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Abstract Within the food industry, controlling crystallisa-

tion is a key factor governing food structure, texture and

consumer appeal, with some foods requiring the promotion of

crystallisation in a controlled manner (e.g. chocolate) and

others a check (e.g. honey). Sonocrystallisation is the appli-

cation of ultrasound energy to control the nucleation of a

crystallisation process. The use of power ultrasound provides

a useful approach to producing crystals with desired proper-

ties. Sonocrystallisation facilitates process control by modu-

lating crystal size distribution and morphology. This paper

details the governing mechanisms of sonocrystallisation.

Proven and potential applications of the process in foods are

reviewed including chocolate, honey, fats and frozen foods.

Challenges of process adoption such as scale-up are discussed.

Keywords Sonocrystallisation � Ultrasound � Honey �
Sugar � Crystal

Introduction

Crystallisation is the formation of highly organised solid

particles within a homogeneous phase. Crystals can be

grown from the liquid phase, either within a solution, melt

or from the vapour phase. Any liquid solution which is

saturated with a solute can be macroscopically considered

to be in a thermodynamic equilibrium. However, when the

state of the system shifts to non-equilibrium, where the

concentration of the solute in the solution exceeds its sat-

urated (or equilibrium) concentration, crystallisation may

occur. A system under this state is termed ‘‘supersatu-

rated’’. The degree of supersaturation which depends on the

characteristics of the system is the critical driving force for

crystal formation and growth. The most common method

of creating supersaturated solutions includes: cooling,

solvent evaporation, chemical reaction, pH modification,

and alteration in solvent composition. For engineering

structured food products involving crystallisation, temper-

ature change and solvent evaporation approaches are typ-

ical. Crystallisation from solution involves two distinct

steps, nucleation and crystal growth. The former is the birth

of new crystals and is partly a probability driven process

with the number of nuclei formed governed by a statistical

distribution [76]. Crystal growth involves diffusion from

bulk of the solution to crystal surface and reaction onto the

crystal surface. The overall growth rate (G) is the rate of

change of the crystal size (L) with time (t) and can be

expressed as:

G ¼ dL

dt
¼ kgDcg ð1Þ

where kG is the overall growth rate constant, Dc is the

supersaturation, and g is the order of growth rate [70]. The

properties of the crystals obtained depend on these two

steps and their relationship to each other. Qualitatively,

when the rate of nucleation is high relative to the growth

rate, crystals formed are small and numerous [78]. A

detailed insight into the thermodynamics and fundamental
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aspects of crystallization can be obtained from many ref-

erences [20, 47, 60].

The morphology, shape, and habit of a crystal are gen-

erally used to describe a crystal. Morphology indicates a

specific characteristic, material and structure-dependent

shape for a known crystallizing compound and is described

by a combination of miller indices (a form of notation

system in crystallography for planes and directions) of each

face and unit cell information [2]. Crystal ‘‘habit’’ may be

described either with the relative lengths of major axes of

the crystal [62] or by the relative rates of its growth in

different directions [50]. Habit is also defined by the

arrangement of planar faces described by miller indices.

Key concepts in crystallisation are summarised in Fig. 1.

Crystallisation influences product quality for food pro-

cesses including the freeze-concentration of fruit juices,

freezing of ice-cream and other foods, freeze-drying, pro-

duction of edible salt, granulated sugar and chocolates.

Obtaining a desired uniform crystal size distribution is a

challenge due to the inherently variable nucleation and

crystal growth phases. Therefore, a method to control the

nucleation phenomena and turn its stochastic behaviour

into a repeatable and predictable manner would be valuable

for the food industry [31]. The application of ultrasound

energy for controlling crystallisation is referred to as

sonocrystallisation. Sonocrystallisation offers potential

benefits to decrease variability under these situations. The

main mechanism of action in power ultrasound is cavita-

tion, a phenomenon that can be either stable or transient.

