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The network coding problem (NCP), which aims to minimize network coding resources such as nodes

and links, is a relatively new application of genetic algorithms (GAs) and hence little work has so far

been reported in this area. Most of the existing literature on NCP has concentrated primarily on the

static network coding problem (SNCP). There is a common assumption in work to date that a target rate

is always achievable at every sink as long as coding is allowed at all nodes. In most real-world

networks, such as wireless networks, any link could be disconnected at any time. This implies that

every time a change occurs in the network topology, a new target rate must be determined. The SNCP

software implementation then has to be re-run to try to optimize the coding based on the new target

rate. In contrast, the GA proposed in this paper is designed with the dynamic network coding problem

(DNCP) as the major concern. To this end, a more general formulation of the NCP is described. The new

NCP model considers not only the minimization of network coding resources but also the maximization

of the rate actually achieved at sinks. This is particularly important to the DNCP, where the target rate

may become unachievable due to network topology changes. Based on the new NCP model, an effective

GA is designed by integrating selected new problem-specific heuristic rules into the evolutionary

process in order to better diversify chromosomes. In dynamic environments, the new GA does not need

to recalculate target rate and also exhibits some degree of robustness against network topology

changes. Comparative experiments on both SNCP and DNCP illustrate the effectiveness of our new

model and algorithm.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

The notion of coding at the packet level –commonly called
network coding –has attracted significant interest since the
publication of [1], which showed its utility for multicast in wire-
line packet networks. It is now established that network coding
may significantly improve network performance in terms of net-
work throughput. It should be noted that conventional network
optimization aims to maximize information flow by utilizing as
much link capacity as possible, whilst network coding begins with
the assumption that full link capacity utilization has already been
achieved wherever possible and then attempts to further increase
the network throughput at sinks by performing coding at nodes.
This advantage of network coding can be understood in the
context of the example shown in Fig. 1.(a) and (b). It is assumed
in Fig. 1 that two different pieces of one-unit-sized data/packets,
a and b, are to be sent from the source node 1 to the sink node
ll rights reserved.
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6 and 7, and the capacity of every link is just 1 (in this paper, the
link capacity is defined as the same as the one in conventional
network optimization [1], all data are one-unit-sized, and all links
are of unit-capacity). The aim is to maximize the rate achieved at
each sink, i.e., the amount of different data received by a sink at
one time. The rate is also measured in data units. Since all links are
of unit-capacity, the potential maximal achievable rate at a sink is
equivalent to the number of its incoming links. However, different
links may carry the same data, such as the two incoming links of
node 7 in Fig. 1.(a) and so the actually achieved rate at a sink may
be less than the potential rate. This is likely to be the case if the
nodes in the network only forward and replicate the data they
receive. For example, as illustrated in Fig. 1(a), the sink node 7 can
only receive 1 unit of data b at one time, although the other sink
node 6 achieves a rate of 2 by receiving both a and b. The
information flow in Fig. 1(a) is optimal from the conventional
point of view because every link carries one unit of data, which
gives a full utilization of the link capacity. However, if node 4 can
combine data from its two incoming links through the ‘‘þ ’’
operation, then by using the ‘‘–’’ operation to decode data, a rate
of 2 can be achieved at both sinks, as shown in Fig. 1.(b). It should
be noted that the result of operation ‘‘þ ’’, e.g., aþb in Fig. 1.(b), is
still an one-unit-sized data element. Therefore, without exceeding
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Fig. 1. The basic idea of network coding.
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the link capacity, network coding increases the total rate of
information flow through the same network from 3 to 4 in
Fig. 1, a significant improvement.

Although network coding may be allowed at all nodes in some
of the relevant literature, an interesting observation is that a
given target rate can often be achieved by conducting network
coding at only a relatively small proportion of the nodes [2]. For
instance, in the network given by Fig. 1(c), network coding at both
nodes 4 and 5 will make no difference in terms of the rate
achieved at the sinks or in other word, network coding is not
necessary in that network. Therefore, a question is raised: at
which nodes does network coding need to be conducted, or how
does one make most of network capacity at a minimal cost in
terms of network coding resources? To answer this question, a
minimal set of nodes needs to be found for coding, and this has
been proved to be an NP-hard problem [3]. In this paper, the
above problem of minimizing network coding resources is
referred to as the Network Coding Problem (NCP). Some attempts
have already been made using different methods to address this
problem. For instance, two minimal approaches were reported in
[4,5] which ascertain the minimal set of nodes for network coding
in order to achieve a given target rate. It was determined in [4]
that coding is required at no more than d-1 nodes in acyclic
networks with 2 unit-rate sources and d sinks. An upper bound on
the number of nodes required for both acyclic and cyclic networks
was derived in [5]. However, the approaches in both [4,5]
determine the minimal set of nodes for coding by removing links
in a greedy fashion. A linear programming method was reported
in [6] to optimize the various resources used for network coding,
and its optimal formulations involved a number of variables and
constraints that grow exponentially with the number of sinks.

As large-scale parallel stochastic search and optimization
algorithms, genetic algorithms (GAs) have a good provenance in
the resolution of diverse NP-hard problems [7,8], including
network optimization and resource assignment [9,10]. However,
the optimization of network coding is a relatively new area for
GAs, and very few results have been reported [2,11–13] to date.
The first attempt to apply GAs to network coding was made by
Kim et al. [2]. This was then extended from acyclic networks to
cyclic networks and from centralized cases to decentralized cases
[11]. The genetic representation was the particular focus in later
work [12], followed by the proposal of a distributed algorithm to
improve GA computational efficiency [13].

There is a common assumption in the network coding optimiza-
tion work to date that the target rate is always achievable if coding
is allowed at all nodes, permitting attention to be focused on the
minimization of the number of coding links/nodes. However, in
dynamic environments, such as wireless networks, it is quite
possible that the target rate may become unachievable due to
uncertainty in the connections between the nodes [14]. If this is
the case, it is the rate that is actually achieved rather than the target
rate that plays a more important role in network coding. The
previous studies using the assumption that the target rate was
achievable, such as [2,4–13], did not consider the rate actually
achieved when minimizing resources, and were therefore largely
limited to the static NCP (SNCP). They may only be applied to the
dynamic NCP (DNCP) by recalculating the target rate and then re-
optimizing resources every time a change occurs in the network
topology.

Network coding in dynamic environments is a challenging
research topic. Random network coding has proved to be very
promising in coping with network topology changes, as it does not
require the knowledge of the entire network topology [15–19].
However, in these random network coding studies the minimization
of coding resources is not a concern and each node has to com-
municate its coding weights throughout the network, which means
that not all of the network capacity will be available to transmit the
signals sent by the source. Therefore, whilst the advantages of
random network coding should be acknowledged, it is still necessary
to investigate how to improve network coding based on the entire
network topology. Robustness against changes in network topology
will be a particular concern. As will be explained in Section 3, the
DNCP model proposed in this paper exhibits such robustness to some
extent when compared with previous work [2,11].

In our previous study [20], preliminary results relating to the
design of effective GAs for the minimization of coding resources
in the NCP, particularly in the DNCP, were reported but the work
was restricted to the NCP utilizing only the simplest addition
coding (i.e., the field size is 2) between two incoming signals. The
work presented in this paper is concerned with further develop-
ments of our previous results by extending our work to NCP
where coding with any finite field size is adopted to combine any
finite number of incoming signals.
2. Problem formulation

For the sake of simplicity but without losing generality, this
paper considers only the one-source-multi-sink NCP, and it is
assumed that the source is always node 1 in the network. Let
G(V(t), E(t),t) denote the network at time instant t, where V(t) and
E(t) are sets of vertices and edges. Suppose G has nn nodes, nl
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links, and ns sinks, and RTarget is the target rate which is expected
to be achieved at every sink.

