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Abstract

Purpose – The purpose of this paper is to conceptualize a learning-based technology strategy along
three dimensions: proactive technology posture, process adaptation and experimentation, and
collaborative technology sourcing; also to investigate their relationships with plant competitiveness
(cost, quality, delivery, flexibility, and innovation).

Design/methodology/approach – Hypothesized relationships are tested from three perspectives –
direct effects perspective, co-alignment perspective, and mediation perspective – using structural
equation modeling with an international dataset.

Findings – Results show that although the three dimensions of learning-based technology strategy
are not individually related to plant competitiveness (direct effects perspective), their co-alignment
strongly impacts plant competitiveness (co-alignment perspective). Furthermore, this co-alignment
creates an environment in which employee suggestion and feedback can help make sense of novel
situations, leading to superior plant competitiveness (mediation perspective).

Practical implications – Many plants develop some aspects of a learning-based technology
strategy while paying little or no attention to the rest. As the findings of the present study show, such
an approach will contribute very little to achieving competitive advantage in the marketplace. More
specifically, it is shown that three dimensions of learning-based technology strategy, when used
together, have a significant effect on plant competitiveness. Additionally, it is shown that employee
suggestions for improvements drive a learning-based approach to technology strategy. Therefore,
managers should adopt a comprehensive approach to technology strategy using all three dimensions
and engage their employees in the process of technology development and improvement.

Originality/value – The literature has stressed the need for proactive technology posture, process
adaptation and experimentation, and collaborative technology sourcing to gain competitive
advantage. However, little is known about their mutual interdependence and their combined impact
on plant competitiveness. This paper attempts to fill in this gap in the literature.
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1. Introduction
Over the years researchers and practitioners have argued that technology can play an
important role in gaining competitive advantage. However, despite superior
technology, organizations may fail to compete successfully in the marketplace. This
is particularly true if organizations take a tactical rather than a strategic view of
managing their technology. More importantly, we propose that organizations need to
craft their technology strategies that foster continuous learning in order to fully exploit
their potential to gain competitive advantage.

Research on organizational learning and knowledge management can be traced back
at least 40 years (Cyert and March, 1963). However, only since the early 1990s did
researchers begin to explore various aspects of knowledge management in the context of
production technology. Much of this stream of literature has been prescriptive or uses
case studies based on limited observations (Bohn, 1994; Roth et al., 1994; Leonard-Barton,
1992). More recently, a number of researchers have reported their empirical findings on
specific issues related to learning in production environments, such as the relationship
between process innovation and learning by doing (Hatch and Mowery, 1998); learning
dimensions in total quality management efforts (Mukherjee et al., 1998); management of
technological transitions (Iansiti, 2000); knowledge creation through scientific
experimentation (Lapré and van Wassenhove, 2001); the relationship between operating
knowledge and productivity improvement (Skilton and Dooley, 2002); and mechanisms of
knowledge creation in six sigma projects (Choo et al., 2007).

Much of the existing literature takes an organization’s production technologies as
given and investigates the factors that affect learning and their resulting impact on
achieving organizational goals. The literature has paid very little or no attention to
understanding how or why organizations acquired these technologies in the first place.
Were the decisions to acquire and adapt production technologies guided by long-term
objectives to develop new manufacturing capabilities? Do these organizations
collaborate with the technology suppliers to incorporate their process knowledge into
the new production technologies? Do these organizations have coherent technology
strategies that foster knowledge creation and retention? If so, how do these efforts
impact an organization’s ability to compete in the marketplace? These important
questions need to be answered and we attempt to fill in this gap in the literature.
Specifically, we investigate the impact of learning-based technology strategy on
competitiveness. We, however, limit our investigation to production technology and our
unit of analysis is a manufacturing plant.

In this paper, we first describe learning-based technology strategy and its
dimensions. Next, we state hypotheses to be tested and explain the research frameworks.
Section 3 provides the research setting and data source. Model estimation and results are
presented in Sections 4 and 5. Finally, we interpret and discuss our findings and provide
implications for practice.

