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Abstract

Functional connectivity (FC) analysis is a prominent approach to analyzing fMRI data, especially acquired
under the resting state condition. The commonly used linear correlation FC measure bears an implicit
assumption of Gaussianity of the dependence structure. If only the marginals, but not all the bivariate
distributions are Gaussian, linear correlation consistently underestimates the strength of the dependence.
To assess the suitability of linear correlation and the general potential of nonlinear FC measures, we present
a framework for testing and estimating the deviation from Gaussianity by means of comparing mutual
information in the data and its Gaussianized counterpart. We apply this method to 24 sessions of human
resting state fMRI. For each session, matrix of connectivities between 90 anatomical parcel time series
is computed using mutual information and compared to results from its multivariate Gaussian surrogate
that conserves the correlations but cancels any nonlinearity. While the group-level tests confirmed non-
Gaussianity in the FC, the quantitative assessment revealed that the portion of mutual information neglected
by linear correlation is relatively minor – on average only about 5% of the mutual information already
captured by the linear correlation. The marginality of the non-Gaussianity was confirmed in comparisons
using clustering of the parcels – the disagreement between clustering obtained from mutual information
and linear correlation was attributable to random error. We conclude that for this type of data, practical
relevance of nonlinear methods trying to improve over linear correlation might be limited by the fact that
the data are indeed almost Gaussian.
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1. Introduction

Neuroimaging methods play an important role
in the process of extending our understanding of
brain structure and function. In this regard, func-
tional Magnetic Resonance Imaging (fMRI) holds
a central position, particularly due to its non-
invasiveness and its relatively high spatial resolu-
tion. Despite the large number of neuroimaging
studies conducted to delineate brain activations re-
lated to a wide range of cognitive functions, the
fundamental issue of how the brain regions com-
municate to each other still remains open.

The concept of brain functional connectivity

(Friston, 1994) is central to the understanding of
the organized behavior of cortical regions beyond
the simple mapping of their activity. Functional
connectivity analyses of fMRI data as an approach
to study temporal coherence in activity of distant
brain areas, either during task performance or in
resting state, has been widely applied in the neu-
roscience research. Much recent work has focused
on measuring and interpreting the spontaneous sig-
nal fluctuations typically seen during rest (Fox and
Raichle, 2007). The initial reservations regarding
the neural origin of these fluctuations (and the re-
lated connectivity) are now mostly overcome - some
of the strongest evidence for relevance of these sig-
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nal fluctuations is based on the observed direct or
indirect electrophysiological correlates (Laufs, 2008;
Mantini et al., 2007; Miller et al., 2009), although
there is still much to be done in the field of meth-
ods for separation of neural and nonneural sources
of resting signal variation. In the context of this
paper, we stress that in resting state studies, func-
tional connectivity analysis commonly plays a cen-
tral role (Fox and Raichle, 2007; van Dijk et al.,
2010).

The most widely spread method of measuring
functional connectivity between a pair of regions is
computing a linear correlation of activity time series
derived from these regions by e.g. simple spatial av-
eraging across all the voxels in the regions. Linear
correlation is also widely used to obtain so-called
correlation maps by correlating the seed voxel or
seed region signal with signal from all the other
voxels in the brain, or constrained to gray mat-
ter area. From all possible bivariate measures of
association, linear correlation is clearly a method
of first choice, reflecting the assumption that the
relationship between the fMRI time series can be
suitably approximated by a multivariate Gaussian
white noise process. Additionally, linear correlation
is a well-known statistical concept, sufficiently sim-
ple to allow wide use and easy communication of
results between researchers of diverse backgrounds.

On the other hand, from the mid-1980s, nonlinear
approaches to analysis of brain signals are getting
increased interest of researches who consider non-
linearity as an intrinsic property of brain dynam-
ics, see e.g. (Stam, 2005) for a review. Hemody-
namic nonlinearities are known to affect the blood
oxygenation level-dependent (BOLD) fMRI signal
(de Zwart et al., 2009). More specifically, non-
linearity of dependence between fMRI time series
during resting state has been reported (Lahaye
et al., 2003). Use of non-linear measures of func-
tional connectivity for the analysis of resting state
data has been proposed (Deshpande et al., 2006;
Xie et al., 2008; Maxim et al., 2005), particularly in-
cluding measures based on analysis of chaotic non-
linear dynamical systems to analyze resting state
data, suggesting that the assumption of linearity
might be oversimplifying.