Before presenting our new NCP model, we would like to give a
brief discussion of previous SNCP models. In the SNCP, the target
rate RTarget is assumed to be achievable if network coding is
allowed at all nodes. Then, the SNCP aims to achieve RTarget by
coding at as few nodes as possible. With network coding at all
nodes, the maximum achievable multicast rate is the minimum of
the individual maxflow bounds between the source and each of
the sinks [1]. An algebraic formulation of the general network
coding problem proposed in [21] can be applied to the case where
network coding is performed only in some subset of the nodes.
Basically, to find the nodes where coding is not necessary, one
needs to verify at each potential coding node (PCN, a node with
multiple incoming links) whether it is possible to restrict the
given node’s outputs to depend on a single input without
destroying the achievability of the target rate. The above verifica-
tion can be performed by checking the polynomials of a binary
matrix My which is constructed based on the coefficients
associated with the incoming link(s) of each PCN [2]. A particular
My is called feasible if the coding scheme defined by it can achieve
RTarget at every sink. Then the SNCP can be mathematically
formulated as the following minimization problem:

min
My

fS ð1Þ

where the objective function fS is defined as:

fS ¼
b1NCLþb2NCN , if My is feasible,

1, if My is infeasible,

(
ð2Þ

NCL and NCN are the numbers of coding links and nodes, respec-
tively, and b1 and b2 are coefficients to adjust the contribution of
NCN and NCL, respectively. For instance, in [2], b1¼1 and b2¼0.

In the DNCP, the achievability of the initial target rate may not
always be guaranteed due to unpredictable changes in network
topology arising from signal loss, node failure and the like. There-
fore, to apply the SNCP model defined in the Eqs. (1) and (2), to the
DNCP, one needs to calculate a new achievable target rate when
there is a change in network topology and then completely
re-optimize the coding scheme. Clearly, the rate actually achieved
at the sinks, which could be a more realistic concern in the DNCP, is
not involved in the objective function fS.

To get rid of the assumption about the achievability of target
rate, in this paper, we describe the mathematical model for the
NCP as the following maximization problem:

max
wði,j,hÞ

fD, i¼ 1, . . ., nn, j¼ 1, . . ., nOutðiÞ, h¼ 1, . . ., nInðiÞ, ð3Þ

subject to G(V(t),E(t),t),

sOutði,jÞ ¼
XnInðiÞ

h ¼ 1

wði,j,hÞsInði,hÞ, i¼ 1, . . ., nn, j¼ 1, . . ., nOutðiÞ: ð4Þ

fD ¼

a1minðRðiÞÞþa2aveðRðiÞÞ

þa3=ðNCLþ1Þþa4=ðNCNþ1Þ,
minðRðiÞÞoRTarget ,

a1minðRðiÞÞþa2aveðRðiÞÞ

þa5=ðNCLþ1Þþa6=ðNCNþ1Þ,
minðRðiÞÞZRTarget ,

i¼ 1,:::,nS,

8>>>>><
>>>>>:

ð5Þ

minða1,a2Þ4maxða3,a4Þ, ð6Þ

minða5,a6Þbmaxða1,a2Þ: ð7Þ

In the above model, fD in Eq. (5) is the objective function with
aj, j¼1, y 6, as preset coefficients to determine the contribution
of different terms in the objective function. nIn(i)/nOut(i) is the
number of incoming/outgoing links of node i. The signals sIn(i,j)
and sOut(i,j) are those on the jth incoming and outgoing links of node
i. The weights w(i,j,h), h¼1,y,nIn(i), determine how to combine the
nIn(i) incoming signals of node i to generate a signal for the jth
outgoing link of node i. Actually, Eq. (4) describes the most widely
used coding operation: linear network coding. In theory, w(i,j,h) may
be continuous but as proved by [15–19], a sufficient number of
finite discrete values for w(i,j,h) can guarantee that the maximum
possible throughput is achieved. Therefore, in this paper, the value
of w(i,j,h) will be chosen from a finite set YW having NWZ2 discrete
values meaning that the field size for network coding is NW in this
study. Clearly, a set of w(i,j,h) can define how each node in the
network forwards, replicates and/or encodes data, in other words, a
linear coding scheme is determined by a set of w(i,j,h). Based on the
coding scheme determined by w(i,j,h), R(i) is the rate actually
achieved at sink i. The optimization of coding scheme, or w(i,j,h),
is subject to the network topology defined by G(V(t), E(t), t).
Obviously, weights w(i,j,h) are the variables whose values need to
be optimized in the NCP. Originally, there should be a set of
constraints caused by link capacity. However, because this paper
assumes all links are of unit-capacity, therefore link capacity
constraints are equivalent to the network topology.

The objective function fD defined by Eqs. (5)–(7) is more
suitable for the DNCP than fS. in Eq. (2). One can easily see that
fD firstly tries to maximize the overall actually achieved rate, and
once the target rate is achieved, the focus of the optimization
switches to minimizing the network coding resources. The terms
‘‘min(R(i))’’ and ‘‘ave(R(i))’’ in Eq. (5) can be used to assess the rate
that is actually achieved. Basically, a larger term value for
‘‘ave(R(i))’’ is desirable. The optimization of R(i) should be as even
as possible to avoid increasing the rate at some sinks by sacrifi-
cing that at others. The term representing the value for
‘‘min(R(i))’’ can be used to estimate how evenly R(i) is optimized,
i.e., the larger the value is, the more evenly R(i) is optimized.
At the same time, as reflected by the terms ‘‘1/(NCLþ1)’’ and
‘‘1/(NCNþ1)’’, the network coding resources should be minimized,
particularly when the target rate can be achieved, i.e., when
min(R(i))ZRTarget. Obviously, the coefficients a1 to a6 satisfying
Conditions (6) and (7) play a crucial role in the automatic
switching the focus of optimization from the actually achieved
rate to network coding recourses. The above NCP has many
considerations for optimization and fD integrates them into a
single weighed objective function. It should be noted that Pareto
optimization techniques may be another option for multiple
considerations [22], but they are beyond the scope of this work.

Clearly, fD requires that a solution to the DNCP must make it
possible to calculate R(i), NCN and NCL. The binary matrix My used in
the SNCP model only provides enough information to calculate NCN

and NCL. For instance, the modified binary representation in [11] is
‘‘at the price of losing the information on the partially active link
states that may serve as intermediate steps toward an uncoded
transmission state’’, which means there is not enough information
in My to calculate the rate R(i) actually achieved at the sinks.
3. Design of GA for DNCP

3.1. The BASIC idea of GAs

Since GAs were introduced based on Darwin’s principles by
Holland in 1960s, they have been widely used for numerical
optimization, combinatorial optimization, classifier systems and
many other engineering problems [7,8]. Basically, a GA is a large-
scale parallel stochastic searching and optimizing method
inspired by the biological mechanisms of natural selection and
evolution. Given a population of chromosomes, environmental
pressure causes natural selection (survival of the fittest) and



Fig. 3. Chromosome structure based on relative information flow on links.

(a) Predefined states of links for the network in Fig. 1b. This field size is set as

2 here for the sake of simplicity. For all, k¼0: y¼0. (b) A coding scheme and the

resulting information flow (Signal on this link/This link is the ith link in the

network/State of this link (i.e., relative information flow on this link)/This link

is the ith incoming link of the next node). (c) The associated chromosome (In this

illustration, the ith gene in the chromosome, i.e., g(i)¼k, means the signal on the

ith link of the network comes from the kth incoming link of the previous node; If

the previous node has less than k incoming links, then g(i)¼k means the ith link is

a coding link.