2. Learning-based technology strategy and competitiveness
Zahra et al. (1999) found two dominant perspectives in the literature on connections
between competitive and technology strategies. The first perspective presents a view of
a company’s technology choice jointly determined by its competitive strategy and
internal capabilities. The second perspective views technology as a subset of resources
that a company can use to attain competitive advantage. Zahra et al. (1999) argue that
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both perspectives are static, and they present a third perspective which posits that
technology and strategy variables influence each other continuously, and hence, both
variables should embody an element of prospecting to pave the way for novel
development to evolve. That is, one aspect of technology strategy should be to explore
and proactively seek manufacturing capabilities in advance of needs and to anticipate
the potential of new manufacturing technologies. A company’s technology strategy
should reflect its proactive technology posture (PTP) which involves constantly
exploring for innovation in process technology and commitment to continuously
advancing its manufacturing technology (Chang et al., 2005).

Technology strategy, according to Ford (1988), involves long-term plans for
acquiring, managing, and exploiting technological knowledge and ability to attain
competitive advantage. Exploitation of technology entails continued experimentation
with existing process technologies so that further improvements can be made. The
knowledge created in the process, in turn, becomes valuable input to developing
technology strategy in the future. Upton and Kim (1998) emphasize the need for
learning by doing on the shop floor manufacturing technologies in order to achieve
continuous process improvement.

As competition has increased, a firm’s technology sourcing strategy has become ever
more critical to its performance (Hill and Rothaermel, 2003). A plant can source its
technology internally or externally. While sourcing all technologies internally increases a
firm’s risk, including obsolescence (Eisenhardt and Martin, 2000), relying completely on
external technology sources can lead to competitive disadvantage due to the inability to
foster innovation internally (Teece, 1986). Thus, extreme positions along the
internal-external technology sourcing continuum may minimize a plant’s potential to be
competitive in the marketplace. Rothaermel and Alexandre (2009) define the ambidexterity
perspective of technology sourcing as the simultaneous pursuit of exploration and
exploitation by combining internal and external sourcing. From the ambidexterity
perspective to technology sourcing, Rothaermel and Alexandre (2009) argue that balancing
internal and external technology sourcing can have positive implications for performance
because this balance allows a firm to leverage its core competency and incorporate
innovations from external sources. Collaborative technology sourcing (CTS), when a plant
works closely with external technology sources to develop new process technology,
provides such a balance. For this reason, developing technology in collaboration has become
an important component of technology strategy (Vilkamo and Keil, 2003; Bailey et al., 1998).

Based on the literature above, we define learning-based technology strategy
(TECHSTR) as a long-term vision for managing technology that sets a pattern of
consistent decision making to foster creation and exploitation of knowledge to attain
superior competitiveness. We conceptualize TECHSTR along three dimensions: PTP,
process adaptation and experimentation (PAE), and CTS.

The exploration-exploitation framework of organizational learning can help
understand the relationship between a firm’s technology sourcing and its performance.
Levinthal and March (1993, p. 105) define exploration as “the pursuit of new knowledge,
of things that might come to be known,” and exploitation as “the use and development
of things already known.” TECHSTR allows for both the exploration and the
exploitation of process technology. Absorptive capacity is the ability of a firm to
identify and value the potential of new knowledge from external sources and
assimilate and integrate the new knowledge into the firm’s existing knowledgebase
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(Rothaermel and Alexandre, 2009; Ouyang, 2008). The learning-based technology
strategy builds and enhances a plant’s absorptive capacity through continual
exploration and exploitation of its process technology.

Drawing on literature on product technology, process technology, and technology
strategy Gregory et al. (1996) present an integrative technology management process
framework. The framework consists of five sub-processes: identification, selection,
acquisition, exploitation, and protection. Identification includes scanning internal and
external knowledge sources to find potential technologies. Selection involves assessing
potential technologies against a set of decision criteria to determine if such technologies
would effectively contribute to long-term technology management. Acquisition entails
making a decision whether to develop the technology in-house and to map out a detailed
plan to accomplish it. Exploitation involves exploiting existing product and process
technology knowledge to develop competencies for current and future market needs.
Protection establishes plans for preventing the competition from gaining access to
technological know-how. The three dimensions of TECHSTR we presented directly
incorporate the four sub-processes (identification, selection, acquisition, and exploitation)
mentioned above and indirectly account for the fifth sub-process (protection) since learning
(particularly, tacit knowledge) that occurs due to exploration and exploitation is embedded
in the socio-technical system making it inimitable and thus providing protection.