The question arises, to what extent and in what
context is it justified and beneficial to use non-
linear measures of functional connectivity and more
generally any indices such as those motivated by
the assumption of non-linear dynamical system as
the underlying mechanism behind the resting state

fMRI signal. When linear correlation is used as a
measure of functional connectivity, there are some
implicit assumptions made. The first is that the
information in the temporal order of the samples
can be ignored (both within each timeseries and
the mutual interaction). While the extent of jus-
tifiability of this assumption deserves exploration
of its own, we keep this interim assumption for
the purposes of this paper, not least in order to
keep the comparison of linear correlation to nonlin-
ear measures fair. Accepting for now the assump-
tion of no role of temporal order of samples, we
ask if the instantaneous (zero-lag) dependence be-
tween the time series, expressed in the probabil-
ity distribution p(X, Y), is fully captured by the
linear correlation r(X,Y). We answer that this is
true under the assumption of bivariate Gaussian-
ity of the distribution. Indeed, a multivariate nor-
mal (Gaussian) distribution is uniquely defined by
its correlation - up to linear shifts and rescaling.
To be more precise, bivariate normal distribution
is fully characterised by its mean µ = (µx, µy) and
its 2 × 2 covariance matrix Cov(X,Y ) – if we al-
low for linear shifting and scaling, the remaining
invariant parameter characterizing fully the distri-
bution is indeed the correlation r(X,Y ). For a bi-
variate Gaussian distribution, the correlation also
uniquely defines the mutual information shared be-
tween the two variables X, Y which can be com-
puted as I(X,Y ) = IGauss(r) ≡ − 1

2 log(1− r2).
On the other side, when the Gaussianity assump-

tion does not hold, the distribution cannot be fully
described by the mean and covariance. More, pos-
sibly infinitely many higher order moments need
to be specified to determine the distribution. As
the correlation is not sufficient to describe the de-
pendence structure, the equation for I(X,Y ) above
cannot hold in general. Interestingly, as we detail
later, the notable properties of normal distributions
enable a derivation of a useful lower bound on mu-
tual information valid for a broad class of probabil-
ity distributions. In particular, for a bivariate dis-
tribution p(X,Y ) with standard normal marginals
p(X), p(Y ), it holds that I(X,Y ) ≥ IGauss(r) =
− 1

2 log(1 − r2), where the equality holds exactly
for bivariate Gaussian distributions. This allows us
to quantify the deviation from Gaussianity as the
difference between the total mutual information of
the two variables I(X,Y ) and the mutual informa-
tion IGauss(r) = − 1

2 log(1− r2) that correspond to
bivariate Gaussian distribution with the observed
correlation r.
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While there are many potential nonlinear FC
measure candidates, mutual information holds a
specific position among these for its generality. In
theory, it is general enough to capture an arbi-
trary form of dependence relation between the vari-
ables without any apriori model restrictions on its
form. The properties of mutual information allow
us not only to test the suitability of linear correla-
tion through probing the Gaussianity of the fMRI
time series, but also to construct a quantitative es-
timate of connectivity information neglected by the
use of linear correlation. This gives the amount of
additional information available and bounds the po-
tential contribution of non-linear alternatives over
the Pearson correlation coefficient.

We implement the outlined ideas by comparing
the total mutual information between the signals
with the mutual information between the signals
in surrogate datasets. These surrogates are gener-
ated in a way that preserves the linear correlation,
but cancels any nonlinear information by enforc-
ing bivariate Gaussian distribution on the surro-
gate signal-pair. This approach allows us to both
test and quantify the deviation from Gaussianity,
providing a principled guide in judging the suit-
ability of linear correlation as a measure of FC.
The focus on bivariate Gaussianity as the crucial
condition of suitability of use of linear correlation
as FC index, along with the illustrative quantita-
tive estimation of the deviation from Gaussianity
by means of the mutual information neglected by
linear correlation, are the two main contributions of
this study to the discussion of fMRI functional con-
nectivity methods. We apply the presented method
to parcel-average time series obtained from rest-
ing state fMRI BOLD signal of healthy subjects,
testing and quantifying the deviation from bivari-
ate Gaussianity. We complement this by assess-
ing the relevance of the detected non-Gaussianity
through tests of agreement of clustering results ob-
tained from original and Gaussianized data.

2. Materials and methods

2.1. Data

Twelve right-handed healthy young volunteers (5
males and 7 females, age range 20 – 31 years) par-
ticipated in the study. Participants were informed
about the experimental procedures and provided
written informed consent. The study design was
approved by the local Ethics Committee of Chieti

University. Subjects lay in a supine position and
viewed a black screen with a centered red fixation
point of 0.3 visual degrees, through a mirror tilted
by 45 degrees. Each volunteer underwent two scan-
ning runs of 10 minutes in a resting-state condition.
Specifically, they were instructed to be relaxed, but
to maintain fixation during scanning. The eye posi-
tion was monitored at 120 Hz during scanning using
an ISCAN eye tracker system.

Scanning was performed with a 3T MR scan-
ner (Achieva; Philips Medical Systems) located
at the Institute for Advanced Biomedical Tech-
nologies in Chieti, Italy. Functional images
were obtained using T2-weighted echo-planar imag-
ing (EPI) with blood oxygenation level-dependent
(BOLD) contrast using SENSE imaging. EPIs
(TR/TE=2000/35 ms) comprised 32 axial slices
acquired continuously in ascending order covering
the entire cerebrum (voxel size=3x3x3.5mm3). For
each scanning run, intitial 5 dummy volumes al-
lowing the MRI signal to reach steady state were
discarded. The next 300 functional volumes were
used for the analysis. A three-dimensional high-
resolution T1-weighted image (TR/TE=9.6/4.6
ms, voxel size=0.98x0.98x1.2mm3) covering the en-
tire brain was acquired at the end of the scanning
session and used for anatomical reference.