Stable cavitation is associated with small bubbles dissolved

in a liquid, while transient cavitation occurs when the

bubble size changes quickly and collapses, and as a result

locally produces very high pressure (100 MPa) and high

temperature (5,000 K) [19, 64, 72]. The concept of sono-

crystallisation emerged around 80 years ago when upon

exposing supercooled melts or supersaturated solutions of

various substances to ultrasound, the nucleation and/or the

growth of crystals was found to be remarkably influenced

[3]. However, many of the advancements to date have

taken place only in the last decade. Within an ultrasonic

field, nucleation is initiated at higher temperatures or in

shorter times resulting in more uniform and smaller crys-

tals [44]. Sonocrystallisation offers an advantage over the

conventional approaches in the following ways [30, 33, 41,

49]:

1. Better product and process consistency

2. Improved crystal purity

3. Ameliorated secondary physical properties (flowabil-

ity, packing density, etc.) of the product

4. Shorter crystallisation cycle times and less frequent

rework

Sonocrystallisation is an under-researched area of food

technology with good potential for improving product

quality and process efficiency. This review summarises the

various studies to this point regarding sonocrystallisation in

food systems, as evidenced from scientific literature and

patents, in addition to providing a brief discussion on

fundamentals of sonocrystallisation.

Mechanism of Sonocrystallisation

As ultrasound travels through a liquid medium, it induces

cavitation if the amplitude is sufficiently high. Cavitation is

caused by the rapid formation and collapse of microscopic

bubbles in a liquid and it leads to transmission of ultrasonic

energy. Stable cavities are relatively long-lived gas bubbles

and exist for many compression and rarefaction cycles

[18]. They are produced at low ultrasound intensities and

usually oscillate for a number of cycles often nonlinearly

about an equilibrium size without collapsing. Transient

cavitation occurs when a cavity experiencing vibration

increases in size progressively over a succession of com-

pression and rarefaction cycles, until it collapses violently.

Most of the effects of power ultrasound (hereafter referred

to as ultrasound only) in sonochemistry have been attrib-

uted to transient cavitation [40]. The possible physical

mechanisms by which ultrasound influences crystallization,

such as localised generation of high pressures, agitation,

Fig. 1 Key concepts in

crystallisation
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supercooling at the bubble surface, increased melting point

of the solute and heterogeneous nucleation were reviewed

by Hem, as far back as 1967 [22]. Acoustic cavitation and

acoustic streaming are the two major phenomena influ-

encing crystallisation. Acoustic streaming can be described

as a steady fluid motion created under the influence of high

amplitude acoustic waves, when they propagate through a

dissipative fluid medium [63]. Cavitation appears to be

particularly effective as a means of inducing nucleation and

there is evidence of dramatic improvements in reproduc-

ibility obtained through such sononucleation [41]. In

addition, acoustic-induced nucleation is a well-defined

initial point for the crystallisation process which permits

better modulation of crystal growth. Ultrasound induces

primary nucleation in nominally particle-free solutions at

much lower supersaturation levels compared to conven-

tional mechanical agitation-based crystallisation [66, 67].

Consequently, sononucleation may eliminate the need for

crystal seeding.

Luque de Castro and Priego-Capote [41] reviewed the

process of sonocrystallisation, wherein they provide a sum-

mary of the underlying mechanisms and influence of process

variables. One of the postulates is that beside the highly

spatially resolved regions of extreme excitation, temperature

and pressure created by bubble collapse and concurrent

extreme pressures experienced during bubble collapse may

reduce the crystallisation temperature with the rapid cooling

that accompanies bubble collapse increasing supersaturation

[23]. Ruecroft et al. [67] postulated that the local cooling

rates, especially during the rapid growth of cavitation bub-

bles (calculated at 107–1010 K/s) play a significant part in

increasing supersaturation. It is worth noting that even a

small change in supersaturation may produce a significant

change in the nucleation rate owing to its inherent depen-

dency on supersaturation at a high order. This group has also

pointed towards the possible role of high-pressure pulses due

to cavitation in the reduction of crystallisation temperature.

Recently, Nalajala and Moholkar [54] revealed that shock

waves originating from ultrasound increase the nucleation

rate and that microturbulence governs the growth of the

nuclei. However, the effect of shock waves has been reported

to be more pronounced than microturbulence (or micro-

convection). They also found that nucleation rate shows an

order of magnitude rise with sonication, while growth rate

(and hence the dominant crystal size) reduces with sonica-

tion as compared to a mechanically agitated system used for

crystallisation. Observations have pointed towards bubbles

as a cause for melting due to their random motion [15]. Such

random motion of the cavitation bubble is also associated

with breakdown of ice dendrites as they form (shown in

Fig. 2).