In the following section, we present hypotheses relating the dimensions of
learning-based technology strategy to competitiveness. We define competitiveness as
the achievement of an organization relative to its competition with respect to common
competitive priorities such as cost, quality, delivery, flexibility, and development time.

2.1 Proactive technology posture (PTP)
A static strategy is of limited use since any resulting competitive advantage will be
short lived, especially for technology strategy. Organizations that select manufacturing
technologies by only accounting for current contexts and without much regard to the
future needs are destined to be defeated by the competition. Therefore, organizations’
technology strategies need to be dynamic as emphasized by Grant et al. (1991, p. 52):

[. . .] the choice of manufacturing technology is not concerned simply with static optimization,
it must also be concerned with dynamic optimization: the selection of a time path for
manufacturing improvement that sustains competitive advantage [. . .]

Similarly, Day et al. (1997) stressed that “anticipation” of the future is an integral part of
an effective strategy.

Taking a knowledge ecology perspective, Bowonder and Miyake (2000, p. 666)
underscore that failure to adequately attend to “technology scanning” and “technology
foresight” may very quickly lead to the extinction of technological superiority:

Technology scanning concepts deal with the issues relating to the need for monitoring the
technology change process and understanding the emerging technology trajectory [. . .]
The concepts under technology foresight deal with generating a technology vision, creating
technology forecasts, evolving new future directions through cognitive processes.

Therefore, an organization’s effort to anticipate the potential of new manufacturing
technologies and capabilities is expected to help it gain competitive advantage:

H1. PTP of a plant is positively related to its competitiveness.
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2.2 Process adaptation and experimentation (PAE)
Weick (1990) argues, “The point at which technology is introduced is the point at which
it is most susceptible to influence.” Typically, a misalignment occurs with the existing
technologies and/or work systems when a new process technology is introduced. This
apparent disruptive phase provides an opportunity for adaptation, improvement, and
learning, which Tyre and Orlikowski (1993) refer to as the “window of opportunity.”
Experimentation during and after this adaptation phase not only helps resolve the
current misalignment but the accumulated knowledge also provides new insights into
how the entire process can be improved. Such experimentation also helps identify
requisite organizational and skills changes that need to be made for effective adaptation
(Gouvea da Costa and Pinheiro de Lima, 2009).

Chew et al. (1991) suggest four methods of learning related to process technology:
vicarious learning – learning from other organizations; simulation – building artificial
models and experimenting with them; prototyping – building and operating a smaller
version of the process technology; and on-line learning – experimenting with the full
scale of the process technology when it is in use for production. While each method
contributes to process knowledge, they all have advantages and disadvantages. For
example, learning from others (vicarious learning) is feasible if others are willing to
share the knowledge. Simulation is only useful to the extent that the model represents
reality. While on-line learning has the highest fidelity, it is costly.

Many organizations use prototyping to bring a balance between cost and fidelity.
However, in the context of semiconductor manufacturing, Hatch and Mowery (1998,
p. 1466) found that “Even in the unlikely case that the production environment of the
development fab (including production volumes) is identical to that of the
manufacturing fab, some knowledge is lost in the transfer of the manufacturing
process technology from one group of employees to another.” Thus, despite the cost,
online learning is a better environment for the creation and retention of knowledge.
This is not surprising since on-line learning reinforces operational learning as well as
conceptual learning. Based on experienced events, conceptual learning attempts to
make sense of the cause-and-effect relationships, i.e. it attempts to “know-why.”
Operational learning, on the other hand, attempts to “know-how” to effectively resolve
such issues in the future by systematically experimenting based on conceptual learning
(Mukherjee et al., 1998). Thus, for continuous exploitation of knowledge, the role of
experimentation with process technology cannot be over emphasized:

H2. Effort in PAE of a plant is positively related to its competitiveness.

2.3 Collaborative technology sourcing (CTS)
From time to time organizations need to acquire new process technologies. Such
initiatives are often driven by competitive pressure or strategic intent and involve
major capital outlay. As such, any wrong decisions can have tremendous impact on the
organization’s survival. These acquisitions also present opportunities to influence
development of the new technologies based on the organization’s accumulated process
knowledge. Such a collaborative effort in sourcing technologies can create competitive
advantage. For this reason, firms are increasingly managing technology partnerships
as an integrated element of their technology strategy (Vilkamo and Keil, 2003).

