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This paper describes a numerical model which is used for the computation of stresses, electric potential
and displacement histories in a hollow piezoelectric sphere subjected to an internal pressure and
a distributed temperature field. The mentioned model is on the basis of the Mendelson’s method which
predicts the variation of the stresses, electric potential and displacement with time through the thick-
ness. The creep constitutive model for the effective strain is on the basis of the BaileyeNorton’s law.
Since, creep strains are time, temperature and stress dependent, the closed form solution cannot be
represented for this constitutive differential equation. Therefore, a semi-analytical method in conjunc-
tion with the method of successive approximation has been proposed for this analysis. The results
indicate that in mechanical boundary condition which the sphere acts as an actuator, the effect of time-
dependent creep causes to change radial stresses from compressive to tensile after 15 years. Hence, the
actuator is not usable after 15 years. It has been found that in electrical boundary condition which the
sphere acts as a sensor, the radial stresses are compressive during the life of the sphere. This state is
suitable, because the sensor can be used for long time.

� 2012 Elsevier Masson SAS. All rights reserved.
1. Introduction

Piezoelectricity refers to an electromechanical phenomenon in
particular solid state materials that demonstrates a coupling
between their electrical, mechanical, and thermal states gener-
ated by applying mechanical stress to dielectric crystals. The
direct piezoelectric effect describes the electrostatic reaction to
a mechanical load such as sensors, while the converse piezo-
electric effect describes the mechanical reaction to an electro-
static load such as actuators. Recently, application of piezoelectric
materials in smart structures has been the subject of intense
research. Devices based on piezoelectric elements are commonly
used in industry and laboratories.

Although elastic analysis of hollow structures under electrical,
thermal and mechanical loads are well developed (Dai and Wang,
2005; Ghorbanpour Arani et al., 2006; Dai and Fu, 2006; Babaei
and Chen, 2008; Khoshgoftar et al., 2009; Ghorbanpour Arani
et al., 2010; Wang and Xu, 2010; Ghorbanpour Arani et al., 2011)
but a few publications for time-dependent creep behavior of
spheres and cylinders can be found in the literatures. Loghman
ax: þ98 3615912424.
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and Wahab (1996) investigated creep damage simulation of
thick-walled tubes using the theta projection concept. Yang (2000)
presented a solution for time-dependent creep behavior of func-
tionally graded material (FGM) cylinders using Norton’s law for
material creep constitutive model. Chen et al. (2006) analyzed creep
deformation of a functionally graded cylinder subjected to internal
and external pressures. You et al. (2007) considered steady state
creep deformation and stresses in thick-walled cylindrical vessels of
FGM subjected to internal pressure. Loghman and Shokouhi (2009)
evaluated creep damages of thick-walled spheres using a long-
term creep constitutive model. Time-dependent deformation and
fracture of multi-material systems at high temperature were pre-
sented by Xuan et al. (2009). Tejeet and Gupta (2011) investigated
effect of anisotropy on steady state creep in functionally graded
cylinder. Magnetothermoelastic creep analysis of functionally
graded cylinder was presented by Loghman et al. (2010). Later,
time-dependent creep stress redistribution analysis of thick-
walled spheres made of FGM subjected to an internal pressure
and a uniform temperature field was performed by Loghman et al.
(2011a) using the method of successive elastic solution. In another
work, time-dependent creep stress redistribution analysis of
rotating disk made of AleSiC composite was investigated by
Loghman et al. (2011b) using Mendelson’s method of successive
elastic solution. Hamed (2012) investigated the viscoelastic creep
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response of flexural beams and beam-columns made with FGMs.
This paper highlights the challenges associated with the modeling
and analysis of such structures, and presents a nonlinear theo-
retical model for their bending and creep buckling analysis. A
generalized constitutive model for describing the creep defor-
mation and creep damage development in initially isotropic
materials with characteristics dependent on the kind of the stress
state was implemented by Zolochevsky et al. (2012) into the finite
element analysis. Spathis and Kontou (2012) analyzed a theoret-
ical approach for the prediction of creep rupture time of polymers
and polymer composites. Loghman et al. (2012) studied magne-
tothermoelastic creep behavior of thick-walled spheres made of
FGM placed in uniform magnetic and distributed temperature
fields and subjected to an internal pressure using method of
successive elastic solution. The elastic and elasticeplastic creep
behavior of cracked structures in the presence of residual stress
was studied numerically by Yazdani and O’Dowd (2012). None of
the above research studies did consider electric loading due to
piezoelectric material. A part from a couple of studies, prepared by
a few authors here, little or no reference has been made so far in
the literature on the time-dependent creep analysis of sphere.