Initial data preprocessing was performed using
the SPM5 software package (Wellcome Department
of Cognitive Neurology, London, UK) running un-
der MATLAB (The Mathworks). The preprocess-
ing steps involved the following: (1) correction
for slice-timing differences (2) correction of head-
motion across functional images, (3) coregistration
of the anatomical image and the mean functional
image, and (4) spatial normalization of all images
to a standard stereotaxic space (Montreal Neuro-
logical Institute, MNI) with a voxel size of 3x3x3
mm3.

Ninety parcels from the Automated Anatomical
Labeling (AAL) atlas were used to extract mean
BOLD time series after masking out non-gray mat-
ter voxels. The anatomical positions of the parcels
are described in (Tzourio-Mazoyer et al., 2002). Ev-
ery parcel time series was orthogonalized with re-
spect to motion parameters and global mean signal
and high-pass filtered at 1/120Hz.

2.2. Analysis

As already mentioned in the Introduction, for a
bivariate distribution p(X,Y ) with standard nor-
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mal marginals p(X), p(Y ), it holds that

I(X,Y ) ≥ IGauss = −1

2
log(1− r2), (1)

where the equality holds exactly for bivariate Gaus-
sian distributions. The inequality (1) stems from
the fact, that normal distribution is the maximum
entropy distribution for a given covariance matrix
(or for a given correlation, as we assume without
loss of generality that σ(X) = σ(Y ) = 1). From
the relation between mutual information and en-
tropy (I(X,Y ) = H(X) +H(Y )−H(X,Y )) it fol-
lows that mutual information of Gaussian distribu-
tion IGauss(r) is then minimal from all distribu-
tions of given correlation r, under the assumption
of fixed marginal entropies, which is true when the
marginals have standard normal distribution. Note
that the assumption of normality of the marginals
is far less restrictive than it might seem. First, ap-
proximate data normality is commonly assumed in
areas not restricted to fMRI FC analysis. More im-
portantly, even if we find particular data deviating
strongly from normality, any sample distribution
can be monotonously transformed to match normal
distribution.

To assure precise non-Gaussianity estimates, we
have indeed carried out this ‘normalization’ step.
First, to each of the values xi of the original vari-
able x its sample percentile pi is assigned. Subse-
quently, the values xi of the original variable are re-
placed by values ni corresponding to the respective
percentiles pi in the standard normal distribution
N(0, 1).

For two discrete random variables X1, X2 with
sets of values Ξ1 and Ξ2, the mutual information is
defined as

I(X1, X2) =
∑

x1∈Ξ1

∑
x2∈Ξ2

p(x1, x2) log
p(x1, x2)

p(x1)p(x2)
,

where the probability distribution function is de-
fined by p(xi) = Pr{Xi = xi}, xi ∈ Ξi and the
joint probability distribution function is p(x1, x2)
is defined analogously. When the discrete vari-
ables X1, X2 are obtained from continuous vari-
ables on a continuous probability space, then the
mutual information depends on a partition ξ cho-
sen to discretize the space. Here a simple box-
counting algorithm based on marginal equiquanti-
zation method (Palus et al., 1993) was used, i.e.,
a partition was generated adaptively in one dimen-
sion (for each variable) so that the marginal bins

become equiprobable. This means that there is ap-
proximately the same number of data points in each
marginal bin. In this paper we used a simple prag-
matic choice of Q = 8 bins for each marginal vari-
able Palus and Vejmelka (2007).

For each session, we have computed the mutual
information (MI) for each pair of parcels, yielding a
symmetric 90-by-90 matrix of MI values. Notably,
the raw estimates of mutual information suffer from
some inevitable bias due to finite sample size and
discretization of the variables. While this bias does
not affect the statistical testing framework, it is nec-
essary to correct for it to allow the use of standard
scales for reporting the resulting mutual informa-
tion and for more accurate computation of the ne-
glected information.

This correction is carried out with the help of
sample mutual information estimates for finite-size
(N = 300) random samples from bivariate Gaus-
sian distributions with known correlations (and
therefore known mutual informations IGauss =
− 1

2 log(1− r2)). These are computed for 50000 bi-
variate random samples (each with size N = 300)
for each correlation in the range from 0 to 1 (in 200
steps of 0.005). The average of the 50000 mutual
information estimates gives us an approximate ex-
pected sample mutual information estimate corre-
sponding to each tabulated correlation/mutual in-
formation. Thus we obtain a monotonous function
transforming the known true correlation (or the re-
spective mutual information) to its expected nu-
merical MI estimate for sample size N = 300. Once
generated, the inverse of this monotonous function
can be used to transform each estimated mutual in-
formation to obtain a more accurate bias-corrected
estimate of the true mutual information. (The re-
lationship between the true population mutual in-
formation and the expected finite-sample estimate
is shown in Supplementary Figure 1.)