Using complexity theory, Davenport et al. (2003) reconceptualize technology
strategy as the sum of a number of dynamic processes, particularly mutual learning
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and co-evolution with collaborative technology partners, which transform a firm from a
broad dabbler to a focused technology exploiter. In a project-level study, Iansiti (2000:
170) argues:

Technology selection decisions in projects may be microscopic in nature when compared to
setting firm objectives. When their effect is aggregated, however, these decisions can have a
critical strategic impact on the performance and cost of future products, the speed and
efficiency with which they are developed, and the firm’s overall competitiveness.

An organization has a unique window of opportunity during the time technology
selection decisions are being made when it can work closely with its technology
suppliers to develop process technologies by incorporating its accumulated process
knowledge into the design. Such efforts help improve process technologies and are
expected to enhance the organization’s competitiveness:

H3. Effort in CTS of a plant is positively related to its competitiveness.

2.4 Synergy among three dimensions
The dimensions of learning-based technology strategy are mutually reinforcing. For
example, an organization with a PTP is in constant search of next generation process
capabilities. PAE allows that organization to continuously learn through
experimentation and identify capabilities that will be needed in the future. A broad
range of experimentation also helps that organization recognize new technological
possibilities (Lant and Mezias, 1992; Daft and Weick, 1984). Finally, CTS allows the
organization to work with technology suppliers to incorporate knowledge to achieve
process capabilities it identified during experimentation. Working together, these
dimensions form a co-alignment or internal consistency that is expected to enhance an
organization’s competitiveness more than any one of the dimensions alone:

H4. Co-alignment of the three dimensions of a learning-based technology strategy
is positively related to plant competitiveness.

2.5 Role of employee suggestion and feedback (ESF)
Companies spend a huge amount of time, money, and effort to analyze and refine
technology strategies but they do not pay sufficient attention to harnessing the
human resources needed to realize the goals of these strategies (Averett, 2001). This is
surprising given that an organization’s attempt to create and retain process knowledge
cannot be successful without employees’ active involvement. The employees’
keen observations help identify idiosyncratic behaviors of a production system
(Leonard-Barton, 1992). The accumulation of such observations leads to tacit
knowledge that is hard to emulate and, hence, can be a source of competitive advantage.
To take full advantage of this phenomenon, an organization needs to create an
atmosphere in which employees are encouraged to make improvement suggestions.
Furthermore, to gain the confidence of the employees, management has to show that it
values all suggestions and takes them seriously. This can be accomplished by
implementing those suggestions that have potential to improve process technology and
explaining why other suggestions are not implemented.

Without proper encouragement or the right environment, employees will avoid
making suggestions, resulting in the loss of many potential learning opportunities.
Consequently, the organization will fail to exploit employees’ tacit knowledge to gain

Knowledge
management

11



competitive advantage. The learning-based technology strategy described above
creates an environment in which employees’ suggestions can be effectively channeled
to identify and accumulate process knowledge. Thus, learning-based technology
strategy facilitates the link between employee suggestions and competitiveness:

H5. The impact of employee suggestions and feedback on a plant’s
competitiveness is mediated by the learning-based technology strategy.

2.6 The theoretical frameworks
Working together, the three dimensions of learning-based technology strategy foster
both tacit and explicit knowledge that is valuable and hard to imitate, which leads to
superior organizational competitiveness as predicted by the resource-based view
(Barney, 1991). Additionally, from the dynamic capabilities perspective (Teece et al.,
1997), learning-based technology strategy and employee involvement (employee
suggestions and feedback) enable an organization to integrate, build, and reconfigure
socio-technical competencies to address rapidly-changing environments and, thereby,
enhance organizational competitiveness (Figure 1).

3. Research setting and data source
We use data collected as part of the high performance manufacturing (HPM) project
being conducted by a team of researchers at several universities in the USA, Europe,
and Asia (Schroeder and Flynn, 2001). Face validity of the questionnaires was insured
by having three different researchers develop items for the scales. The researchers then
reviewed these items for content validity. The questionnaires were pilot tested using
industry experts and academics, and some of the items had to be rephrased to make
them more representative of the intended constructs. The questionnaires were
translated and then back-translated by different individuals to check for accuracy. Any
differences identified during this process were resolved before administering the
surveys in non-English speaking countries.