However, in the present study, for the first time, time-dependent
creep response of a hollow sphere made of radially polarized trans-
versely isotropic piezoelectric material, such as BaTiO3 is investi-
gated using Mendelson’s method of successive elastic solution. This
paper aims to show the significant effect of time-dependent creep on
stresses, electric potential and displacement histories during the life
of a smart sphere.

2. Geometry, loading condition, material properties and
creep constitutive model

2.1. Geometry and loading condition

A hollow sphere with constant thickness h, inner radius a, outer
radius b and radius ratio of a/b ¼ 2 is considered. The sphere is
subjected to an internal and external pressure (Pa, Pb), a constant
potential difference between its inner and outer surfaces and
distributed temperature field due to steady state heat conduction
from inner surface to outer surface of the sphere with inner
temperature of Ta ¼ 323 K and outer temperature of Tb ¼ 298 K
(Fig. 1).
Fig. 1. Configuration of a hollow sphere in two states; 1 e actuator, 2 e sensor
(without internal pressure).
2.2. Material properties

Ferroelectric materials are key to many modern technologies, in
particular piezoelectric actuators and electro-optic modulators.
BaTiO3 is one of the most extensively studied ferroelectric mate-
rials. The use of BaTiO3 for piezoelectric applications is, however,
limited due to the small piezoelectric coefficient of the room
temperature-stable tetragonal phase. It has been shown by Zhou
and Kamlah (2006) that even at room temperature, ferroelectric
piezoceramics exhibit significant creep effects. Therefore, in this
study, BaTiO3 is elected for the sphere. In the numerical calcula-
tions, themechanical, electrical and thermal properties are taken as
(Saadatfar and Razavi, 2009):

C11 ¼ 128 ðGPaÞ; e11 ¼ 8:5
�
C=m2�; ar ¼ 2�10�6 ð1=KÞ;

C22 ¼ 150 ðGPaÞ; e12 ¼ 1:61
�
C=m2�; aq ¼ 1�10�6 ð1=KÞ;

C23 ¼ 37:1 ðGPaÞ; ˛11 ¼ 4:98�10�9 ðF=mÞ;
C12 ¼ 32:3 ðGPaÞ;

(1)

where cij(i, j ¼ 1, 2), e1i(i ¼ 1, 2), ai(i ¼ r, q) and ˛11 are elastic,
piezoelectric, thermal expansion and dielectric constants,
respectively.

2.3. Creep constitutive model

In the present work, the material creep behavior is described by
BaileyeNorton’s constitutive model as follows (Penny andMarriott,
1995):

_3e ¼ Btnsme ; (2)

where B and m are the Norton’s coefficients and n is the Bailey
coefficient which can be defined as follows (You et al., 2007):

B ¼ 0:11� 10�21; m ¼ 5; 0:33 < n < 0:50 (3)

3. The constitutive equations for piezoelectric materials

A deformation in piezoelectric material generates an electric
displacement at its surface, which is proportional to the strain
applied and the surrounding electric field. On the other hand, an
electric field applied to the piezoelectric material causes a strain,
which is proportional to the field strength and additional stress
applied to it, such as, e.g. a pre-load. The constitutive equations
for a homogenous piezoelectric material can be written as (Jalili,
2010):

s ¼ C : 3� e : E; (4)

D ¼ e : 3þ ˛ : E; (5)

where 3, s, E and D are strain, stress, electric field and electric
displacement tensors respectively. Also, C, e and ˛ are the fourth-
order elasticity tensor, the third order tensor of piezoelectric
coefficient and the dielectric permittivity tensor.

4. Formulation of the problem

In this study, it is assumed that, only the radial displacement
(Ur) is nonzero and electric potential is the function of radial
coordinate (r).
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4.1. Derivation of equations

The equilibrium equation of the piezoelectric sphere in the
absence of body force and the Maxwell’s equation for free electric
charge density are (Fungn, 1965; Tiersten, 1969):

dsrr
dr

þ 2ðsrr � sqqÞ
r

¼ 0; (6)

vDrr

vr
þ 2

r
Drr ¼ 0; (7)

where sii(i ¼ r, q) is the stress tensor and Drr is the radial electric
displacement.