To compare the (total) mutual information to
the portion of information conveyed in the linear
correlation, for each dataset, 99 random realiza-
tions of multivariate time series preserving the lin-
ear structure but canceling the nonlinear structure
were constructed, and MI was computed for these
surrogates. If the original time series dependence
structure was Gaussian (and therefore fully cap-
tured by the linear correlation), the MI in the sur-
rogates should not differ from the original MI, up
to some random error. The alternative case should
manifest itself as a decrease in the MI in the surro-
gates with respect to the original data.
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The surrogates were constructed as multivariate
Fourier transform (FT) surrogates (Prichard and
Theiler, 1994; Palus, 1997): realizations of multi-
variate linear stochastic process which mimic indi-
vidual spectra of the original time series as well as
their cross-spectrum. The multivariate FT surro-
gates are obtained by computing the Fourier trans-
form of the series, keeping unchanged the mag-
nitudes of the Fourier coefficients (the amplitude
spectrum), but adding the same random number to
the phases of coefficients of the same frequency bin;
the inverse FT into the time domain is then per-
formed. The multivariate FT surrogates preserve
the part of dependence which can be explained by
a multivariate linear stochastic process.

The idea of comparing the MI of data to MI of
’linear’ surrogates rather than directly to linear cor-
relation of data has two aspects. First, it allows
a direct quantitative comparison of the nonlinear
and linear connectivity, while correlation and mu-
tual information estimators have generally differ-
ent properties. Second, generation of the surro-
gates allows direct statistical testing of the differ-
ence. However, this procedure generates 99 esti-
mates of the linear MI for each parcel pair; one for
each surrogate. While these are useful for hypoth-
esis testing, for general presentation of the differ-
ence we use the mean value of these 99 values. In
the following we refer to this as ‘Gaussian’ MI, and
it actually closely estimates the MI of a bivariate
Gaussian distribution IGauss(r) = − 1

2 log(1 − r2),
where r stands for the correlation of the two vari-
ables (see the close match in Figure 3, red and pur-
ple line). The ‘neglected’ MI is estimated by the
difference between data MI and the Gaussian MI:
Ineglected(X,Y ) = I(X,Y )− IGauss(r).

2.3. Statistical tests

For each session and each parcel pair, non-
Gaussianity was tested at p = 0.05 by comparing
the data MI against the MI distribution of the mul-
tivariate FT surrogates. Notably, the parcel-level
results suffer from heavy multiple comparison prob-
lem. As we are primarily interested in the bivariate
non-Gaussianity in general rather than in its spe-
cific allocation to particular parcel-pairs, we further
use the results of the individual tests in a higher-
level analysis.

On a session-level, the number of significant
parcel-pairs in a given session was tested against
the null hypothesis that the number of individ-
ual significant entries has a binomial distribution

B(n = 4005, p = 0.05), where n = 4005 = 90(90−1)
2

is the number of all parcel pairs and p = 0.05 is the
single-entry false positive rate under the condition
of pure Gaussianity of the bivariate distributions.

As it may be argued that the assumption of pair
independence is too lenient, but the exact level of
dependence is difficult to establish, we also carried
out robust group level tests. The group level tests
involved one-sample t-tests. The first was a test of
the percentages of significant pairs in the 24 ses-
sions against the null hypothesis of mean of 5% of
significant parcel-pair results; the second was a test
of the neglected information session-wise averages
(across all parcel-pairs) against the null hypothesis
of zero mean.

To explicitly control for any potential bias in
the numerical generation of the surrogate distribu-
tions, the group-level tests were complemented by
paired t-tests of the same two quantities against
their values obtained from a control set of lin-
ear, ‘shadow’ datasets. For each session, a shadow
dataset was created as a multivariate FT surro-
gate of the marginally normalized original dataset.
Thus the shadow dataset preserved only the lin-
ear (correlation) structure of the original dataset of
the respective session. Subsequently, each shadow
dataset has undergone the same procedure as orig-
inal data, including the initial normalization, gen-
eration of multivariate surrogates, computation of
MI and statistical testing of pair-wise MI against
surrogates. In this way, we have mimicked the full
procedure of processing the original data using a
‘purely linear FC’ shadow dataset, accounting for
any potential slight bias in the detection rate in-
troduced by numerical properties of the algorithm.
Apart from the percentages, we have also tested
the mean neglected information from data versus
shadow datasets by mean of a paired t-test. All the
group-level tests used a p=0.05 significance thresh-
old, but we also report the attained significance
level.