The stratified random sampling method was used to select plants from three
industries: automobile, electronic, and machinery. Interested plant managers appointed
plant research coordinators who communicated with the researchers during the data
collection process. These plant research coordinators were managers with at least three
years of experience in the plant and were knowledgeable about employees’ major
responsibilities in the plant. The coordinators were instrumental in identifying the right
respondents (managers, engineers, supervisors, and workers) who had pertinent
knowledge, experience, and ability to provide accurate and unbiased responses to the
questionnaires.

About 60 percent of the manufacturing plants contacted agreed to participate in the
study. This high response rate may be attributable to the fact that each plant manager
was contacted by telephone by one the researchers. Moreover, the researcher promised
the participating managers a profile report regarding the plant’s standing compared to
other plants in the industry relative to manufacturing practices used and performance
achieved. We use a part of the HPM data from Germany, Italy, Japan, the UK, and the
USA for the present study which includes 152 manufacturing plants after eliminating
responses with missing data.
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4. Measurement model
Structural equation modeling was employed to test the hypotheses using analysis of
moment structure software. The two-step modeling approach was used where the fit of
the structural model is assessed independently of the measurement models (Anderson
and Gerbing, 1988; Schumacker and Lomax, 1996). The first step involves estimating
and, if necessary, respecifying the measurement model. The second step involves
predicting the direct and indirect relations specified among latent variables in the
structural model. Thus, the measurement models provide an assessment of convergent
and discriminant validity, while the structural model provides an assessment of
predictive validity.

Figure 1.
Theoretical frameworks

(a) Direct effects perspective

(b) Coalingnment perspective

(c) Mediation perspective

H1

H2

H3

Proactive
technology

posture (PTP)

Process adaptation
and experimentation

(PAE)

Collaborative
technology

sourcing (CTS)

Competitiveness
(COMP)

Proactive
technology

posture (PTP)

Collaborative
technology

sourcing (CTS)

Competitiveness
(COMP)

H4Process adaptation
and experimentation

(PAE)

Learning based
technology strategy

(TECHSTR)

Employee
suggestion and
feedback (ESF)

Learning based
technology strategy

(TECHSTR)

Competitiveness
(COMP)

H5
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Constructs used for this study were measured using five-point scales as shown in
Appendix. The measurement properties of each construct were assessed by evaluating
unidimensionality, reliability, and convergent and discriminant validity using
confirmatory factor analysis (Hair et al., 1998). The metric of each factor was
established by fixing the factor loading of one item to 1.0 (Sharma, 1996). In all situations
where refinement was indicated, items were deleted one at a time and the fit of the
revised model assessed before further action. Theoretical implications were considered
before the final decision was made to delete an item. The data were examined for
skewness, kurtosis, and normality before conducting confirmatory factor analyses. No
serious violations were observed.

A review of the factor loadings, asymptotically standardized residual values, and
modification indices suggests a few items should be dropped from the scales. Each of
these items was examined to ensure that dropping it did not compromise content
validity of the scale. Items were dropped one at a time and the measurement model was
respecified. The x 2 statistic (x 2 ¼ 111.18) for the final measurement model (Appendix
for dropped items) was non-significant ( p ¼ 0.11) indicating that the covariance matrix
of the proposed model does not differ significantly from the observed covariance
matrix. However, researchers tend to use other heuristics given this statistic’s
sensitivity to sample size.

Historically, Bentler and Bonett’s (1980) normed fit index (NFI) has been one of the
most frequently reported fit indices. Bentler (1990) has revised the NFI to account for
sample size and proposed the comparative fit index (CFI) which, according to Bentler,
should be the index of choice. Based on their experiment, Ding et al. (1995) concluded
that x 2 per degree of freedom and non-NFI (NNFI) were independent of sample size and
CFI was affected by sample size to a small degree. Because of these considerations, the
x 2 per degree of freedom, CFI, and NNFI have become primary indices of choice to
assess model fit among researchers (Koufteros, 1999). We report these fit indexes along
with the root mean square error of approximation (RMSEA) which accounts for model
complexity (Browne and Cudeck, 1993).

