.1070 2.8043 1.6041 7.7321 46.0026 9.4305 3.6938 -1.2640 3.3448
∆CC (LL,PA,KM,AA) 12.5021 5.2724 2.0136 0.7387 7.5465 11.5026 4.6225 3.1199 0.6210 2.0108

TABLE 6: Effect of Co-Clustering (CC) in %.

90% Sampling 80% Sampling
Dataset Netflix Movielens Citeseer Cora WebKb Netflix Movielens Citeseer Cora WebKb
∆PA(LL,CC) 3.6762 -1.3135 -4.8770 -1.5916 -2.3583 3.7422 3.2064 -3.1653 -0.2521 3.7426
∆PA(LL,CC,KM) 0.2523 0.4865 0.4413 0.3512 2.1507 0.1363 0.4150 -0.1131 1.1061 0.3722
∆PA(LL,CC,KM,AA) 5.1167 0.0907 0.3428 0.4312 0.5068 5.3155 -0.0445 -0.2700 0.3242 0.8285

TABLE 7: Effect of Preferential Attachment (PA) in %.

between LCG, CCLL and four other best benchmark algo-
rithms on two representative datasets: Netflix from movie
networks, and WebKb from citation networks (Figures 4
and 5). Query nodes are bucketed based on:
• the number of neighbors they have (changes from

sparse to dense), and
• the number of triangles formed.

Netflix is divided into six buckets of roughly equal number
of nodes, while WebKb is divided into four buckets due to
its smaller size.

5.5.1 Workload distribution in movie networks
The workload distribution highlights the nature of each
algorithm. The behavior of the algorithms is similar for the
two workload distributions. It is seen that AA and CRW,
which solely depend on link structure, improve as the graph
becomes more dense (number of neighbors increases) or
becomes more social (number of triangles increases). The
two feature-based algorithms, LL and SRW, perform well in
the sparse zone, and while the improvement in the dense
(more social) zone is observed, it is not as significant as
the two link-based algorithms. Clearly, in these two zones
(sparse and dense), two different classes of algorithms work
well.

LCG CCLL LL AA SRW CRW

3-5 5-12 12-30 30-80 80+0-3

M
A
P

Neighbors

0.2

0.4

0.6

0.8

0

1

0.01-0.15 0.15-2 2-6 6-20 20-50 50+

M
A
P

Triangles (x 10−2)

0.2

0.4

0.6

0.8

0

1

Figure 4: Workload distribution for Netflix dataset.

LCG and CCLL perform well in all the zones by ap-
propriately learning signals in each zone. From Figure 4
we observe that LCG and CCLL perform quite well (sub-
stantially better than LL and AA), at intermediate density.

There are two reasons behind it. Even though the graph is
sparse, in these regions, number of edges and non-edges
are close, which helps both LCG and CCLL to train better.
Second, nodes in these zones are members of community co-
clustering structures with informative block densities and
surprise features. Factoring in the community signal helps
to positively interpret the surprise.

CCLL is found to be faring poorly in very sparse regions
of graphs. This is because there are not enough locality-
based signals available in those sparse zones. Moreover,
number of positive training samples is very low due to the
absence of edges. Conversely, a non-local signal is expected
to be more crucial in a sparse zone than in its dense counter-
part. Since CCLL does not consider non-local effect, it fails
to perform well in sparse regions. However, LCG picks up
necessary non-local effects and performs substantially better
than LL or CCLL in such regions.

Dense vs Social: We see a similar trend when the query
nodes are bucketed based on the number of triangles
formed. However, in the middle zone based on no. of neigh-
bors (Figure 4, left), the network structure based algorithms
e.g. AA or CRW perform worse than LCG and CCLL. This is
not the case for bucketing based on social nature (Figure 4,
right), where AA and CRW perform comparably. The main
advantage of LCG and CCLL come from the fact that they
are able to utilize the node signals for extremely unsocial
nodes effectively.

5.5.2 Workload distribution in citation networks
Figure 5 shows the workload distribution w.r.t both no.
of neighbors and triangles. In contrast to the movie-movie
datasets, WebKb shows almost monotonic decrease in per-
formance for all the algorithms as the graph becomes dense
from sparse. This can be attributed to two factors: relatively
lower spread in degrees which leads to less variation in
algorithms utilizing local and global signals, and relatively
more informative node features, which is evident from
the fact that LL performs better than only structure based
methods e.g. AA or CRW. We note that LCG and CCLL

1041-4347 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2016.2553665, IEEE
Transactions on Knowledge and Data Engineering

12

LCG CCLL LL AA SRW CRW

0-3 3-6 6-10 10+

M
A
P

Neighbors

0.2

0.4

0.6

0.8

0

1

0-3 3-6 6-15 15+

M
A
P

Triangles (x 10−2)

0.2

0.4

0.6

0.8

0

1

Figure 5: Workload distribution for Webkb dataset.

perform best as they use both node and graph structure
information.