2.4. Relevance for clustering

To explore the relevance of the studied non-
Gaussianity for further data analysis, we have as-
sessed the difference in clustering of anatomical
parcels based on two functional connectivity meth-
ods: mutual information and linear correlation. To
ensure a fair comparison, two preparatory steps
were carried out here. Firstly, to prevent artifi-
cial mismatch due to merely different scaling of
the two functional connectivity measures, we have
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monotoneously rescaled the correlation values by
r 7→ − 1

2 log(1 − r2), effectively yielding an esti-
mate of the ‘linear’ mutual information IGauss. Al-
though transformed to share the scale of mutual
information, this connectivity measure reflects only
the linear correlation between the parcel time se-
ries, unlike the true mutual information computed
by the equiquantization method. Secondly, due
to random error in estimation of functional con-
nectivity measures, we could expect some random
level of disagreement between connectivity matrices
and therefore between clustering based on different
functional connectivity measures. To control for
this effect, we have tested the specific effect of non-
linearity included in the original data by comparing
the agreement between MI and correlation matrices
(represented by IGauss) computed from data with
the agreement of MI and correlation computed from
a multivariate linear surrogate dataset. This way
we effectively test whether the clustering disagree-
ment includes a contribution due to nonlinearity, or
is a mere result of the imperfect estimation of the
connectivity measures from finite-size samples.

2.4.1. Identification of clusters

Functional networks in the parcel time series
were identified using a spectral clustering technique
called Multiclass Spectral Clustering (Yu and Shi,
2003). In this technique clusters (corresponding
to the sought functional networks) are found by
optimizing the Multiway Normalized Cut objec-
tive, which is based on the Normalized Cut objec-
tive (Shi and Malik, 2000). Formally the applied
method operates on weighted graphs where the ver-
tices of the graph correspond to parcels and the
edges of the graph are weighted by the functional
connectivity between the respective parcels. Intu-
itively a good clustering is represented by a parti-
tion of all vertices to disjoint sets (clusters) which
satisfies that the sum of weights of edges between
vertices in different sets is small and the sum of
weights of edges between vertices in the same set is
large. Both of these properties are optimized at the
same time by the applied algorithm - we refer the
reader to (Yu and Shi, 2003) for details. Thus the
optimal partition computed by the algorithm has
clusters which are more internally connected and
less connected with each other. This corresponds
to a grouping of the parcels so that the time series
inside one cluster are similar and at the same time
series of parcels in different clusters are not similar.

2.4.2. Agreement of clusterings

After obtaining the two clusterings of the parcels
from the two connectivity methods, we have to
quantify their agreement. A natural procedure is
to view the cluster assignment of a randomly cho-
sen parcel as a discrete random variable, with in-
teger values ranging from one to the total number
of clusters. Then we can express the agreement be-
tween clusterings obtained for the two connectiv-
ity methods as the mutual information between the
two discrete random variables corresponding to the
two generated clusterings. As the mutual informa-
tion between two variables is bounded by entropy
of each of them, we further normalize the mutual
information, dividing it by the minimum of the en-
tropies of the two variables. Thus, if the clusterings
are identical, then their normalized mutual infor-
mation will be 1, while normalized mutual infor-
mation of 0 corresponds to completely independent
cluster assignments.

To statistically test the nonlinearity effect, we
compared the agreements obtained for the original
data and linearized ‘shadow’ data by means of a
paired t-test. Visual inspection of the clustering
of the group-average connectivity matrices revealed
that the choice of N=10 clusters provides satisfac-
tory results — see Figure 1 for the example cluster-
ing results. Therefore, N=10 clusters were used for
processing each session. For robustness, the analy-
sis was repeated for all other cluster counts in the
range from N=2 to N=20 with FDR<0.05 correc-
tion for multiple comparisons.

3. Results

3.1. Descriptive assessment

In descriptive terms, the data MI has proved very
similar to the Gaussian MI (see Figure 2). In partic-
ular, averaging across all parcel pairs, the data MI
ranged between 0.04 and 0.10 bits for different ses-
sions, while the neglected MI was more than an or-
der of magnitude smaller (0.0005-0.0068 bits). Nev-
ertheless, the neglected MI was consistently posi-
tive, which was not the case for shadow datasets
(ranging from -0.0007 to 0.0016 bits).

Independently of the strength of coupling, the
data MI was moreover typically within the range of
surrogate MI, as illustrated in Figure 3. Here, each
blue dot corresponds to MI of one parcel pair; the
surrogate distribution is represented by red (light
blue, green) lines for mean (1st percentile, 99th
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Figure 1: Clustering of the parcels for the choice of N=10
clusters based on average linear correlation matrix. The
same colour is used for all parcel within a given cluster; an
MNI template anatomical map is underlaid. The obtained
clusters generally correspond to known functional networks.

percentile) of the surrogate distribution. Although
the session with the most non-Gaussianity is de-
picted here, the distribution of computed MI for
data and the corresponding shadow dataset (Fig-
ure 4) are almost indiscernible. Also, apart from
the random error due to MI estimation from short
time series, which is shared by data and shadow
data, both scatters follow well the theoretical pre-
diction of dependence of MI on linear correlation
(IGauss = − 1

2 log(1−r2), valid exactly under Gaus-
sianity, purple line), which is closely approximated
by the surrogate mean.