X.-B. Hu et al. / Computers & Operations Research 39 (2012) 952–963 955
thereby the fitness of the population grows. It is easy to see such a
process as optimization. Given an objective function to be max-
imized, we can randomly create a set of candidate solutions
(chromosomes) and use the objective function as an abstract
fitness measure (the higher the better). Based on this fitness,
some of the better chromosomes are chosen to seed the next
generation by applying crossover and/or mutation. Crossover is
applied to two selected chromosomes, the so-called parents, and
results in one or two new chromosomes, the children. Mutation is
applied to one chromosome and results in one new chromosome.
Applying crossover and mutation leads to a set of new chromo-
somes, the offspring. Based on their fitness these offspring
compete with old chromosomes for a place in the next generation.
This process can be iterated until a solution is found or a
previously set time limit is reached. Many components of such
an evolutionary process are stochastic. According to Darwin’s
principles, the emergence of new species, adapted to their envir-
onment, is a consequence of the interaction between the survival
of the fittest mechanism and undirected variations. Variation
operators must be stochastic, the choice of which pieces of
information will be exchanged during crossover, as well as the
changes in a chromosome during mutation, are random. On the
other hand, selection operators can be either deterministic, or
stochastic. In the latter case fitter chromosomes have a higher
chance to be selected than less fit ones but typically even the weak
chromosomes have a chance to become a parent or to survive.

The design of GAs usually includes: choosing an appropriate
chromosome structure, developing effective evolutionary opera-
tors and introducing useful problem-specific heuristic rules. The
following three subsections will describe the new GA developed
in our study on the NCP.

3.2. Chromosome structure

Here we need to design a new chromosome structure for the
NCP that differs from those in [2,11,12] in order to record the
exact information flow on links. The new chromosome structure
must make it possible to calculate the actually achieved rate at
sinks R(i) for fD, which is used as the fitness function of the new
GA. A straightforward representation is to use the absolute
information flow on links to construct chromosomes. However,
this representation will cause serious feasibility problems during
evolutionary operations,because the set of feasible signals from
which a link can choose cannot be predetermined, and varies over
time according to the signals on other links. This means that any
change in the signal on a link caused by evolutionary operations
could make the unchanged signals on some other links infeasible.

Instead of the absolute information flow on links, a chromo-
some in the new GA records the relative information flow, i.e., an
integer k, whose meaning is a certain predefined combination of
signals on incoming links of a node. For instance, Fig. 2 shows an
Fig. 2. An illustration of definit
illustration of how to predefine k. In this figure, a table is set up to
define all possible signal combinations at a node with three
incoming links, and the field size is NW¼3. A different number
of incoming links requires a different predefined table for k, as
illustrated in Fig. 3.

Let head(i) denote the serial number of the starting node of link
i. It is assumed that the source has as many incoming links as
there are signals to be sent, and each signal is associated with one
and only one of such assumed links. Let the gene g(i) be associated
with link i. Then gðiÞ ¼ k, k¼ 0, 1, . . ., NnInðheadðiÞÞ

W , where nIn(head(i))
is the number of incoming links to node head(i). In other words, for
an outgoing link, e.g., link i, the number of possible signal
combinations (including no coding) is NnInðheadðiÞÞ

W . The exact com-
bination that a value of k stands for needs to be predefined.
Hereafter, the value of g(i) is called the state of link i. Then the set
of possible states for link i is

YSðiÞ ¼ f0, 1, . . ., NnInðheadðiÞÞ
W g: ð8Þ
ion of signal combinations.



Yes

Calculate the achievable target 
rate based on the current 
network topology. 

Optimize network coding 
resources accordingly. 

No Yes

Optimize network coding 
resources based on the current 
network topology. 

No

Yes

No

No 

Yes

Switch to replacement link(s). 

Does the network 
topology change? 

Does the network 
topology change? 

Is anycontributing 
incoming link 
disconnected? 

Does any 
replacement link 

exist? 

Fig. 5. How to run different GAs in dynamic environments. (a) Apply existing GAs

to the DNCP and (b) Apply the new GA to the DNCP.

X.-B. Hu et al. / Computers & Operations Research 39 (2012) 952–963956
Therefore, the size of the solution space of the new GA is

nSP ¼
Ynl

i ¼ 1

NnInðheadðiÞÞ
W : ð9Þ

Unlike the absolute information flow on links, the states in
YS(i) only depend on the network topology and the number of
signals that are to be sent, which are both fixed during a GA run.
Therefore, as long as g(i) remains within YS(i) during the evolu-
tionary operation, there will be no feasibility problem. As will be
discussed in the following subsection, this condition is very easily
fulfilled. On the other hand, the absolute information flow on
links can be derived in a straightforward way from a chromosome
of the new GA. The simple illustration in Fig. 3 illustrates how to
use relative information flow on links to construct a chromosome.

The new chromosome is an integer vector with of size nl. One
may also use an nl�max(nIn(i)) matrix to record the weights
applied to each of the incoming links, and such a matrix repre-
sentation will need no predefined tables. In this study, we choose
the vector representation because: (i) it has a lower memory
demand, particularly in the case of large-scale networks and (ii) it
is more efficient in terms of algorithm execution (the matrix
representation needs to generate nIn(head(i)) random numbers to
determine the relative information flow on link i, whilst the vector
representation requires only one random number). However, for
networks where a node may have many incoming links, the
predefined tables for the vector representation will become
unfeasibly large if the field size is also large. For instance,
assuming max(nIn(i))¼10 and NW¼10, then the largest predefined
table will have 1010 entries for k. In this case, we can transform the
network into an equivalent network which has a relatively small
max(nIn(i)), which can actually be just 2, as illustrated in Fig. 4.
Then, even if NW¼100, the largest predefined table only needs
1002

¼104 entries for k. The transformed network will have more
links than the original network, which means that, according to
Eq. (9), the entire search space will increase, which will become of
particular concern in the case of large-scale networks. Therefore,
network decomposition methods may be employed here as is the
case in many decentralized/distributed algorithms [13].

It should be noted that the search space given by Eqs. (8) and
(9) is much larger than those in previous studies. For instance, the
search space size for link i is 2nInðheadðiÞÞ in [2], and even down to
nIn(head(i))þ2 in [11,12]. Fortunately, as will be explained in
Section 4, this disadvantage can be compensated by introducing
some new problem-specific heuristic rules based on the exact
information flow on links. The new rules would be difficult to
apply to previous chromosome structures such as in [11,12]
where the exact link information flow is elusive. Actually, as will
be shown in the simulation results, the new GA reported in this
study can almost always find theoretically optimal solutions,
despite the extremely large search space.
x1 x2
x3

y1 y2 y3

x1 x2 x3

y1 y2 y3

Fig. 4. Transforming a network into a new network with max(nIn(i))¼2.
It should also be noted that the new chromosome structure
depends on knowledge of the entire network topology, which may
change in the DNCP. Therefore, the new GA cannot achieve the
robustness defined by random network coding. Fortunately, the
new chromosome structure may still deliver robust performance.
This is because a specific coding scheme is defined by a chromo-
some in the new structure, and it is known whether an incoming
link will contribute to a coding instance or not. Therefore, when a
non-contributing incoming link is disconnected, there will be no
need to re-run the optimization. In other words, a solution based
on the new chromosome structure is robust against any changes in
non-contributing incoming links. Even if a contributing incoming
link is disconnected, one can easily check whether or not there
exists any non-contributing incoming link which can replace the
disconnected link, because the exact information flow on links are
available thanks to the new chromosome structure. For example in
Fig. 2, when k¼10 (y¼x1þx2) performance is not affected by the
disconnection of the link carrying x3. Alternatively, given x2¼x3,
then by switching to the link carrying x3, the performance when
k¼10 is robust against the disconnection of the link carrying x2.
This is impossible for the chromosome structures in [11,12], where
coding always involves all incoming links without specifying any
of their contributions. Therefore, the new chromosome structure
proposed in this paper enables the resulting GA to run in a more
efficient and robust way in dynamic environments. As shown in
Fig. 5.(a), every time the network topology changes, a re-run after a
re-calculation of the achievable target rate is needed for the
existing GAs such as those in [2,11,12]. In contrast, for our new
GA shown in Fig. 5 (b), there is no need to re-calculate the target
rate. Moreover, if only non-contributing incoming links are dis-
connected or a replacement exists for a disconnected contributing
incoming link then there is no need to re-run the optimization.
Furthermore, by minimizing the number of coding links, the above
robustness associated with the new chromosome structure can be
improved because the number of non-contributing incoming links
may be increased.