Based on these indices the final measurement model had acceptable fit
(x 2/df ¼ 1.18, CFI ¼ 0.98, NNFI ¼ 0.97, and RMSEA ¼ 0.03). Table I shows the
standardized regression weights for the final measurement model. Evidence of
convergent validity was seen via the significance of all factor loadings (at p , 0.001
level). Each of the final scales was found to be unidimensional and demonstrated
acceptable internal consistency. All scales showed high reliability (a $ 0.7) except for
CTS for which a was 0.62 (Appendix). However, this value of Cronbach’s alpha was
considered adequate given that CTS is a new scale (Boyer and Pagell, 2000; Flynn et al.,
1990). We examine discriminant validity of the constructs next.

Discriminant validity refers to the degree to which a construct differs from other
related constructs. The discriminant validity between two scales is supported if the
correlation between the scales is significantly less than one. Therefore, the discriminant
validity of the scales was established by estimating 12 MLE models (six constrained to
correlation of 1, and six unconstrained) and conducting six x 2 difference tests. Table II
lists the results of these tests. Each of the x 2 values associated with the estimates of
unconstrained models is lower than the corresponding constrained models, and
respective x 2 differences are highly significant ( p # 0.001), demonstrating
discriminant validity of the scales. Interpretation of the measurement and structural
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model results should be undertaken with care because the same observations were used
for calibration and validation purposes due to small sample size.

5. Analysis and results
5.1 Structural model: direct effects perspective
The first three hypotheses (H1-H3) propose direct relationships between plant
competitiveness and each of the dimensions of learning-based technology strategy:
PTP, PAE, and CTS. These three relationships were tested by linking each dimension
to plant competitiveness directly through three paths as shown in Figure 2. One of the
factor loadings for each factor was set to 1.0 to alleviate scale indeterminacy problems.
Although the model showed an acceptable fit (x 2 ¼ 77.22, p ¼ 0.06, x 2/df ¼ 1.31,
CFI ¼ 0.97, NNFI ¼ 0.96, and RMSEA ¼ 0.05), none of the relationships hypothesized
were statistically significant at 0.05 level (Figure 2). Thus, H1, H2, and H3 were not
supported by the data.

Indicator Construct Standardized regression weight

COST ˆ COMP 0.53
QUAL ˆ COMP 0.61
DELI ˆ COMP 0.65
FLEX ˆ COMP 0.57
INNO ˆ COMP 0.55
PTP1 ˆ PTP 0.80
PTP2 ˆ PTP 0.78
PTP4 ˆ PTP 0.78
PAE1 ˆ PAE 0.74
PAE2 ˆ PAE 0.57
PAE3 ˆ PAE 0.69
CTS1 ˆ CTS 0.80
CTS2 ˆ CTS 0.57
ESF1 ˆ ESF 0.62
ESF2 ˆ ESF 0.71
ESF4 ˆ ESF 0.94

Note: All values are significant at: p # 0.001

Table I.
Standardized regression

weights for the
measurement model

Test Correlation t-value Constrained model x 2(df) Unconstrained model x 2(df) x 2 difference

PTP with [. . .]
PAE 0.78 13.02 24.06 (9) 6.99 (8) 17.07
CTS 0.72 9.15 16.41 (5) 4.37 (4) 12.04
ESF 0.52 7.11 111.41 (9) 6.20 (8) 105.20
PAE with [. . .]
CTS 0.68 7.36 14.28 (5) 0.88 (4) 13.40
ESF 0.65 9.16 44.05 (9) 7.43 (8) 36.62
CTS with [. . .]
ESF 0.41 4.15 31.11 (5) 3.13 (4) 27.98

Note: All t-values and x 2 differences are significant at: p # 0.001

Table II.
Results of discrimination

validity tests
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5.2 Structural model: co-alignment perspective
The H4 proposes that three dimensions (PTP, PAE, and CTS) of learning-based
technology strategy working together foster synergy and, thus, form a co-alignment with
a strong positive relationship to plant competitiveness. This co-alignment perspective was
examined with a second-order factor model where the first-order factors represent the
dimensions to be coaligned. Here, the second-order factor represents an unobservable
construct which we refer to as learning-based technology strategy (TECHSTR) as shown
in Figure 3. Fit indexes (x 2 ¼ 18.25,p ¼ 0.37,x 2/df ¼ 1.07, CFI ¼ 0.99, NNFI ¼ 0.99, and
RMSEA ¼ 0.02) indicate an acceptable fit of this second-order factor model to the data.
The path loadings from learning-based technology strategy to each of the three
dimensions were positive and significant (p , 0.001). Therefore, the second-order factor
analysis indicates that the pattern of covariation among PTP, PAE, and CTS is adequately
captured as a separate unobservable construct – TECHSTR.