3.2. Statistical tests

The percentage of parcel pairs with significant
non-Gaussianity was slightly elevated in all sessions
above the 5% expected under the null hypothesis
(ranging from 5.3 to 10.0% of significant pairs in
different sessions). If all the parcel pairs were con-
sidered independent this would constitute signifi-
cant percentage for all but 5 of the sessions con-
sidered (comparing to binomial distribution B(n =

4005, p = 0.05), where n = 4005 = 90(90−1)
2 is the

number of all parcel pairs).
While the assumption of independence of the

pairs might be too lenient, yielding false positive
results, we also carried out group level tests that
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Figure 2: Comparison of the average Gaussian and neglected
information. Each stackbar represents values for one session,
averaged across all parcel pairs.
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Figure 3: Mutual information as function of correlation in an
example dataset. The session with the most non-Gaussianity
is depicted. Each blue dot corresponds to MI of one par-
cel pair; red (light blue, green) lines correspond to mean
(1st percentile, 99th percentile) of the surrogate distribution.
The purple line shows the theoretical mutual information of
an exactly Gaussian distribution with the given correlation
IGauss(r) - it is not well visible as it closely matches the
mean of the surrogate distribution.
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Figure 4: Mutual information as function of correlation in an
example surrogate. Each blue dot corresponds to MI of one
parcel pair; red (light blue, green) lines correspond to mean
(1st percentile, 99th percentile) of the surrogate distribution.
The session with the most non-Gaussianity is depicted.

confirmed the statistical deviation from Gaussian-
ity. In particular, the counts of pairs with signifi-
cant nonlinearity were significantly higher than the
5% expected by chance, as tested by one-sided t-test
(t = 6.95,df = 23, p < 10−6). Also, the neglected
information averaged over parcel pairs was signif-
icantly biased above the mean zero value corre-
sponding to full Gaussianity (t = 8.52,df = 23, p <
10−7).

As described in subsection 2.3, we have also
carried out another group-level tests that explic-
itly control for any potential biases in the sur-
rogate method. The comparison of results from
the original data with those from control (linear)
‘shadow’ datasets confirmed the detection of non-
Gaussianity in the data. The counts of pairs with
significant nonlinearity were significantly higher in
data than similar counts obtained from shadow
datasets, when compared on group level by means
of a paired t-test (t = 6.26,df = 23, p < 10−5).
Also, the neglected information in data averaged
over parcel pairs was positive for all sessions and
on average had value 0.0029 bits while the ne-
glected information in the shadow datasets fluctu-
ated around zero with mean of 0.0006 bits. This
difference was also clearly statistically significant
(t = 6.51,df = 23, p < 10−5).

3.3. Relevance for clustering

We tested whether the neglected information
had a significant effect on the overall structure of

the connectivity, as captured in clustering of the
parcels. N=10 clusters were computed for each ses-
sion using the MI and rescaled linear correlation
FC matrices and the agreement of the two clus-
terings was computed. This was carried out both
for normalized data and their linearized ‘control’
versions. The agreements were generally quite high
(0.80±0.07 on the scale from 0 to 1) and did not dif-
fer significantly from those obtained from the ‘con-
trol’ linearized data (t = 0.39,df = 23, p = 0.70).
This suggest that the mismatch between the clus-
terings based on the two measures was (similarly
as in the case of the ‘control’ dataset) attributable
generally to random error in estimation of the func-
tional connectivity indices from finite size samples.
Repeating the analysis for all cluster counts in the
range N = 2 to N = 20 confirmed the observa-
tion of no significant difference (p < 0.05, FDR
corrected).

4. Discussion

The presented study reveals that the bivariate
dependence structure of the fMRI BOLD regional
time series is captured very well by linear correla-
tion. Indeed, average mutual information was only
several percent higher than the mutual information
in surrogate data that contained only the linear part
of the dependence. This gives explicit and quan-
tifiable argument for the intuitive choice of linear
correlation as a measure of functional connectivity
for fMRI time series.

Nevertheless, we have shown that there is a sta-
tistically significant contribution of non-Gaussian
dependencies in the data, although the effect is
so subtle that testing across many pairs or even
across many sessions was needed to acquire suffi-
cient power for such tests. The detection of non-
Gaussian coupling is not surprising in the light of
the fact that the dynamics of brain activity as well
as the hemodynamic response of the vasculature
contain many nonlinearities.