A surprising feature of graph structure based algorithms,
e.g. AA or CRW, is that their accuracy decreases as the
network becomes more dense. This can be attributed to
the fact that in citation graphs, papers tends to cite a small
representative set of papers in a similar area. So the existence
of a frequent walk between papers x and y signifies that x
has already cited a similar paper lying as an intermediate
node in the walk. Hence, if that paper covers the main
idea/content of y, x need not cite y.

5.6 Performance variation across datasets

From Table 3 we observe the wide variation of MAP over
various datasets, across the most competitive algorithms.
The variation may be due to various graph properties like
density, clustering coefficient or due to the (un)structured-
ness of the constituent features. We organize the results
of MAP with respect to the three parameters mentioned
above, and present the same through Figure 7. Following
the first sub-figure, we see Movielens is having the most
well-structured feature space. It consists of genre and it
is observed that people usually like similar movies. We
find that it has the highest MAP. Feature richness is not
a perfect predictor of high MAP. Netflix has rich features
but performs relatively poorly. Like MovieLens, Netflix is
also a movie-movie network, but its features are not as
informative, because they are derived from many other
factors (like year of the movie, actors, director etc.) apart
from genre, and the distillation process seems noisy.

The other predictor of MAP is the average degree (Fig-
ure 7, middle), higher density means more signals to the
classifier. Netflix which has very low average degree, per-
forms poorly. The third factor which enhances accuracy is
local connectedness - this is captured through clustering
coefficient (Figure 7, right). The three paper repositories,
WebKb, Cora and Citeseer, have very unstructured feature
spaces (words) as the features are polluted by polysemy,
synonymy, etc. However, the high clustering coefficient of
WebKb balances this disadvantage and is a key reason for
its good performance. For the other algorithms LL and SRW,
the same ranking is maintained, although the performance
gap between Movielens (first) and WebKb (second) in-
creases. This is in line with the same observation mentioned
before that LL and SRW cannot exploit link structure well.
The rankings in CRW and AA are different and more in line
with the ranking of the dataset with respect to density and
clustering coefficient.

Dataset YALP CCLL LL AA CRW SRW
Netflix 0.3906 0.3512 0.3362 0.3450 0.3475 0.3543
Movielens 0.5814 0.5729 0.5430 0.5061 0.4849 0.5521

TABLE 8: MAP for collaborative recommendation-induced
networks.

5.7 Evaluation on bipartite graphs

Collaborative filtering or recommendation can be regarded
as a special case of link prediction, in which the graph is bi-
partite (people and movies, for example). Recommendation
amounts to predicting missing edges in the bipartite graph,
which has been gainfully modeled as matrix completion
(people = rows, movies = columns) [29], [8], [22], [2]. The
underlying assumption here is that the matrix is somehow
simple, e.g., has low rank. Because of the specific nature of
the problem, it has many particularly well-suited matrix
completion algorithms. Although our goal is not to compare
these with general link prediction algorithms, it is tempting
to take advantage of many recommendation datasets to
compare within and across link prediction algorithms. This
section focuses on such a study.

Suppose we are given a user-movie network Gu =
(Vu, Eu). For each user u1, we randomly sample 90% of
his/her (liked) movie neighbors. Denote this movie-set as
Mu1

. Now consider a movie m1 6∈ Mu1
. A reasonable

assumption is that, ifm1 has large similarity toMu1
, then u1

is likely to watch/like m1. Therefore, any suitable measure
of similarity between m1 and Mu1

can be used as a user-
movie score for the link (u1,m1). We define (explained in
Figure 6) the following user-movie score based on a given
movie-movie similarity P :

s(u1,m1) =
1

|Mu1|
∑

j∈Mu1

pm1,j , (16)

This lets us convert Netflix and Movielens data into the
format we need.

wum

a

b

c

m

u

Movie-movie Network

wum = pam+pbm+pcm

3

Figure 6: Recommendation as a quality-metric for Link
Prediction.