Figure 4 shows the model used to test H4 where the second-order factor (TECHSTR)
is related to plant competitiveness (COMP). The model showed an acceptable fit
(x 2 ¼ 77.49, p ¼ 0.08, x 2/df ¼ 1.27, CFI ¼ 0.97, NNFI ¼ 0.97, and RMSEA ¼ 0.04).
The path loadings from TECHSTR to each of the three dimensions were still positive
and significant. Importantly, the relationship between learning-based technology
strategy (TECHSTR) and plant competitiveness (COMP) was positive and highly
significant ( p , 0.001, Figure 4), with TECHSTR accounting for 52 percent of the
variation in COMP. Thus, the data provided support for H4.

5.3 Structural model: mediation perspective
H5 proposes that learning-based technology strategy (TECHSTR) mediates the
relationship between ESF and plant competitiveness (COMP). Figure 5 shows the
mediation effect model used to test H5. The model showed an acceptable fit

Figure 2.
Structural model: direct
effects system

PTP

PTP1p1

PTP2p2

PTP4p4

PAE

PAE1a1

PAE2a2
CTS

CTS1c1

CTS2c2
PAE3a3

COMP

COSTr1

QUALr2

DELIr3

FLEXr4

INNOr5

d5

0.41* 0.05*0.28*

Note: Not significant at: *p ≤ 0.05
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(x 2 ¼ 115.51, p ¼ 0.12, x 2/df ¼ 1.17, CFI ¼ 0.98, NNFI ¼ 0.98, and RMSEA ¼ 0.03).
The path loading between ESF and learning-based technology strategy (TECHSTR)
was highly significant ( p , 0.001, Figure 5). Similarly, the path loading between
learning-based technology strategy (TECHSTR) and plant competitiveness (COMP)
was also highly significant, providing support for H5.

6. Discussion
The three hypotheses (H1-H3) representing the direct effects perspective were not
supported, yet the hypothesis related to co-alignment perspective was supported. In the
context of strategic manufacturing planning process and its effectiveness,
Papke-Shields et al. (2002) found similar results where the direct effects perspective
was not supported while the co-alignment perspective was. The findings of our study
are consistent with the view expressed by strategy researchers that attention to any one
area is insufficient for an effective strategy; consistent attention to all areas is needed
(Venkatraman, 1989). More specifically, this finding emphasizes the need for a systems
approach to developing learning-based technology strategy. From a socio-technical
systems viewpoint, learning-based technology strategy provides a platform on which
technology, existing know-how, and work procedures undergo mutual adaptation to
achieve a fit between the technical sub-system and the social sub-system. Such a fit
yields shared understanding and knowledge that is socially constructed and embedded
within the organization. The three dimensions of learning-based technology strategy,
when implemented together, foster synergy, leading to superior competitiveness,

Figure 3.
Second-order factor

analysis for
learning-based technology

strategy

PTP

PTP1p1

PTP2p2

PTP4p4

PAE

PAE1a1

PAE2a2

CTS

CTS1c1

CTS2c2

TECHSTR

PAE3a3

d1

d2

d3

0.85*

0.91*

0.80*

Note: Significant at: *p ≤ 0.001
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because other organizations have difficulty emulating such a socio-technical system.
Many plants take a piecemeal approach and develop some aspects of learning-based
technology strategy while paying little or no attention to the rest. As the findings of the
present study show, such an approach will contribute very little to achieving
competitive advantage in the marketplace.