The zone between the solubility curve and the metastable

limit curve (unstable boundary) is known as metastable zone

width (MZW) [53]. It provides useful information for

developing a controlled crystallisation process. With ultra-

sonication, the MZW can also be narrowed (Fig. 3). More

Fig. 2 Secondary nucleation of ice in a 15 % (w/w) sucrose

solution—(a) ice dendrite formed when frozen without ultrasound;

(b) ice dendrite growth while freezing without ultrasound;

(c) fragmentation of ice dendrites after 2 s of ultrasonication; and

(d) fragments of crystals remaining after 4 s of ultrasonication.

Adapted from Chow et al. [15]
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precisely, sonication decreases the apparent order of the

primary nucleation rate and increases the rate of appearance

of the solid. Seemingly, ultrasonication alters the nucleation

mechanism. This has been justified based on the strong

reduction in the apparent order of nucleation. In order to

establish a relationship between cavitation and nucleation,

several theories have been proposed but the contribution of

ultrasound to crystallisation is still unclear [83].

A substance capable of forming more than one different

crystal is said to exhibit polymorphism, and the different

forms are called polymorphs. The shape or morphology of

the crystals is paramount to industrial operations (Table 1).

In general, it is observed that the supersaturation limit

decreases with ultrasonic waves and crystal morphology is

modified. Also, the average crystal size decreases in the

presence of ultrasonic power [70]. Studies by Li et al. [36]

suggest that ultrasound produces a thin film surface layer

on the crystal in which the crystallising molecules can

better align themselves for incorporation in the unit cell.

To summarise, application of ultrasound to crystallisa-

tion results in [55, 73]:

1. Nucleation at the lowest level of supersaturation where

the crystallisation overcomes the tendency of the

compound to re-dissolve in the solution

2. Narrowing of the metastable zone width

3. Narrow particle size distribution

4. Decrease in the level of undercooling necessary to

achieve crystallisation (hence avoiding crash crystalli-

sation)

5. Increased repeatability and predictability of crystal-

lisation

6. Polymorph control

It should also be noted that when ultrasound is used to

enhance crystallization of any kind, there is an additional

benefit in that it helps to prevent encrustation of crystals on

the cooling elements, which ensures efficient heat transfer

throughout the cooling process [12, 84].

In the past, systems used have relied on high power

ultrasonic probes to produce crystals. Use of high intensity

probes causes intense cavitation and free radical genera-

tion. Further, Sayan et al. [70] reported abrasive effects at

higher input powers. Despite the favourable effects of

ultrasonication on crystal structure, the aforementioned

effects may lead to off-flavour in fats and lipids. However,

by keeping the cooling regime constant, it has been found

that the structure of the crystallised product can be varied

from a material looking similar to cottage cheese through

to a fine cream by varying the ultrasonic intensity [59]. The

crystallisation process can be controlled by means of the

amplitude and frequency of the ultrasonic wave along with

the exposure time, thus controlling crystal size distribution

as well the point at which crystallisation occurs [61]. An

increase in the power dissipation level or increase in the

duty cycle means that the number of cavitational events or

bubbles generated in the reactor increases. Increasing

bubble population may act as templates for new nuclei,

increasing the probability of nucleation. High speed images

of bubble clouds obtained by Chow et al. [14] from an

ultrasonic horn (27 kHz) confirmed the hypothesis of a

possible increase in the number of bubbles with an increase

in the ultrasonic output. However, an increase in power

levels in an attempt to increase the cavitation sites is

impractical due to the accompanying global rise in tem-

perature. Accordingly, the importance of temperature

control of the process vessel contents during high power

ultrasonication is important [34]. Due to the lack of

appropriate sonoreactors for crystallisation, only a few

limited applications to industrial chemical processing cur-

rently exist and on a relatively small scale [24, 45].

Fig. 3 Schematic representation of reduction in the metastable zone

using ultrasound

Table 1 Characters associated with crystal habits of industrial importance

Crystal habit/shape Associated character/behaviour

Long, needle-like Easily broken during centrifugation and drying

Flat, plate-like Difficult to wash during filtration or centrifugation and results in relatively low filtration rates

Complex or twinned crystals More easily broken in transport than compact crystal habits

Rounded or spherical crystals Tend to give considerably less difficulty with caking than do cubical or other compact shapes
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Sugar Crystallisation

Sonocrystallisation has been reported to improve the

crystallisation of organic compounds of low to medium

molecular weight pharmaceuticals [67]. For the food

industries, an interesting application of sonocrystallisation

is the control of sugar crystallite size. This application is of

particular interest since the texture of food products will be

affected by the size of undissolved sugar crystals [46].