3.3. Evolutionary operators

The mutation operator in this paper is designed as follows.
A chromosome is chosen for mutation at a specified probability.
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Then a gene associated with a potential coding link needs to be
chosen randomly. When gene g(i) is chosen, the associated link is
the ith link in the network with a set of possible states given by
YS(i) as defined in Eq. (8). Mutation will randomly choose a value
from the set YS(i)�{g(i)}, and then reset g(i) to the new value.
Thanks to the new chromosome structure, YS(i) depends only on
the network topology, which is fixed during a GA run meaning
that the above mutation operation is free of feasibility problems.

This paper adopts uniform crossover, which is highly efficient
not only in identifying, inheriting and protecting common genes
but also in terms of re-combining uncommon genes [23,24].
Simply speaking, in uniform crossover, each gene of an offspring
chromosome inherits the associated gene from its two parent
chromosomes with a 50% chance. In the proposed chromosome
structure, the ith genes of all chromosomes share the same set
(YS(i)) of possible states for link i. Therefore, uniform crossover
will cause no feasibility problems. Regarding the choice of two
parent chromosomes, any chromosome in an old generation may
be chosen as the first parent chromosome at a fixed probability of
pc .Then a different chromosome may be chosen as the second
parent chromosome with a probability proportional to its fitness.
In this way, every chromosome stands the same chance of
becoming the first parent, while a fitter chromosome stands a
better chance to cross over with most other chromosomes. This is
analogous to a dominant male mating with most females in its
territory.

3.4. Heuristic rules

It is well known that heuristic rules, particularly problem-
specific ones, often play an important role in the successful
applications of GAs. Thanks to the new chromosome structure
proposed in Section 3.2, here we can easily integrate the following
NCP-specific rules in our new GA.
Rule 1
 All evolutionary operations only apply to the
outgoing links of PCNs.
Rule 2
 When initializing the first generation, a certain
proportion of chromosomes will allow coding on all
PCNs, and for a PCN which has multiple outgoing
links, choose at least one link randomly as a coding
link. This rule can help to find a solution to achieve
the target rate, if it is achievable, at all sinks.
Rule 3
 Furthermore, in the initialization of the first
generation, another proportion of chromosomes
will allow no coding at all. This rule can help to
explore the possibility of maximizing the rate
actually achieved at the minimum cost of resources.
It should be pointed out that this rule can hardly hit
any optimal solution by chance, because even in a
network where the optimal solution requires no
coding, most no-coding schemes are not optimal.
Rule 4
 In either initialization or evolutionary operations,
the states of incoming links of a PCN should be
determined in such a way that the node will receive
as many different signals as possible. In other
words, the signals to a PCN should be diversified as
much as possible. This rule will allow as many
choices as possible for coding schemes, and
therefore can help to diversify a generation.
Rule 5
 For a PCN with multiple outgoing links, there should
be a high probability that the outgoing links have
different states.
Rule 6
 When initializing the first generation at time instant
tþ1, a certain proportion of chromosomes will
inherit the best solution found by the GA at time
instant t. This rule is introduced particularly for the
DNCP, where, although the network topology
changes randomly over time, it is reasonable to
assume that there is likely to be a certain
consistency in it at two successive time instants.
Therefore, inheriting the best solution found at time
instant t could be very helpful to the GA in finding a
good solution at time instant tþ1.
It should be noted that the practicability of Rules 4 and 5 relies
on the availability of exact information flow on links. Thus the
chromosome structures in [2,11–13] do not support these rules as
they lack this information but thanks to our new chromosome
structure, it becomes possible to integrate them into our algo-
rithm. In the new GA, the following procedure is employed to
apply Rule 4 for improving up to one gene in a chromosome. By
repeating the procedure, more genes in the chromosome can be
improved. A similar procedure is used to apply Rule 5, where
outgoing links, rather than incoming links, of PCNs will
be considered, and Step 4 will be executed with a specific
probability, e.g., 50% in our experiments.
Step 1
 Derive the exact information flow on links which is
associated with the chromosome.
Step 2
 Check if there is an unmarked PCN which has at
least two incoming links carrying the same signal. If
there is no such unmarked PCN, stop.
Step 3
 For the current PCN, among its incoming links
which have the same signal, check if there exists at
least one link which may receive a signal different
from those that the current PCN has already
received. If there is no such link, mark the current
PCN, and then go to Step 2.
Step 4
 For the current PCN, among its incoming links
which have the same signal, randomly choose a link
which can bring new signals to the current PCN.
Randomly assign such a new signal to that link,
modify the associated gene in the chromosome and
then stop.
4. Simulation results

4.1. The setup of the experiments

Firstly, the new GA was compared with three existing
algorithms for the SNCP, namely the GA reported in [2] (denoted
as GA [2]), and two minimal approaches reported in [4,5]
(denoted as Minimal 1 and Minimal 2, respectively) to ascertain
if the new algorithm can achieve similar or better performance.
Then the new GA was tested on the DNCP by applying it to
problems where the theoretically optimal solutions are known a

priori to determine how close the best results generated by the
new algorithm are to such theoretically optimal solutions.

In the experiments on the SNCP, there were two sets of test
cases, taken from [2] for comparative purposes. The networks in
Set I were actually generated by the algorithm in [25], which
constructs connected acyclic directed graphs uniformly at
random. Two networks with parameters (20 nodes, 80 links, 12
sinks, rate 4) and (40 nodes, 120 links, 12 sinks, rate 3), denoted
as SCase 1 and SCase 2, were used for simulations in Set I. The
networks in Set II were constructed by cascading a number of
copies of network (c) in Fig. 1 such that the source of each
subsequent copy of network (c) in Fig. 1 was replaced by an
earlier copy’s sink. Set II had 4 networks, which used fixed-depth



Table 2
Main Features of 12 DNCP Test Cases.
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binary trees containing 3, 7, 15 and 31 copies of network (c) in
Fig. 1, respectively. These 4 networks in Set II are referred to as
SCase 3 to SCase 6, and they have a maximum multicast rate of 2,
which is achievable without coding, i.e., the optimal solutions
have no coding links at all. Table 1 provides more details about
these SNCP networks, and Fig. 6(a) illustrates how SCase 3 is
constructed.

There has been no directly comparable work to this published
to date for DNCP algorithms. Therefore, to conduct experiments
on the DNCP, appropriate test cases needed to be designed where
the theoretically optimal solutions to the DNCP were known a

priori, so that the performance of the new GA could be precisely
assessed. All DNCP test cases in this paper were designed based
on Set II of the SNCP networks. In contrast to static networks,
where all links remained for the duration of the simulation, in the
DNCP test cases, links were introduced that could be disconnected
and reconnected dynamically. At each time instant, the dynamic
links that were to be disconnected and/or reconnected were
randomly chosen. In order to be able to derive the theoretically
optimal solutions for a dynamic network at any time instant, only
a few constant links in the SNCP networks were replaced by
dynamic links in the DNCP test cases. In this study, three
categories of link replacements were considered so that the
results accounted for different degrees of complexity. Based on
the 4 SNCP test cases, 4 DNCP test cases were constructed for each
category of replacement. Therefore, there were 12 DNCP test
cases, whose main features are summarized in Table 2.

In Category I, for every copy of network (c) in Fig. 1, a
permanent link between node 4 and node 5 in network (c) was
replaced by a dynamic link, as illustrated in Fig. 6.(b). It can be
Dynamic link which can randomly dConstant link 

Three
copies              
in a
depth-1 
binary tree 
(SCase 3) 

Fig. 6. Some examples of networks used in the experiments. (a) How to construct the n

Category I (DCase 1); (c) An example of dynamic networks with link replacement of Ca

Category III (DCase 9).