We have also carried out tests of the relevance
of the neglected information for applications: the
marginality of the difference between full mutual
information and correlation as FC measures was
confirmed in comparisons using clustering of the
parcels – the disagreement between clustering ob-
tained from mutual information in data and its
correlation-based approximation did not exceed the
disagreement due to random error in estimation of
the FC.
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For testing Gaussianity of the bivariate depen-
dences, we have used a framework based on a com-
parison of mutual information evaluated on data
and on surrogate timeseries. Below we discuss the
motivation of the method choice from the variety
of methods available in the wider context of mul-
tivariate normality testing. Importantly, the prob-
lem of testing multivariate normality is more com-
plex than that of testing univariate normality and
for principal reasons there is not a unique agree-
ment in the statistical community on a single best
method for testing multivariate normality. For a
recent review of the topic we refer the reader to
Mecklin and Mundfrom (2004). Many alternative
tests for multivariate normality could therefore be
considered, which may to some extent differ in the
power against particular alternatives. However, the
framework used in this paper has several important
features that make it well suited for the current
study. The first reason is practical; mutual infor-
mation is used both for testing and direct quan-
tification of the deviation from Gaussianity. Cru-
cially, as mutual information is a widely used and
theoretically grounded assumption–free measure of
dependence, this quantification also has a general
direct and intuitive interpretation. Secondly, many
available multivariate normality tests assume inde-
pendence of the samples. This is clearly not valid in
the case of fMRI time series. The use of multivari-
ate linear surrogates in our approach controls any
bias due to temporal autocorrelation and sidesteps
the need to estimate and correct for the reduced
degrees of freedom of the test. Also, the test based
on mutual information has the advantage of being
consistent in the sense of being sensitive to virtu-
ally any departure from Gaussianity of the depen-
dence. This advantageous property is not shared
by many commonly used tests for multivariate nor-
mality such as those based on testing the devia-
tion of skewness or kurtosis of the distribution from
the values valid for normal distribution. Finally,
the used framework allows to test the dependence
structure itself, independently of the normality of
the univariate marginal distributions. This is also
not in general true for other multivariate normality
tests, although adaptations may be possible.

Another topic deserving a discussion is the
adopted multi-level testing strategy and its poten-
tial alternatives. As we mentioned, the binomial
test used to assess the Gaussianity null hypothesis
on session-level might be too lenient due to depen-
dence among the 4005 lower-level tests. We have

avoided speculative estimation of the test interde-
pendence level within each session and rather ro-
bustly tested the Gaussianity on the group level.
Importantly, this was sufficient to statistically re-
ject the Gaussianity null hypothesis. If further evi-
dence on the level of individual parcel-pairs or ses-
sions was required, the use of criteria for hypothesis
testing such as the family-wise error rate and the
false discovery rate to obtain more detailed and po-
tentially more powerful tests could be considered.
Nevertheless, their implementation may prove pro-
hibitively cumbersome in the current context. In
particular, these methods generally involve com-
paring the smallest (or each) p-value against the
corrected significance level p = 0.05/4005 ∼ 10−6.
Such a low p-value is clearly below the resolution of
the sample histograms capturing the null hypothe-
sis with 99 surrogates; the minimal required num-
ber of surrogates would be in the order of millions
for each test, which is technically impractical to in-
feasible. Fitting the null distribution from smaller
number of surrogates by e.g. imposing an assump-
tion of approximate normality of the MI distribu-
tion may seem promising, but may be too crude
and even slight departure from the true null distri-
bution might crucially affect the true significance
levels, particularly for the critical values of the or-
der of 10−6.

It is important to keep in mind that the observed
deviations from Gaussianity might not reflect only
a stationary non-Gaussianity in neuronal connec-
tivity. In the presented framework, deviation from
the null hypothesis could be caused also by nonsta-
tionarity of the signal. Vice versa, non-Gaussianity
might lead to false detection of nonstationarity if
the test assumed a linear Gaussian generating pro-
cess as in (Chang and Glover, 2010). Technically, a
precise isolation of these two effects is extremely
challenging. A practical consideration allows to
reasonably reconcile the two alternative interpreta-
tions: heavy nonstationarity could indeed increase
the estimated non-Gaussianity, but it would also on
its own invalidate the use of simple linear correla-
tion, leading to the same conclusion about its suit-
ability. On another note, we also should not forget
that we are working on the level of fMRI BOLD sig-
nal rather that with neuronal activations - both the
Gaussian and non-Gaussian contributions to FC are
likely to be affected to some extent by non-neural
sources of signal variation. Nevertheless, in the end
the estimation of whether this would play in favor
of or against the use of linear correlation (and how
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much) seems to be entirely speculative at this point.
It can be argued that the amount of non-linear

mutual information detected is likely to depend on
the preprocessing of the data and the acquisition
parameters. In this study, we have used standard
acquisition and preprocessing, maybe with the ex-
ception of not using any explicit temporal low-pass
filtering. The rationale for omission of this step was
to avoid introduction of temporal averaging that
would further diminish an already small nonlinear-
ity in the data. The choice of working with sev-
eral tens of gray matter parcels per hemisphere was
motivated by approach of (Lahaye et al., 2003) as
well as computational feasibility and allowing re-
producibility and comparability across subjects and
datasets. On the other side, incoherence of voxel-
signals within the parcels might lead to losing some
of the nonlinearity on the level of parcel-averaging,
and therefore working on the level of temporal
signal of spatial Independent Component Analysis
(ICA) components or single voxel signal might in
theory be more sensitive to nonlinearity. Exploring
the dependence of the non-Gaussian contribution to
FC on the time series extraction method is a sub-
ject of future work. Also, the analysis presented in
this paper did not consider any time-lags. This is
consistent with comparing to linear correlation as
a measure of FC. The time lags would have to be
included were we interested in assessment of causal
or ‘effective connectivity’ measures (linear versus
nonlinear) – this defines a natural follow-up of the
recent study.