Ruecroft et al. [67] studied the effect of ultrasonication

on the metastable zone width reduction for a range of

sugar solutions cooled from 50 to 20 �C. They observed

a significant reduction in zone width in all cases, except

D-lactose.

Studies by Bund and Pandit [8] have revealed that

sonication of a lactose solution (with 85 % v/v ethanol as

an anti-solvent) in an ultrasonic bath (operating at 22 kHz)

leads to early crystallisation (92 % recovery) of lactose as

compared to 15 % recovery for control mechanically stir-

red samples. They also reported an improvement in the size

and shape characteristics of the lactose crystals. This rapid

crystallisation has been attributed to the enhanced mixing

of the anti-solvent into the solution and possibly either by

solvent depletion in the zone of a cavitation bubble or by

cavitation bubbles themselves acting as crystal nucleation

sites. In contrast to the mentioned studies, Hu et al. [26]

reported insignificant effects on white sugar quality during

their studies on ultrasound-aided scale control in evapora-

tive systems. Further studies in this area using a range of

consistent ultrasound parameters are likely to help in

drawing clear insights.

Honey is a supersaturated solution of glucose and it has

a tendency to crystallize spontaneously at room tempera-

ture in the form of glucose monohydrate. Heat treatment

has been employed traditionally to dissolve D-glucose

monohydrate crystals in honey and delay crystallisation.

However, this approach negatively affects the fine-spun

flavour of honey. The beneficial application of power

ultrasound in honey has been reported by many researchers

[29, 39, 75]. The application of ultrasound has been shown

to eliminate existing crystals and also retard the crystalli-

sation process resulting in a cost-effective technology

[38, 39]. Analysis of the crystallisation process suggests

that sonicated honey samples remained in liquid state for

longer periods than heat-treated honey [75]. In addition, no

significant effects on honey quality parameters, such as

moisture content, electrical conductivity or pH, were

observed. Studies have shown that, in general, ultrasound

treatment (with a 24 kHz probe, in batch treatment) leads

to faster dissolution of crystals than thermal treatment [5].

Thrasyvoulou et al. [75] liquefied crystallized honey sam-

ples by ultrasonic waves at 23 kHz and by heating at 60 �C

for 30 min. They reported that the average increase in

Hydroxy Methyl Furfural (HMF) content was significantly

lower (86 %) in samples liquefied by sonication compared

to samples liquefied by heating (129 %).

Recently, Kabbani et al. [28] crystallized rosemary

honey samples treated in an ultrasound bath, filled with

distilled water, at a frequency of 40 kHz in a temperature

range of 40–60 �C. When honey was exposed to ultrasound

waves or heated, the sugar crystals redissolve to a liquid

state. This group reported that ultrasound-treated honey

Fig. 4 Microscopic images of treated honey (a) Control sample.

Before being treated, honey appears as network of needle-shaped

crystals. Dark circles are air bubbles. b 40 �C heat-treated samples

after 20 min of thermal treatment; c 40 �C? US-treated samples after

20 min of treatment. Adapted from Kabbani et al. [27]
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presents a clearer appearance than heat treatment alone

(Fig. 4). Another important finding from this study was that

honey can be liquefied by ultrasound waves without the

need to increase the temperature to 50 �C or higher.

Crystallisation of Ice and Freezing of Foods

Freezing and crystallization are linked in that both pro-

cesses involve initial nucleation followed by crystallization

[69]. Research on sonocrystallisation links cavitation and

the nucleation of ice crystals. Cavitation bubbles arising

from sonication benefit the freezing process by reducing

the resistance to both heat and mass transport at the ice/

liquid interface, thereby increasing the freezing rate [4, 13].

McCausland and Cains [48] have reported enhancement in

nucleation, reduced crystal induction time, more uniform

crystal growth and reproducibility using high intensity low

frequency ultrasound. By applying ultrasound at *70 kHz,

they observed that cavitation bubbles (*30 micron diam-

eter) formed between the growing boundaries of the ice

crystals. The random motion of the cavitation bubble is

also suspected to break down any ice dendrites as they

form [15]. As far back as 1964, Chalmers [9] observed the

primary nucleation of ice to occur at higher temperatures in

an ultrasonic field—consistent with the expansion of water

upon freezing. Studies of both primary and secondary

nucleation of ice in sucrose solutions have shown that both

can be achieved at higher nucleation temperatures in the

presence of ultrasound. Increasing the ultrasound power

level and pulse duration raises the nucleation temperature

[13, 14].