Table 1
Networks Used in Different SNCP Test Cases.

Copy the network

Fig. 1.(c) Or

generated by [24]

Nodes Links Sinks Target

rate

SCase 1 Generated by [24] 20 80 12 4

SCase 2 Generated by [24] 40 120 12 3

SCase 3 3 copies of Fig.1.(c) 19 30 4 2

SCase 4 7 copies of Fig.1.(c) 43 70 8 2

SCase 5 15 copies of

Fig.1.(c)

91 150 16 2

SCase 6 31 copies of

Fig.1.(c)

187 300 32 2
seen that this category of replacement did not affect the theore-
tically maximal network throughput (TMNT). This is because,
when the dynamic link in a copy of network (c) of Fig. 1 was
disconnected, the original TMNT could be achieved by coding at
node 4 of that copy. Therefore, in a Category I dynamic network
with link replacement, no matter how the dynamic links were
disconnected and reconnected, the TMNT remained the same as if
all dynamic links were connected, i.e. the theoretical maximal
achievable rate (TMAR) at each sink was always 2. The TMNT here
can be calculated as 2�ns. An optimal solution to achieve the
TMNT is: coding at node 4 of a copy only if the associated
dynamic link is disconnected. In other words, the minimal
number of coding nodes/links in the optimal solution, i.e., the
theoretically minimal number of coding links (TMNCL) at time
instant t, is equal to nDDL(t), the number of disconnected dynamic
links at time instant t.

In Category II, for every copy of network (c) in Fig. 1, the
constant links between node 2 and node 6, and node 3 and node
7 in network (c) were replaced by dynamic links, as illustrated in
Fig. 6.(c). Clearly, when a dynamic link was disconnected, the
TMAR at every one of its downstream sink(s) decreased to 1,
regardless of network coding. The TMNT at time instant t can be
calculated as 2�ns-nDS(t), where nDS(t) is the number of down-
stream sinks of disconnected dynamic links at time instant t. The
TMNT can be achieved with no coding, which means the TMNCL is
always zero.
isconnect and reconnect Disconnected dynamic link

etwork of SCase 3; (b) An example of dynamic networks with link replacement of

tegory II (DCase 5); (d) An example of dynamic networks with link replacement of

DNCP Case Based on

which SNCP

Case

Category of

Link

Replacement

Number of

Dynamic

Links

TMNT TMNCL

DCase 1 SCase 3 I 3 2�ns nDDL(t)

DCase 2 SCase 4 I 7 2�ns nDDL(t)

DCase 3 SCase 5 I 15 2�ns nDDL(t)

DCase 4 SCase 6 I 31 2�ns nDDL(t)

DCase 5 SCase 3 II 6 2�ns�nDS(t) 0

DCase 6 SCase 4 II 14 2�ns�nDS(t) 0

DCase 7 SCase 5 II 30 2�ns�nDS(t) 0

DCase 8 SCase 6 II 62 2�ns�nDS(t) 0

DCase 9 SCase 3 III 9 2�ns�nDS(t) nDDLðtÞ

DCase 10 SCase 4 III 21 2�ns�nDS(t) nDDLðtÞ

DCase 11 SCase 5 III 45 2�ns�nDS(t) nDDLðtÞ

DCase 12 SCase 6 III 93 2�ns�nDS(t) nDDLðtÞ
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Category III was actually a combination of Category I and
Category II, as illustrated in Fig. 6.(d). With this category of link
replacement, both the TMNT and the TMNCL were dependent on
how the dynamic links were disconnected and reconnected.
Fortunately, it was quite straightforward to derive the TMNT
and the TMNCL of a dynamic network with link replacement of
Category III by using the following rules. First, if the dynamic link
between node 2 and node 6 (or node 3 and node 7) of a copy was
disconnected, then the TMAR of every downstream sink of this
disconnected link was 1, and no coding or further analysis needed
to be applied to its downstream tree. Second, subject to the first
rule, if all downstream sinks of the left/right tree of a copy had a
TMAR of 1, then no coding was necessary at node 4 of the copy.
Third, subject to the above two rules, if the dynamic link between
node 4 and node 5 of a copy was disconnected, an optimal
solution required coding at node 4. The TMNT at time instant t

was 2�ns�nDS(t), as in Category II, while the TMNCL at time
instant t was equal to nDDLðtÞ, the number of disconnected
dynamic links as described in Rule 3.

To investigate whether the heuristic rules reported in Section
3.4 really worked, three versions of the new GA were used in the
experiments. The first version, denoted as GA1, only employed
Rule 1 and Rule 2, the second version, denoted as GA2, used Rules
1, Rule 2 and Rule 3, and the third version, denoted as GA3,
adopted Rule 1 to Rule 5. In GA1 to GA3, the mutation probability
and crossover probability were 0.1 and 0.4, respectively. The
population size and upper bound for the number of generations
for evolution were 150 and 300, respectively (the same as in [2])
and the best chromosome of a generation was copied to the next
generation directly. In each generation, 15 chromosomes were
generated randomly with no link to the previous generation, in
order to maintain the diversity in the new generation. The
coefficients in the fitness function given by Eq. (5)–(7) were
a1¼a2¼10, a3¼1, a4¼0, a5¼200 and a6¼0. For the sake of
simplicity, in most experiments w(i,j,h)¼0 or 1 in Eq. (4), i.e., the
field size was NW¼2, unless specified otherwise. In each test case,
20 random experiments were conducted for each algorithm and
the network changed randomly 50 times in each DNCP test case.
The average results of the experiments follow in the following
subsections including statistical analysis (standard deviations
(SD) and Kruskal-Wallis tests [26]) for GA1 to GA3. Variations in
the results are revealed by the calculation of the former, whilst
the latter enables the determination of the significance of the
performance differences between GA1, GA2 and GA3. In each
Kruskal-Wallis test, the significance of the difference between the
performances of GA1 and GA2, GA1 and GA3, and GA2 and GA3
was measured by the value of the occurrence probabilities p12, p13

and p23 for the respective pairwise comparisons, with a value
smaller than 0.05 indicating a statistically significant difference.
However, due to the limited space, the SD values are only listed in
Tables 4–6; Only Table 7 includes the results of Kruskal-Wallis
tests in order to give readers an idea what p12, p13 and p23 could
Table 3
Results of SNCP Simulations (Number of Coding Links).

Methods Set I Set II

SCase 1 SCase 2 SCase 3

Best Ave Best Ave Best Av

Minimal 1 0 1.35 0 1.85 3 3.0

Minimal 2 0 1.85 0 1.90 0 2.1

GA [2] 0 1.20 0 1.05 0 0.6

GA1 0 1.20 0 0.80 0 0.0

GA2 0 1.15 0 0.70 0 0.0

GA3 0 0.00 0 0.00 0 0.0
be like, and in other experiments, the results of Kruskal-Wallis
tests are just summarized in the associated discussions.
4.2. The experimental results of SNCP

The average experimental results of the static cases are listed
in Tables 3 and 4 reveals more details about the performance of
GA1 to GA3. From these results one can make the following
observations:
�

e

0

5

5

0

0

0

Table 3 shows that, in the cases of Set I, all the methods perform
similarly. In more precise terms, the GAs reported in this paper,
i.e., GA1, GA2 and GA3, return slightly lower average numbers of
coding links than the existing methods. However, since all
methods can find the optimal (i.e., no coding required), or almost
optimal solutions to both the cases in Set I, we cannot claim that
our new algorithm has a significant advantage when compared
with existing algorithms. Analysis of the network topologies in
Set I suggests that these networks have too many links; for one
network, nl¼4nn, and for the other, nl¼3nn. In the Graph
Drawing Community, graphs (i.e., networks) having nl¼4nn links
are actually considered to be dense [25]. In such a network with
dense links, it is easy to achieve a relatively small target rate
without network coding. Compared with Set I, all the networks
in Set II have nlo2nn. Therefore, although the target rates in Set
II are smaller than those in Set I, it is probably more difficult to
find a no-coding solution to achieve the smaller target rates in
Set II. Actually, in the Set II cases, the results of a comparison of
these methods show significant differences, which may suggest
that the networks in Set II are more suitable for testing different
methods. Therefore, hereafter, we will only focus on analyzing
the results of SCase 3 to SCase 6.