For a given user u1, we randomly sample Mu1 which is
used to obtain the scores s(u1,m1) for all the movies m1 ∈
Vm1 −Mu1 . Based on these scores, we obtain a ranked list
of movies which ideally should place the neighbor-movies
at the top. From the ranked lists for all users, we obtain
precision, recall and Mean Average Precision (MAP). Table 8
shows the performance of various LP algorithms.

1041-4347 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2016.2553665, IEEE
Transactions on Knowledge and Data Engineering

13

0.5

0.25

0.75

0

1

Feature Richness→ Degree→ Clustering Coefficient→

M
A
P

NetflixNetflixNetflix MovielensMovielensMovielens CiteseerCiteseerCiteseer CoraCoraCora WebKbWebKbWebKb

LCG
CCLL
LL
AA
SRW
CRW

Figure 7: Variation of MAP over various datasets w.r.t. feature richness, average degree and clustering coefficient. (The
same data is presented in three different orders).

We observe that, LCG performs best in both datasets.
This is because it suitably combines different types of
network-attributes. Another interesting observation is that
the performance of LL is worse than SRW although it
performs better when we consider a movie-movie network.
This may be due to the presence of a class of users who
watch movies of varied tastes which can be captured well
when one considers long-range interactions in the movie-
movie network; SRW specifically does that. Although the
performances of LL and AA are poor, addition of co-
clustering (CC) signal boosts the performance as reflected
by a higher MAP of CCLL. This is because as CC cap-
tures community structures, so CCLL can infer the simi-
larity and diversity between movies in different clusters.
We re-emphasize that these are not realistic collaborative
recommendation runs. There is no user profile, vital in
any recommendation work, and also exploited by most LP
systems. Also, the movie-movie edge weights capture sim-
ilarities only on average, not per-user. The original network
is the co-movie network, which is basically the one-mode
projection of the user-movie network. Hence the diversity
in choice of a movie among various user communities is not
properly captured. (One can consider computing weights
for a user-specific movie-movie network (two movies have
an edge if the same user watches them), which is expected to
improve performance. However, this is highly computation-
intensive. These directions are outside the scope of the
current work.) As expected, all these factors lead to substan-
tially lower absolute MAP scores compared to “real” link
prediction problems. Still, the exercise gives us confidence
that LCG is a robust and versatile LP system.

6 CONCLUSION

The contributions in this paper include proposing use of
local node based features and co-clustering (community)
based features, in addition to the local and global graph
features used by existing schemes. We also described a
new two-level learning algorithm for link prediction. At the
lower level, we learn a local similarity model across edges.
At the upper level, we combine this with co-clustering
signals using a SVM.

Another contribution of this paper is the extensive
and systematic evaluation of different link-prediction algo-
rithms. We also perform specific experiments to understand
the areas of inefficiency of link prediction algorithms and

consequently establish the importance of the proposed two-
level learning scheme, and the new features proposed here.
We show that our algorithm consistently outperforms four
strong baselines when link information is neither too sparse
nor too dense.

We also note that link prediction is a generic prob-
lem, with many potential applications e.g. recommendation,
social search etc. Interestingly, we find that performance
of link prediction algorithms on movie-movie networks
and user-movie networks (used for recommendation), do
not follow the same order. Hence, one must evaluate the
link prediction algorithm with respect to the application in
which the process is applied.

As future work, one can investigate link prediction in
bipartite graphs or graphs with typed vertices. One can
also investigate the use of new sources of information for
link prediction. For example, Yuan et al. [44] use sentiment
of the messages posted by users. A deeper question is to
understand the connection between growth models such
as preferential attachment, and use temporal graph data
to train models that unify link prediction and network
evolution [40], [45].

REFERENCES

[1] L. A. Adamic and E. Adar. Friends and neighbors on the Web.
Social Networks, 25(3):211 – 230, 2003.

[2] O. Allali, C. Magnien, and M. Latapy. Link prediction in bipartite
graphs using internal links and weighted projection. In Netscicom,
2011.

[3] L. Backstrom and J. Leskovec. Supervised random walks: pre-
dicting and recommending links in social networks. In WSDM
Conference, 2011.

[4] A.-L. Barabási and R. Albert. Emergence of scaling in random
networks. Science, 286:509–512, 1999.

[5] C. M. Bishop. Pattern Recognition and Machine Learning. Springer,
2006.

[6] D. Chakrabarti, S. Papadimitriou, D. S. Modha, and C. Faloutsos.
Fully automatic cross-associations. In SIGKDD Conference, 2004.