Also, the radial and circumferential strains and the relation
between electric field (Err) and electric potential (f) are reduced to

3rr ¼ vu
vr
; (8)

3qq ¼ 3zz ¼ u
r
; (9)

Err ¼ �vf

vr
: (10)

The constitutive relations of radially polarized piezoelectric
sphere and the components of radial electric displacement vector
can be written as (Salehi-Khojin and Jalili, 2008; Mendelson, 1968):

�
srr

sqq

�
¼
�
C11 C12 C13
C21 C22 C23

�0B@
8><
>:

3rr

3qq

3qq

9>=
>;�

8><
>:
ar

aq
aq

9>=
>;TðrÞ�

8><
>:

3crr

3cqq
3cqq

9>=
>;
1
CA

�
�
e11
e12

�
fErrg ð11Þ

fDrrg ¼½e11 e12 e13 �

0
B@
8><
>:

3rr

3qq

3qq

9>=
>;�

8><
>:
ar

aq
aq

9>=
>;TðrÞ�

8><
>:

3crr

3cqq
3cqq

9>=
>;
1
CA

þ½˛11�fErrg: ð12Þ
Considering transverse isotropic behavior of piezoelectric

material, the elasticity and the piezoelectric tensors are summa-
rized to

C12 ¼ C13 ¼ C21;
e12 ¼ e13:

(13)

4.2. Heat conduction problem

In this study, a distributed temperature field due to steady-state
heat conduction has been considered. The heat conduction equa-
tion without any heat source is written in spherical coordinate as
(Khoshgoftar et al., 2009; Jabbaria et al., 2002):

1
r2

v

vr

�
K0r

2T 0ðrÞ
	

¼ 0; (14)

at r ¼ a TðrÞ ¼ Ta;

at r ¼ b
vTðrÞ
vr

þ hTðrÞ ¼ 0;
(15)

where h is the ratio of the convective heat-transfer coefficient and
K0 is the nominal heat conductivity coefficient. Integrating twice
Eq. (14) yields:
TðrÞ ¼ �B1
r

þ B2; (16)

where B1 and B2 are constants which can be obtained using thermal
boundary conditions (Eq. (15)).

4.3. Dimensionless form of equations

It is appropriate to introduce the following dimensionless
quantities as follows:

si ¼
sii
C22

ði ¼ r;qÞ; ci ¼
C1i
C22

ði ¼ 1;2;3Þ ; Ei ¼
e1i
E0

ði ¼ 1;2;3Þ;

E0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C22˛11

p
;

U ¼ ur
a
; x ¼ r

a
; h ¼ b

a
; b ¼ b1

E0
; F ¼ f

f0
; f0 ¼ a

ffiffiffiffiffiffiffiffi
C22
˛11

s
;

Dr ¼ Drr

E0
:

(17)

Using the above dimensionless variables, Eqs. (6), (7), (11) and
(12) can be expressed as:

vsr
vx

þ 2ðsr � sqÞ
x

¼ 0; (18)

vDr

vx
þ 2Dr

x
¼ 0: (19)

�
sr

sq

�
¼

0
BBBBBBBBB@
�
C1 C2 C2
C2 1 C3

�
0
BBBBBBBBB@

8>>>>>>>>><
>>>>>>>>>:

vU
vx

U
x

U
x

9>>>>>>>>>=
>>>>>>>>>;

�

8>>><
>>>:

ar

aq

aq

9>>>=
>>>;TðxÞ �

8>>><
>>>:

3crr

3cqq

3cqq

9>>>=
>>>;

1
CCCCCCCCCA

þ
�
E1
E2

��
vF
vx

�
1
CCCCCCCCCA
; ð20Þ

fDrg ¼

0
BBBBBBBBB@
½ E1 E2 E2 �

0
BBBBBBBBB@

8>>>>>>>>><
>>>>>>>>>:

vU
vx

U
x

U
x

9>>>>>>>>>=
>>>>>>>>>;

�

8>>><
>>>:
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aq
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>>>;TðxÞ �

8>>><
>>>:
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3cqq
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9>>>=
>>>;

1
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�
�
vF
vx

�
1
CCCCCCCCCA
: ð21Þ



Fig. 2. Illustration of some finite sub-domains in radial domain.
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5. Solution of the problem

The solution of Eq. (19) is:

Dr ¼ A1

x2
; (22)

where A1 is a constant. Substituting Eq. (22) into Eq. (21) and
combination with Eq. (20), results

�
sr

sq

�
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0
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where T(x) is temperature distribution which is illustrated in Eq.
(16).

Finally, substituting Eq. (23) into Eq. (18) yields the following
differential equation

x2
v2U

vx2
þ D1x

vU
vx

þ D2U ¼D3A1x
�1 þ D4B1

þ �D5B2 þ D6 3
c
r þ D7 3

c
q

�
x

þ
�
D8

v 3cq
vx

þ v 3cr
vx

�
x2; ð24Þ

where Di(i ¼ 1,.8) are defined in Appendix A.