�
 Table 3 also shows that for Set II GA1, GA2 and GA3 clearly

outperform the existing algorithms, which struggle to find the
theoretically optimal solutions, particularly in complicated
cases such as SCase 5 and SCase 6. All three new GAs are
capable of finding the theoretically optimal solutions in all
6 SNCP cases, with GA3 always finding the theoretically
optimal solutions.

�
 Since GA1 adopts exactly the same heuristic rules as the GA in

[2] but displays superior performance, particularly in SCase
5 and SCase 6 suggesting that the GA designs here are more
suitable for the NCP than the GA designs in [2].

�
 On average, GA2 achieves a better performance than GA1 and

the former has one more heuristic rule (Rule 3) it is reasonable
to assume that the performance improvement is due to that
rule. Moreover, as Rule 3 can also apply to the GA of [2], one
my reasonably suppose that the performance of that algorithm
would also be improved by Rule 3. However, when one
examines the p12 in the Kruskal-Wallis test, the values are
much greater than 0.05 in each case, so there is no statistically
SCase 4 SCase 5 SCase 6

Best Ave Best Ave Best Ave

7 7.00 15 15.00 31 31.00

2 4.70 7 11.60 28 52.80

0 2.15 3 5.35 12 17.20

0 0.00 0 0.80 0 6.30

0 0.00 0 0.30 0 5.00

0 0.00 0 0.00 0 0.00



Table 4
Details of the Results of the new GAs (20 Runs for Each Case).

(Average results of 20 runs) SCase 1 SCase 2 SCase 3 SCase 4 SCase 5 SCase 6

Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

Final max fitness GA1 149.65 45.51 190.00 57.98 240.00 0.00 240.00 0.00 181.67 63.46 40.21 35.06

GA2 171.54 42.97 195.66 48.30 240.00 0.00 240.00 0.00 195.64 76.24 59.09 29.14

GA3 280.00 0.00 260.00 0.00 240.00 0.00 240.00 0.00 240.00 0.00 240.00 0.00
How many generations to achieve final max fitness GA1 245.50 58.21 239.60 115.21 2.35 1.94 9.40 3.78 242.40 85.77 300.00 0.00

GA2 210.75 53.06 221.00 102.24 1.05 0.24 5.80 10.20 171.90 129.47 300.00 0.00

GA3 64.40 18.96 39.10 13.83 1.00 0.00 2.20 1.03 11.45 5.89 56.70 38.15
Average minimal coding links GA1 1.20 0.79 0.80 0.92 0.00 0.00 0.00 0.00 0.80 1.03 6.30 7.09

GA2 1.15 1.10 0.70 0.48 0.00 0.00 0.00 0.00 0.30 0.67 5.00 3.86

GA3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Maximum minimal coding links in all tests GA1 4 3 0 1 3 22

GA2 3 1 0 0 2 12

GA3 0 0 0 0 0 0
Minimum actually achieved rate at sinks in all tests GA1 3 3 2 2 1 1

GA2 3 3 2 2 2 1

GA3 4 3 2 2 2 2
Kruskal-Wallis test results p12 0.78 0.91 1.00 1.00 0.82 0.62

p13 0.00 0.00 1.00 1.00 0.01 0.00

P23 0.01 0.01 1.00 1.00 0.02 0.00
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significant difference between the performance of GA1 and
GA2 and the advantage of Rule 3 is minor.

�
 Tables 3 and 4 show that GA3 is the best algorithm of all, its

advantages are confirmed by the associated Kruskal-Wallis
test results, which are smaller than 0.05 in all static cases
except the simplest (SCase 3 and SCase 4) where GA1 and GA2
can often find the optimal solutions. It should be noted that
the theoretical maximum fitness is 240 for SCase 3 to SCase 6.
Table 6 shows that GA3 always achieves this maximum fitness
within 300 generations of evolution (as the associated SD
values are zero). From this table, one can see that GA3
converges much more quickly than GA1 and GA2, always
finding the theoretical optimal solutions. Since the only
difference between GA3 and GA2 is the integration of Rule
4 and Rule 5 into GA3, it is reasonable to conclude that it is the
impact of these two additional rules that play a significant role
in improving the performance of the GA. As mentioned in
Section 3.4, it is the new chromosome structure that makes it
possible to integrate these two rules into the new GA. It should
be noted that Rule 4 and Rule 5 are not designed solely for the
particular networks used in the experiments but are generic
and applicable regardless of topology. Therefore, one may say
that the new chromosome structure exhibits some advantages
as compared with the binary matrix representations used in
[2,11–13], where Rule 4 and Rule 5 are not applicable.

4.3. The experimental results of DNCP

With the 12 DNCP test cases, the performances of GA1 to GA3
can be assessed easily by comparing the actually achieved
network throughput (AANT) and the actually minimal number
of coding links (AMNCL) with the TMNT and the TMNCL. Besides
examining the gap between the actually achieved values and the
theoretical ones, it is also important to determine how many
times the GA has found the optimal solutions, which is reflected
by the convergence rate (CR). The closer the CR is to 1, the better
the performance of the GA. The experimental results are given in
Table 5, from which one can see that:
�
 In all DNCP test cases, the values actually achieved by GA3 are
very close to the theoretical values, and the CR is close to 1.
This implies that, in the dynamic environment, GA3 can still
converge to the theoretically optimal solutions, regardless of
any random changes in the network topology so we can
conclude that the GA developed in this paper is very effective
at resolving the DNCP.

�
 In a similar way to the static experiments, GA1 to GA3 have

almost the same performance in the simple test cases, i.e.,
DCase 1, DCase 2, DCase 5, DCase 6, DCase 9 and DCase 10. In
the complicated test cases, the overall performance of GA2 is
better than that of GA1, i.e., the AANTs of GA2 are generally
larger than, or similar to, those of GA1; the AMNCLs of GA2 are
smaller than those of GA1, and the CRs of GA2 are larger than
those of GA1. There is also a significant increase in perfor-
mance between GA2 and GA3 in the complicated dynamic test
cases. These results again confirm the importance of Rule 3 to
Rule 5. In the Kruskal-Wallis tests for DCase 4, DCase 8 and
DCase 12, the three most complicated test cases, p12 is larger
than 0.05, whilst both p13 and p23 are smaller than 0.05.
Therefore, it may be concluded that Rule 3 does not bring
any statistically significant improvement, whilst Rule 4 and
Rule 5 are highly effective in the DNCP.

�
 It is worthwhile reminding the reader that the main aim of this

DNCP study is to investigate the performance of our GAs in the
situation where the target rate may become theoretically
unachievable. Therefore any method which is based on the
assumption that the target rate is achievable will not be easy
to apply. There are many other important issues in the DNCP,
such as uncertainties, robustness and time delay that remain
to be addressed in future work because the DNCP remains a
largely unexplored area in network coding research. Therefore,
further extensive investigative effort is required to develop
research relating to the DNCP.

�
 One may notice that in Table 5, the average AMNCL is some-

times smaller than the average TMNCL. This is because the
TMNCL is the minimal coding links required to achieve the
TMNT, whilst the GAs sometimes converged to a solution
which does not achieve the TMNT but uses fewer coding links
than the TMNCL.