Apart from some minor technical aspects such
as normalisation of the timeseries, our study differs
from the previous probes into the potential of non-
linear fMRI FC such as (Xie et al., 2008; Maxim
et al., 2005; Lahaye et al., 2003; Deshpande et al.,
2006) mainly in that we explicitly focus on the bi-
variate Gaussianity rather than the linearity as-
sumption as the condition of suitability of use of
linear correlation as functional connectivity index.
The deviation from this condition allowed us to
quantify the potential available for arbitrary ‘non-
linear’ connectivity measures. This general inter-
pretation is allowed by the use of a very general de-
pendence measure – mutual information. In theory,
this is able to capture virtually any form of statis-
tical dependence. Of course, some practical limi-
tations stem from the inevitably finite sample size,
forcing us to summarize the results across parcel
pairs and subjects. Last but not least, we provide
an illustrative quantitative estimation of the devia-

tion from Gaussianity by means of the mutual infor-
mation neglected by linear correlation, that should
give a theoretical upper bound on any improvement
to be made by an arbitrary nonlinear connectivity
measure. We note that an earlier attempt towards
quantification of the FC ‘nonlinearity’ was made
in (Lahaye et al., 2003), who reported also the ex-
plained variances by the higher order (nonlinear up
to order 5) terms in the predictor set within a lin-
ear regression framework – although these variances
were not corrected for the effect of extra number
of regressors in the model, and also the considered
model could not capture a more general form of de-
pendence. A similar approach as in Lahaye et al.
(2003) was previously also applied to assessment of
the non(linear) character of connectivity in EEG
data by Pijn et al. (1990). The h2 coefficient ap-
plied in that study expresses the proportion of vari-
ance in one variable explained by another variable
using a polynomial fit; the aim was to provide more
robust detection of interactions than simple linear
correlation in case when the linearity assumption is
violated.

Despite the differences in the aims and method-
ology, our observations agree qualitatively with the
previous studies such as (Lahaye et al., 2003; Xie
et al., 2008) in that we also reject the specific hy-
pothesis of stationary multivariate linear Gaussian
process as the structure of resting state fMRI sig-
nal.

For clarity, we stress again that the above men-
tioned Gaussianity condition, rather than mere lin-
earity of the process, is the key assumption for suit-
ability of use of linear correlation. To fully acknowl-
edge this consider that as stated e.g. in (Bickel
and Buhlmann, 1996), a linear stationary process
(Xt)t∈Z is usually defined by

Xt =

∞∑
j=0

φjεt−j ; (t ∈ Z), (2)

where εt is i.i.d with E[εt] = 0, E|εt|2 < ∞ and∑∞
j=0 φ

2
j <∞.

While the definitions of linear process may differ
in details, in most cases they are general enough to
include processes with non-Gaussian distribution,
which are then not fully described by their corre-
lation structure. This may lead to some confusion,
pointed out in (Nagarajan, 2006), who showed that
some widely used surrogate-based linearity tests
such as those used in (Xie et al., 2008) are actually
sensitive to non-Gaussianity. Careful examination
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of the assumptions of these tests reveals that the
null hypothesis there is that the data come from a
process that is equivalent to a linearly filtered white
Gaussian noise. Of course, if the general definition
of linearity is complemented by the condition that
the generating noise is Gaussian, such a linear pro-
cess is indeed also Gaussian, with probability distri-
bution fully characterised by the mean and covari-
ance structure. Discussion of the potential causes
of rejection of the null hypothesis of ‘linearity’ in
the FT-surrogate framework by processes that are
still linear in the general sense of having the form
(2) is also provided in (Palus, 2007).

For completeness, we note that linearity is also
often discussed as an alternative to nonlinear, po-
tentially chaotic deterministic dynamical systems.
In this context caution is warranted with the in-
terpretation of many ‘chaotic’ characteristics such
as fractional correlation dimension or Lyapunov ex-
ponents when the underlying system might be of
stochastic (non)linear nature rather than determin-
istic (non)linear dynamical system, and particularly
when short time series such as those acquired from
fMRI are being analyzed.

To summarize, we have assessed the suitability of
linear correlation as functional connectivity mea-
sure for fMRI time series by testing and quanti-
fying the deviation from bivariate Gaussianity us-
ing mutual information. The results were as fol-
lows: firstly, the quantitative assessment revealed
that the portion of mutual information neglected
by using linear correlation instead of considering an
arbitrary non-linear form of instantaneous depen-
dence is minor. Secondly, formal group-level test
revealed that the percentage of parcel-pairs with
significant non-Gaussian dependence contribution
is indeed above random. Overall we conclude that
linear correlation of normalized data well captures
the full functional connectivity: although existence
of non-Gaussian contribution to functional connec-
tivity can be established, practical relevance of non-
linear methods trying to improve over linear corre-
lation might be limited by the fact that the data
are indeed almost Gaussian. This was documented
by a quantitative estimate of mutual information
neglected due to the use of linear correlation for
typical resting state fMRI data, as well as by com-
plimentary comparison of results of clustering anal-
ysis.
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