Employees are reservoirs of process knowledge; thus, knowledge accumulation
cannot happen without their active participation. However, management has to create
a proper environment to foster employee involvement and idea exchange. The
learning-based technology strategy provides such a conducive environment in which
employees can share, suggest, and experiment with their ideas for process
improvement which ultimately leads to enhanced plant competitiveness. Thus,
support for the mediation perspective (H5) highlights the importance of learning-based
technology strategy (TECHSTR) in the context of ESF. H5 also draws from the
“sensemaking” perspective and resource-based view. The process of attaching
meaning to a stream of experience, information, and insights has been termed
“sensemaking” (Weick, 1995). Employees gather knowledge as they interact with each
other in a social context (such as a production environment). This knowledge and

Figure 4.
Structural model:
co-alignment perspective
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understanding impacts employees’ behaviors, perceptions, interpretations, and
cognitions (Berger and Luckmann, 1966) which helps them make sense of novel
situations, generating both tacit and explicit knowledge. This aspect of learning-based
technology strategy (TECHSTR) provides knowledge ambiguity, asset specificity,
complexity, and inimitability leading to superior competitiveness, as predicted by the
resource-based view (Barney, 1991).

Figure 5.
Structural model:
mediated system
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7. Conclusions
Liu and Barrar (2009) report that consistency between a company’s competitive strategy
and its manufacturing technology decisions positively impact its performance. Thus,
the role of long-term process technology decisions on plant competitiveness cannot
be overemphasized. Based on manufacturing plants, our study indicates that the
management of technology has significant implications for competitiveness. More
specifically, a plant with PTPs is expected to achieve superior competitiveness if it is
able to foster an environment in which learning can take place during PAE. The
resulting knowledge can then be utilized strategically in technology sourcing decisions.
The findings of this study also emphasize the ineffectiveness of a piecemeal approach to
technology management. This has an important implication for practice as many
organizations pursue only parts of learning-based technology strategy and
consequently fail to increase their competitiveness.

Organizational knowledge enhances a firm’s ability to cope with environmental
changes so it can differentiate itself from competitors and provide competitive
advantage in the marketplace (Leonard-Barton, 1992). The resource-based view of the
firm posits that resources which are valuable, rare, inimitable, and lack a substitute are
expected to generate superior competitiveness (Barney, 1991). The results of our study
show that the learning-based technology strategy provides an environment and context
in which production technology being used and process knowledge created can be
inimitable, yielding superior competitiveness.
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Appendix

PTP a ¼ 0.83
PTP1 We pursue long-range programs in order to acquire manufacturing capabilities in

advance of our needs
PTP2 We make an effort to anticipate the potential of new manufacturing practices and

technologies
PTP3 Our plant stays on the leading edge of new technology in our industrya

PTP4 We are constantly thinking of the next generation of technology
PTP5 Manufacturing capabilities in the plant are stagnanta,b

PAE a ¼ 0.70
PAE1 We search for continuing learning and improvement after installation of the equipment
PAE2 Once a new process is working, we leave it well enough aloneb

PAE3 We pay particular attention to the necessary organizational and skill changes needed for
new processes

PAE4 We are a leader in the effective use of new process technologya

PAE5 We often fail to achieve the potential of new process technologya,b

CTS a ¼ 0.62
CTS1 We work closely with suppliers in developing new process technology
CTS2 Working with suppliers of equipment is critical to our plant’s success
CTS3 We buy new process equipment off the shelfb,a

CTS4 Even if we do not build proprietary process equipment, we have a strong influence over
its designa

ESF a ¼ 0.80
ESF1 Management takes all product and process improvement suggestions seriously.
ESF2 We are encouraged to make suggestions for improving performance at this plant.
ESF3 Management tells us why our suggestions are implemented or not used.a

ESF4 Many useful suggestions are implemented at this plant.
ESF5 When I think of ways to improve manufacturing processes at this plant, I make

suggestions to management.a

Competitiveness (COMP) a ¼ 0.72
COST Unit cost of manufacturing
QUAL Quality of product conformance
DELI Delivery performance (on-time delivery)
FLEX Flexibility to change volume
INNO Speed of new product introduction

Notes: aThis item was dropped from the scale following refinement; a ¼ Cronbach’s alpha; all scale
questions use a five-point Likert response scale where 1 ¼ I strongly disagree and 5 ¼ I strongly
agree; please circle the number which indicates your opinion about how your plant compares to its
competition in your industry. 5 ¼ superior, 4 ¼ better than average, 3 ¼ average or equal to the
competition, 2 ¼ below average, 1 ¼ poor or low end of the industry; bthis item is reverse coded Table AI.
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