4.4. Further analysis of rule 4 and rule 5

As has been emphasized throughout this paper, one major
contribution of our reported GAs as compared with other existing
GAs for the NCP is the new chromosome structure, which makes
it possible to calculate the exact information flow on links and



Table 5
Results of the DNCP Tests.

(Ave. results of 20 exp.) TMNT AANT TMNCL AMNCL CR

GA1 GA2 GA3 GA1 GA2 GA3 GA1 GA2 GA3

Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

Link replacement of Category I DCase 1 8.00 8.00 0.00 8.00 0.00 8.00 0.00 1.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 1.00 1.00
DCase 2 16.00 16.00 0.00 16.00 0.00 16.00 0.00 2.00 2.50 2.63 2.25 2.37 2.00 0.00 0.75 0.75 1.00
DCase 3 32.00 31.00 1.15 31.25 1.50 31.75 0.50 4.25 5.00 4.24 4.50 4.78 4.00 4.08 0.25 0.50 0.75
DCase 4 64.00 55.05 2.45 56.25 5.19 62.50 2.98 9.00 10.25 3.09 7.25 5.25 6.80 7.41 0.00 0.00 0.35

Link replacement of Category II DCase 5 7.00 7.00 0.00 7.00 0.00 7.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00
DCase 6 14.75 14.75 0.00 14.75 0.00 14.75 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00
DCase 7 28.50 28.50 0.00 28.50 0.00 28.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00
DCase 8 58.00 55.75 4.27 54.00 58.00 0.00 0.00 3.50 0.25 0.75 1.50 0.00 0.00 0.25 0.30 1.00

Link replacement of Category III DCase 9 6.25 6.25 0.00 6.25 0.00 6.25 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00
DCase 10 12.75 12.75 0.00 12.75 0.00 12.75 0.00 1.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 1.00 1.00
DCase 11 23.50 22.35 8.01 23.50 0.00 23.50 0.00 0.25 3.25 4.05 0.25 0.00 0.25 0.00 0.70 1.00 1.00
DCase 12 46.25 43.25 14.45 44.50 12.41 46.05 0.0 0.45 4.25 4.85 6.30 10.01 1.05 1.53 0.20 0.25 0.75

Table 6
Computational efficiencies of different GAs based on SCASE 6.

(Ave. results of 20 exp.) GA1 GA2 GA3 with a NR4R5 of

1 2 3 4 5 6 7 8 9 10

Final max fitness 40.21 59.09 240.00 240.00 240.00 240.00 240.00 240.00 240.00 240.00 240.00 240.00
Number of coding links 6.30 5.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Generations to converge 300.00 300.00 56.70 28.40 15.60 11.10 4.30 3.90 3.40 3.00 3.00 2.70
Computational time of one generation (sec.) 1.39 1.38 2.92 3.42 4.16 4.85 5.78 6.48 7.09 7.28 7.82 8.72

Total computational time (sec.) 415.70 414.57 168.31 96.78 60.87 49.91 24.91 25.36 24.18 22.00 23.45 23.83
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therefore facilitates the integration of new problem-specific
heuristic rules, particularly Rule 4 and Rule 5 into the system.
To further verify this contribution, the roles played by Rule 4 and
Rule 5 will be examined in more detail in this subsection. For
brevity, the experimental results reported here are all based on
only one case, i.e., SCase 6, which is the most difficult static case.
In all previous experiments, when the focus was to improve a
chromosome, GA3 applied Rule 4 and Rule 5 no more than once.
In other words, GA3 used Rule 4 and Rule 5 to modify no more
than one gene of a chromosome. In this subsection, GA3 is
allowed to apply Rule 4 and Rule 5 to modify up to NR4R5 genes
of a chromosome, where NR4R5¼1, y, 10. All other algorithm
related parameters remain the same as in previous experiments.

The results are given in Table 6, from which the following
observations can be made. GA3 can always find the theoretical
optimal solutions, while GA1 and GA2 often struggle to do so and
so we state that Rule 4 and Rule 5 are the cause of the advantages
and that applying them more times leads to better performance
since the using a larger NR4R5 means that GA3 needs fewer
generations to converge. However, applying these rules causes
an additional computational burden producing longer computa-
tion times for a generation of GA3 than for GA1 and GA2.
Fortunately, when we combine the computational time consumed
by a generation and the generations needed to converge to the
optimal solutions, it becomes clear that the total computational
time consumed by GA3 to find the optimal solutions is actually
smaller than those of GA1 and GA2. Considering the influence of
NR4R5 on the total computational time of GA3, it seems a balance
should be made to set up NR4R5 because the smallest total
computational time occurs with a medium sized NR4R5. In the
case of SCase 6, the best value for NR4R5 is 8, which results in GA3
being able to find the optimal solutions at the fastest speed.

Hence it may be concluded that GA3 outperforms GA1 and
GA2 in terms of not only the quality of the solution but also in
terms of computational efficiency. This shows that the introduc-
tion of Rule 4 and Rule 5 is very advantageous and hence justifies
the use of the new chromosome structure as proposed in
this paper.

4.5. The influence of field size on the performance of our new GAs

It is well known that a large enough field size plays a crucial
role in achieving the maximum possible throughput. However,
Eq. (8) shows that, in the case of our new GAs, the search space
size for a single outgoing link will grow exponentially with the
field size, which implies that a larger field size might make it
more difficult for our new GAs to find even good solutions.
Therefore, the focus of this subsection is to explore and examine
the influence of field size on the performance of our new GAs. Five
field sizes, NW¼2, 4, 6, 8 and 10, were used in GA1, GA2 and GA3
with NR4R5 set to 8 for GA3 based on the above. To maintain this
work at a reasonable length, the networks used in this experiment
were those static cases in Set II, and only the average results for
the final max fitness and total computational time are given in
Table 7.

From the table, several observations can be made. The field
size has a significant influence on the performance of GA1. In the
case of SCase 3, the simplest network of all, GA1 with a different
field size can always find the optimal solutions but it takes more
time when a larger NW is adopted. In the case of SCase 4 and SCase
5, GA1 may still find the optimal solutions when NW is small, but
the solution quality reduces quickly as NW increases. In SCase 6,
the most complex network of all, GA1 struggles and usually can
only find feasible solutions, regardless of the value of NW. It can be
seen in Table 7 that the influence of field size on the performance
of GA2 is similar to its influence on GA1. The only difference is
that GA2 performs a little better than GA1 in the simple cases. In
the case of SCase 6, GA2 has almost the same performance as that



Table 7
The influence of field size on the performance of new GAs.

(Ave. results of 20 exp.) NW

2 4 6 8 10

Mean SD Mean SD Mean SD Mean SD Mean SD

GA1 SCase 3 Final max fitness 240.00 0.00 240.00 0.00 240.00 0.00 240.00 0.00 240.00 0.00

Total computational time (sec.) 0.48 0.03 0.81 0.05 1.06 0.07 3.44 0.11 5.56 0.18

SCase 4 Final max fitness 240.00 0.00 240.00 0.00 123.33 53.41 115.68 58.02 90.61 35.29

Total computational time (sec.) 2.40 0.08 59.26 2.31 88.65 7.34 93.46 6.65 89.27 7.12

SCase 5 Final max fitness 181.67 63.46 54.09 32.71 50.05 36.04 49.72 28.69 52.18 33.60

Total computational time (sec.) 158.85 20.75 200.61 23.82 201.12 19.46 200.25 20.92 200.42 21.44

SCase 6 Final max fitness 40.21 35.06 45.33 30.38 42.95 28.25 39.76 24.74 41.03 25.97

Total computational time (sec.) 415.70 54.81 420.58 49.93 405.17 51.26 411.54 53.48 425.67 55.83

GA2 SCase 3 Final max fitness 240.00 0.00 240.00 0.00 240.00 0.00 240.00 0.00 240.00 0.00

Total computational time (sec.) 0.47 0.02 0.47 0.03 0.50 0.03 0.48 0.03 0.47 0.03