To obtain a greater insight into the sonocrystallisation

mechanism of ice, Chow et al. [15] employed a customised

system for sonication and an optical microscope to capture

the dynamic images. They reported three distinct phe-

nomena occurring in sonocrystallisation:

• Formation of cavitation bubbles at grain boundaries

between ice crystals.

• Progressive melting of ice by cavitation bubbles which

appear to eat their way into the ice phase.

• Fragmentation of dendritic ice structures, thereby

increasing the probability of secondary nucleation.

Olmo et al. [58] employed a novel droplet nucleation

analyser (DNA) to study the influence of ultrasonic waves

on the freezing of distilled water. They observed no sig-

nificant influence on the freezing parameters of the droplets

when ultrasound is applied at non-cavitational intensities

(0.15 W/cm2). The DNA is particularly useful to study the

nucleation process as a stochastic model. Recently, Saclier

et al. [68] froze 10 % w/w mannitol aqueous solution

samples to establish correlations between the final frozen

product ice crystal characteristics and ultrasound-assisted

freezing operating conditions. Their work revealed that an

increase in supercooling and acoustic power resulted in

decreased mean size and increased mean circularity of ice

crystals as observed with optical microscopy.

Similar to any dense and incompressible material, ice

crystals too fracture when subjected to alternating acoustic

stress, leading to products of smaller crystal size distribu-

tion. A small crystal size is highly desirable in many

freezing processes, including ice-cream manufacture and

freeze-drying [84]. In another context, acoustically aided

frozen potatoes have been found to retain better micro-

structure. This has been attributed to the high freezing rates

obtained under high ultrasonic levels and thus the domi-

nation of small intracellular ice crystals [71]. It has also

been shown that ultrasound is beneficial to ice-cream

freezing by shortening the process time [52]. Under the

influence of power ultrasound, a more rapid and even

seeding occurs which leads to shorter times between the

initiation of crystallisation and the complete formation of

ice, ultimately reducing cellular damage [71]. Extensive

research on the use of power ultrasound as a novel tech-

nology to promote the nucleation of ice has been carried

out by Sun and co-workers [16, 35, 71, 84]. However, there

are several issues pertaining to the development of ultra-

sonic freezers which are yet to be addressed before

industrial scale processing can be realised.

The fact that flow streams cannot be generated in solid

foods as they are produced in fluid samples points towards

the need for study of effect of ultrasound on the nucleation

of water in solid samples. In this regard, Kiani et al. [32]

have demonstrated the ability of ultrasound to trigger

nucleation in agar gel, as a solid model food. Recently, the

effect of irradiation temperature, irradiation duration and

ultrasound intensity on the dynamic nucleation of ice in

agar gel samples was reported by Kiani et al. [31]. This

group has also emphasised upon the need for optimisation

of process parameters.

Crystallisation of Fats

Crystallisation of fats is of considerable interest in choco-

late manufacture. For semi-solid fat products such as

chocolates or cocoa butter, the rheological properties of

fats are the result of a combined effect of the SFC (solid fat

content) and the three-dimensional colloidal fat crystal

network micro-structure, including the shape, size, spatial

distribution pattern of the crystals [17, 21, 37, 42, 56, 57,

79, 80, 82]. Cocoa butter can crystallise in a number of

polymorphic forms depending on the triglyceride compo-

sition [1]. Cocoa butter has six polymorphic crystal forms

(I–VI), the principals being a, b and b0 (Table 2). The

Food Eng Rev (2013) 5:36–44 41
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polymorphic forms can be determined by X-ray diffraction.

Form V, in general is the most desirable crystal form in

well-tempered chocolate, imparting resistance to bloom

and good visual sensation [7].

In the traditional tempering sequence, to avoid fat bloom

on chocolates, the unstable forms III and IV of cocoa butter

are crystallised during the first cooling process after which

they transform to stable polymorphs of form V during the

reheating process by a melt-mediated transformation.