[7] P. Y. Chebotarev and E. Shamis. The matrix-forest theorem and
measuring relations in small social groups. Automation and Remote
Control, 58(9 PART 2):1505–1514, 1997.

[8] F. C. T. Chua and E.-P. Lim. Modeling bipartite graphs using
hierarchical structures. In ASONAM, 2011.

[9] A. De, M. S. Desarkar, N. Ganguly, and P. Mitra. Local learning
of item dissimilarity using content and link structure. In RecSys,
2012. (Poster).

[10] A. De, N. Ganguly, and S. Chakrabarti. Discriminative link pre-
diction using local links, node features and community structure.
In ICDM, 2013.

[11] I. S. Dhillon, S. Mallela, and D. S. Modha. Information-theoretic
co-clustering. In SIGKDD, 2003.

1041-4347 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2016.2553665, IEEE
Transactions on Knowledge and Data Engineering

14

[12] P. Doyle and L. Snell. Random walk and electric networks. In
Mathematical Association of America, 1984.

[13] B. Ermi?, E. Acar, and A. Cemgil. Link prediction in heterogeneous
data via generalized coupled tensor factorization. Data Mining and
Knowledge Discovery, 29(1):203–236, 2015.

[14] F. Fouss, A. Pirotte, J.-M. Renders, and M. Saerens. Random-walk
computation of similarities between nodes of a graph with appli-
cation to collaborative recommendation. IEEE TKDE, 19(3):355–
369, 2007.

[15] N. Z. Gong, A. Talwalkar, L. Mackey, L. Huang, E. C. R. Shin,
E. Stefanov, E. R. Shi, and D. Song. Joint link prediction and
attribute inference using a social-attribute network. ACM Trans.
Intell. Syst. Technol., 5(2):27:1–27:20, Apr. 2014.

[16] R. Guimerà and M. Sales-Pardo. Missing and spurious inter-
actions and the reconstruction of complex networks. PNAS,
106(52):22073–22078, 2009.

[17] Q. Ho, J. Eisenstein, and E. P. Xing. Document hierarchies from
text and links. In WWW Conference, 2012.

[18] http://www.netflixprize.com.
[19] G. Jeh and J. Widom. Scaling personalized web search. In WWW

Conference, 2003.
[20] T. Joachims. A support vector method for multivariate perfor-

mance measures. In ICML, 2005.
[21] L. Katz. A new status index derived from sociometric analysis.

Psychometrika, 18(1):39–43, Mar. 1953.
[22] J. Kunegis, E. W. De Luca, and S. Albayrak. The link prediction

problem in bipartite networks. In Computational intelligence for
knowledge-based systems design, pages 380–389. Springer, 2010.

[23] J. Lafferty, A. McCallum, and F. Pereira. Conditional random
fields: Probabilistic models for segmenting and labeling sequence
data. In ICML, pages 282–289, 2001.

[24] A. N. Langville and C. D. Meyer. Deeper inside PageRank. Internet
Mathematics, 1(3):335–380, 2004.

[25] E. Leicht, P. Holme, and M. E. Newman. Vertex similarity in
networks. Physical Review E, 73(2):026120, 2006.

[26] D. Liben-Nowell and J. Kleinberg. The link-prediction problem
for social networks. Journal of the American Society for Information
Science and Technology, 58(7):1019–1031, 2007.

[27] T.-Y. Liu. Learning to rank for information retrieval. In Foundations
and Trends in Information Retrieval, volume 3, pages 225–331. Now
Publishers, 2009.

[28] W. Liu and L. Lü. Link prediction based on local random walk.
EPL (Europhysics Letters), 89(5):58007, 2010.

[29] L. Lü, M. Medo, C. H. Yeung, Y.-C. Zhang, Z.-K. Zhang, and
T. Zhou. Recommender systems. Physics Reports, 519(1):1–49, 2012.

[30] L. Lü, L. Pan, T. Zhou, Y.-C. Zhang, and H. E. Stanley. Toward
link predictability of complex networks. PNAS, 112(8):2325–2330,
2015.

[31] L. Lu and T. Zhou. Link prediction in complex networks: A survey.
Physica A: Statistical Mechanics and its Applications, 390:1150–1170,
Mar. 2011.

[32] A. K. Menon and C. Elkan. Link prediction via matrix factoriza-
tion. In Machine Learning and Knowledge Discovery in Databases,
pages 437–452. Springer, 2011.

[33] P. Sarkar, D. Chakrabarti, and A. W. Moore. Theoretical justifica-
tion of popular link prediction heuristics. In IJCAI, 2011.