SCase 4 Final max fitness 240.00 0.00 240.00 0.00 240.00 0.00 240.00 0.00 240.00 0.00

Total computational time (sec.) 2.76 0.10 6.88 0.19 7.85 0.20 6.55 0.20 8.43 0.22

SCase 5 Final max fitness 195.64 76.24 142.86 46.86 45.96 34.16 47.45 29.05 46.11 32.33

Total computational time (sec.) 127.24 16.38 201.60 22.75 199.53 24.04 200.97 23.60 204.34 19.74

SCase 6 Final max fitness 59.09 29.14 40.16 37.36 39.50 28.74 41.88 33.06 42.02 30.94

Total computational time (sec.) 414.57 52.70 429.06 50.32 418.63 54.64 424.41 50.96 419.24 53.46

GA3 SCase 3 Final max fitness 240.00 0.00 240.00 0.00 240.00 0.00 240.00 0.00 240.00 0.00

Total computational time (sec.) 2.12 0.09 2.05 0.07 1.97 0.07 2.16 0.08 2.01 0.07

SCase 4 Final max fitness 240.00 0.00 240.00 0.00 240.00 0.00 240.00 0.00 240.00 0.00

Total computational time (sec.) 3.37 0.11 4.15 0.13 3.68 0.10 3.44 0.09 3.51 0.13

SCase 5 Final max fitness 240.00 0.00 240.00 0.00 240.00 0.00 240.00 0.00 240.00 0.00

Total computational time (sec.) 5.36 0.19 5.72 0.21 6.44 0.23 5.51 0.20 7.70 0.23

SCase 6 Final max fitness 240.00 0.00 240.00 0.00 240.00 0.00 240.00 0.00 240.00 0.00

Total computational time (sec.) 22.00 1.07 19.24 1.03 21.27 1.06 24.84 1.11 19.13 1.05
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of GA1, regardless of the value of NW. In all test cases, in terms of
either solution quality or computational time, GA3 has a very
robust performance against the change of NW. Actually, for a given
network, GA3 can always find the optimal solution with similar
computational time, no matter what value NW has. In the
associated Kruskal-Wallis tests, p12 is usually larger than 0.05
(except in SCase 4 with NWZ6), which means the performances
of GA1 and GA2 are statistically the same; p13 is smaller than 0.05
in SCase 4 with NWZ6, and in SCase 5 and SCase 6 for all NW

values, and p23 is smaller than 0.05 in SCase 5 and SCase 6, which
implies GA3 is statistically more robust than GA1 and GA2. In
summary, one can see that the field size has a significant
influence on GA1 and GA2, which have relatively poor local-
searching capability but, due to Rule 4 and Rule 5, no obvious
influence on GA3 is observed. This implies that the proposed GA,
with its new chromosome structure and consequently the new
heuristic rules, can perform satisfactorily for different field sizes.

Based on the test cases for GA3 in Table 7, where NW makes no
difference in the performance of GA3, one may ask: How impor-
tant is field size for exact network coding? In fact, the importance
of field size is mainly appreciated in random network coding
because a larger field size means a higher probability of achieving
the target rate when random coding is used [15–17]. However,
even for a small field size, say NW¼2, there could still exist a
coding scheme to achieve the target rate. For instance, in a
rectangular grid network where the source sends out two signals
using the random coding scheme, the probability that a node
located at grid position (x,y) relative to the source can decode
both signals is at least (1�1/NW)2(xþy�2) [16]. This implies that
for all NWZ2, a rate of 2 is in theory always achievable at any
node in a finite grid network. Unfortunately, the probability is so
small under a small field size, say NW¼2, it is improbable that
random coding can determine a correct coding scheme. By
employing a powerful method of searching, such as GA3, exact
network coding may still stand a good chance of finding a correct
coding scheme; even when NW¼2. In other words, the field size
might not be as important to exact network coding as is it to
random network coding. This is definitely an issue worth further
investigation in future research.
5. Conclusions and future work

As a relatively new information theory, network coding has
already demonstrated a significant influence on many research
areas such as communication systems, network protocol, wireless
networks, and network security. The optimization of network
coding, which aims to minimize network coding resources such as
coding nodes and links, has recently attracted research attention,
with efforts to date focused mainly on the static network coding
problem (SNCP). This paper has considered how to address the
dynamic network coding problem (DNCP) by proposing its
general formulation, and then developing an effective Genetic
Algorithm (GA) to realize it. The new model proposed in this
paper discards the popular assumption that a target rate is always
achievable as long as all nodes allow coding, and introduces the
actually achieved rate at sinks, along with the target rate and
required resources, to the objective function in order to optimize
the system. In order to derive the rate actually achieved, the GA
reported is designed based on a new chromosome structure,
which allows each chromosome to record a specific network
protocol and coding scheme. As a result, the information flow
on links can be checked at any stage of optimization. The new
representation also makes evolutionary operations free of feasi-
bility problems, and makes it easy to integrate some useful
problem-specific heuristic rules into the algorithm. The effective-
ness of the new model and GA is illustrated by simulations of both
the SNCP and the DNCP.

There are several directions for future research so that the NCP
models and the GA reported in this paper may be improved
and/or extended. For example, since the proposed GA takes into
account the entire network topology its scalability may be poor in
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large-scale networks. Therefore, it is necessary to develop dis-
tributed/decentralized versions of the proposed GA. This can be
done partially by subdividing network coding into the problem of
choosing an appropriate coding subgraph (flow-based or queue
length based approaches) and characterizing the throughput of
network coding along with random and deterministic code
constructions.

Furthermore, the DNCP is a major concern of this study but
there are still many important issues in dynamic environments to
be addressed. For instance, the proposed GA exhibits robustness
to some extent against certain changes in network topology but
more theoretical work needs to be done to reveal such robustness
in more depth, and effective methods/guidelines should be
developed to improve such robustness in the future.

The simulation results show that the field size might not be so
important in the case of exact network coding as it is to random
network coding. However, further effort is needed in order to
explore this issue more thoroughly. In specific terms, it could be
very useful to develop some results which can achieve the target
rate by minimizing the field size together with coding resources.

Although the networks adopted in the simulation were widely
used as benchmark problems in previous studies, they are relatively
simple and thus a crucial next step is to test the proposed GA,
probably in a modified form, on some real-world large-scale
networks, such as wireless sensor networks.
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Appendix: Definitions of terms and notations

AANT Actually Achieved Network Throughput
AMNCL Actually Minimal Number of Coding Links
CR Convergence Rate
DNCP Dynamic Network Coding Problem
GA Genetic Algorithm
NCP Network Coding Problem
PCN Potential Coding Node
SNCP Static Network Coding Problem
TMAR Theoretical Maximal Achievable Rate
TMNCL Theoretically Minimal Number of Coding Links
TMNT Theoretically Maximal Network Throughput
fD/fS The objective function in the DNCP/SNCP model.
g(i) The gene associated with link i.
k State of a link.
nIn(i)/nOut(i) Number of incoming/outgoing links of node i.
nn/nl/ns Number of nodes/links/sinks in a network.
sIn(i,j)/sOut(i,j) Signal on the jth incoming/outgoing link of node i.
w(i,j,h), h¼1, y, nIn(i) Weights determining linear coding for the

jth outgoing link of node i.
G(V(t), E(t), t) A network at time instant t, where V(t) and E(t) are

sets of vertices and edges.
My Binary matrix in the SNCP model.
NCN/NCL Number of coding nodes/links.
NR4R5 Number of genes that Rule 4 and Rule 5 are allowed to

modify in a chromosome.
NW Field size for network coding.
R(i) Actually achieved rate at sink i.
RTarget The target rate which is expected to be achieved at

every sink.
aj, j¼1, y 6 Coefficients in fD.
b1 and b2 Coefficients in fS.
YS(i) The set of possible states for link i.
YW Finite set for the value of w(i,j,h).
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