However, in the case of sonocrystallisation (20 kHz,

100–300 W for 3 s) for tripalmitoylglycerol and cocoa

butter, it has been found that the stable form is directly

crystallised without the formation and subsequent melt-

mediation of the unstable forms [25, 77]. This points to the

fact that ultrasound irradiation is an efficient tool for con-

trolling polymorphic crystallisation of fats and a reduction

in induction times [51]. Also, for a given fat, once the

range of crystal structures has been determined, it is pos-

sible to select a particular texture by choosing appropriate

ultrasound intensity. Baxter et al. [6] patented a method for

retarding fat bloom on chocolate and other fat composi-

tions comprising of cocoa butter. The method involves

undercooling of the molten fat by at least 3 �C below the

melting point of the b-polymorph crystal and exposure to

an effective amount of ultrasonic energy. Also, the group

invented a method for accelerating the polymorphic

transformation of edible fat compositions, typically butter

fats and fats used in ice-cream, chocolate, margarine and

yoghurt. The patent claims that by undercooling the com-

positions by 4 �C and optimising the time and frequency of

sonication, stable polymorphs can be induced without

exceeding the melting point. U.S. Patent 6,630,185 which

cites the above two patents is another important invention

in relation to sonocrystallisation of fats [3].

Applications of ultrasound in the dairy industry have

been reviewed by Villamiel et al. [81]. An ultrasonication

study of the fat globules present in dairy systems revealed

its potential to provide a unique opportunity to balance the

crystallised and uncrystallised fat ingredients. Martini et al.

[43] studied the effect of high intensity ultrasound on the

crystallisation of fats and found that faster crystallisation

can be achieved with smaller crystals. The samples showed

increased viscosity after sonication due to fat

crystallisation.

The documented effects of ultrasound-induced cavita-

tion on the production of free radicals appear to have

restricted the use of sonocrystallisation for systems

involving fats and oils, which are susceptible to free radi-

cals [3, 65]. Therefore, in spite of an improvement in the

structure of the crystallised product, reports of off-flavours

[10, 11] have most likely prevented it from being a viable

choice for the crystallisation of edible fats. On the contrary,

Patrick et al. [59] reported that sonication at 66 kHz did not

cause any off-flavour production due to oxidative changes

to palm oil. Their results indicate that the optimum con-

ditions for obtaining small crystals in the shortest time

period is just below the cavitation intensity threshold.

Various crystal structures depending on the intensity have

been observed by this team in sonicated (65 kHz) palm oil.

Conclusions

Crystallization is a complex process that is difficult to

control. Research shows that ultrasound has potential to

provide improved control over the crystallisation process

and ultimately food product microstructure. Sonocrystalli-

sation enables significant reductions in the processing

times and the generation of better quality crystals. Ultra-

sound-induced cavitation exerts positive effects on nucle-

ation, crystal growth and transport processes across solid–

liquid boundaries. Extrinsic control parameters such as

frequency, amplitude, ultrasonic intensity, treatment time

and temperature strongly influence these effects. Despite

the nucleation and crystal growth phenomena occurring

sequentially in any crystallization process, the difficulty in

carrying out fundamental investigations lies in the fact that

they are difficult to decouple.

From a food industry perspective, crystallisation of

sugars, honey, ice, fats and oils are a few areas that have

been explored to date. Although sonocrystallisation is a

mature technology within the fields of pharmaceuticals and

fine chemicals, its implementation at an industrial scale for

foods is still in its infancy and needs further investigation.

This also includes the development of continuous, con-

tamination-free sonocrystallisers.

Future Trends

Ultrasound is an emerging technology with several poten-

tial applications in crystallised foods. In spite of the

promising published data, in most of the cases, no decisive

success in the food industry has been achieved to date.

Table 2 Melting point of the polymorphic forms of cocoa butter

Polymorphic forms of cocoa butter Melting point (�C)

Form I b’2 16–18

Form II a 21–22

Form III Mixed 25.5

Form IV b1 27–29

Form V b2 34–35

Form VI b’1 36

Adapted from [74] with modifications

42 Food Eng Rev (2013) 5:36–44
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Studies to examine the complex mechanisms involved in

sonocrystallisation and the parameters governing scale-up

need focus. Future research should report standardised

sonication process parameters to facilitate comparisons

between studies to assess the effects of ultrasound variables

on crystallisation behaviour. Numerical modelling such as

computational fluid dynamics (CFD) coupled with popu-

lation balance modelling (PBM) is likely to provide more

information and a better understanding of the phenomena

involved.
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