[34] D. Sun, T. Zhou, J.-G. Liu, R.-R. Liu, C.-X. Jia, and B.-H. Wang.
Information filtering based on transferring similarity. Physical
Review E, 80(1):017101, 2009.

[35] H. Tong, C. Faloutsos, and Y. Koren. Fast direction-aware proxim-
ity for graph mining. In SIGKDD Conference, 2007.

[36] H. Tong, C. Faloutsos, and J.-Y. Pan. Fast random walk with restart
and its applications. In ICDM, 2006.

[37] I. Tsochantaridis, T. Joachims, T. Hofmann, and Y. Altun. Large
margin methods for structured and interdependent output vari-
ables. JMLR, 6(Sep):1453–1484, 2005.

[38] K. Tsuda and W. S. Noble. Learning kernels from biological
networks by maximizing entropy. Bioinformatics, 20(1):326–333,
2004.

[39] V. Vapnik. Statistical Learning Theory. Wiley, Chichester, 1998.
[40] W.-Q. Wang, Q.-M. Zhang, and T. Zhou. Evaluating network mod-

els: A likelihood analysis. EPL (Europhysics Letters), 98(2):28004,
2012.

[41] www.cs.umd.edu/projects/linqs/projects/lbc.
[42] www.grouplens.org.
[43] J. Yang, J. J. McAuley, and J. Leskovec. Community detection in

networks with node attributes. In ICDM, 2013.

[44] G. Yuan, P. K. Murukannaiah, Z. Zhang, and M. P. Singh. Exploit-
ing sentiment homophily for link prediction. RecSys ’14.

[45] J. Zhao, L. Miao, J. Yang, H. Fang, Q.-M. Zhang, M. Nie, P. Holme,
and T. Zhou. Prediction of links and weights in networks by
reliable routes. Scientific reports, 5, 2015.

[46] T. Zhou, L. Lü, and Y.-C. Zhang. Predicting missing links via local
information. The European Physical Journal B, 71(4):623–630, 2009.

PLACE
PHOTO
HERE

Abir De is a PhD student in the Department
of Computer Science and Engineering in IIT
Kharagpur, India. He received his BTech and
MTech in Electrical Engineering from Electrical
Engineering Department in 2011. His research
interests are modeling and learning influence in
social networks. He is the recipient of Google
India PhD Fellowship in Social Computing in
2013. He was a visiting research scientist in
MPI-Saarbrucken from Sep 2014-Dec 2014.

PLACE
PHOTO
HERE

Sourangshu Bhattacharya is an Assistant Pro-
fessor in Dept. of Computer Science and En-
gineering, IIT Kharagpur. His areas of interest
include modeling influence in social networks,
distributed machine learning and optimization.
He did his PhD in Computer Science, from Dept.
of Computer Science & Automation , IISc Banga-
lore in 2008. He was visiting scholar at Helsinki
University of Technology from Jan - May 2008
and Scientist at Yahoo! Labs from 2008 to 2013.

PLACE
PHOTO
HERE

Sourav Sarkar is a fourth year undergraduate
student in the Computer Science and Engineer-
ing Department, IIT Kharagpur, India. He did his
internship in Microsoft India Development Cen-
ter where he developed an Automated Testing
framework in C# for the middle-tier testing of
Bing Sports Window 8 App. He secured 3rd
position all over India in Indian National Math-
ematical Olympiad-2011.

PLACE
PHOTO
HERE

Niloy Ganguly is a Professor in the Department
of Computer Science and Engineering, Indian
Institute of Technology Kharagpur, India. He has
received his B.Tech from IIT Kharagpur in 1992
and his PhD from BESU, Kolkata, India in 2004.
He has spent two years as Post-Doctoral Fellow
in Technical University, Dresden, Germany be-
fore joining IIT, Kharagpur in 2005. His research
interests are in peer-to-peer networks, on-line
social networks and wireless networks.

PLACE
PHOTO
HERE

Soumen Chakrabarti is Professor of Computer
Science at IIT Bombay. He received his B.Tech
in Computer Science from the IIT Kharagpur, in
1991 and his M.S. and Ph.D. in Computer Sci-
ence from the University of California, Berkeley
in 1992 and 1996. He was a Research Staff
Member at IBM Almaden Research Center from
1996 to 1999, where he worked on the Clever
Web search project and led the Focused Crawl-
ing project. In Spring 2004 he was Visiting As-
sociate professor at Carnegie-Mellon University.

During 2014–2016 he was Visiting Scientist at Google.