5.1. Electro-thermo-elastic analysis of sphere

A semi-analytical method has been employed for solution of this
differential equation (i.e. Eq. (24)). In this method, the solution
domain is divided into some finite divisions as shown in Fig. 2. The
coefficients of Eq. (24) are evaluated at xm, mean radius of mth
division, and therefore, differential equation with constant coeffi-
cients becomes valid only inmth sub-domainwhich can be rewritten
as follows (Kordkheili and Naghdabadi, 2007; Bayat et al., 2009)�
Mm

1
d2

dr2
þMm

2
d
dr

þMm
3

�
Um þMm

4 ¼ 0; (25)

Mm
1 ¼ �

xm
�2
; (26)

Mm
2 ¼ D1x

m
; (27)

Mm
3 ¼ D2; (28)
Mm
4 ¼D3A1

�
xm
��1þD4B1 þ

�
D5B2 þ D6 3

c
r


x¼x

m þ D7 3
c
q


x¼x

m

�
xm

þ
 
D8

v 3cq
vx


x¼x

m
þ v 3cr

vx


x¼x

m

!�
xm
�2
: ð29Þ

The exact solution for Eq. (25) may be written as follows

Um
g ¼ Km

1 exp
�
qm1 x

�
|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

um
g1

þKm
2 exp

�
qm2 x

�
|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

um
g2

; (30)

qm1 ; q
m
2 ¼

�Mm
2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
Mm

2

�2�4Mm
3 Pm1

q
2Mm

1
: (31)

The particular solution of the differential Eq. (25) may be ob-
tained as follows

Um
p ¼ xq

m
1 um1 þ xq

m
2 um2 ; (32)

where

um1 ¼ �
Z xq

m
2 RðxÞjx¼x

m

W
�
qm1 ; q

m
2

�
x¼x

m
; um2 ¼

Z xq
m
1 RðxÞjx¼x

m

W
�
qm1 ; q

m
2

�
x¼x

m
; (33)

where R(x) is the expression on the right hand side of Eq. (25) and
W(x) is defined as:

W
�
qm1 ; q

m
2
� ¼


umg1 umg2�
umg1
	0 �

umg2
	0 : (34)

Combining Eqs. (31)e(34) one can obtain the particular solu-
tion as:

ump ¼ D3x�
qm2 � 1

��
qm1 � 1

�Am
1 þ D4x

3�
qm2 � 3

��
qm1 � 3

�Bm1
þ D5x

3�
qm2 � 3

��
qm1 � 3

�Bm2 þ D6x
3�

qm2 � 4
��
qm1 � 4

� 3
c
r
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m

þ D7x
3�

qm2 � 4
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qm1 � 4

� 3
c
q


x¼x

m þ x4�
qm2 � 4

��
qm1 � 4

� v 3cr
vx


x¼x

m

þ D8x
4�

qm2 � 4
��
qm1 � 4

� v 3cq
vx


x¼x

m
: ð35Þ
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Apply continuity conditions with the global boundary 
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Fig. 3. The flowchart of the semi-analytical method for a hollow sphere.
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Hence, the complete solution for Um in terms of the non-
dimensional radial coordinate is written as:

Um ¼ umg þ ump ; xm � hm

2
� x � xm þ hm

2
; (36)

where hm is the thickness ofmth division, Km
1 and Km

2 are unknown
constants for mth division. Substituting the displacement from
Eq. (36) into Eq. (23), the radial and circumferential stresses are
obtained as follows

sr ¼ Pm1
v2 3cq

vx2


x¼x

m
þ Pm2

v2 3cr

vx2


x¼x

m
þ Pm3

v 3cq
vx


x¼x

m
þ Pm4

v 3cr
vx


x¼x

m

þ Pm5 3
c
q


x¼x

m þ Pm6 3
c
r


x¼x

m þ Pm7 Km
2 þ Pm8 Km

1 þ Pm9 Am
1

þ Pm10B
m
2 þ Pm11B

m
1 ; ð37Þ

sq ¼ Pm12
v2 3cq

vx2


x¼x

m
þ Pm13

v2 3cr

vx2


x¼x

m
þ Pm14

v 3cq
vx


x¼x

m
þ Pm15

v 3cr
vx


x¼x

m

þ Pm16 3
c
q


x¼x

m þ Pm17 3
c
r


x¼x

m þ Pm18K
m
1 þ Pm19K

m
2 þ Pm20A

m
1

þ Pm21B
m
1 þ Pm22B

m
2 ; ð38Þ

where Pmi ði ¼ 1; :::22Þ are expressed in Appendix B
Also, the electric potential can be obtained by integrating the

combination of Eqs. (21) and (22) as follows

F ¼
Z �

� Am
1

x2
þ E1

�
vUm

vx
� arTmðxÞ � 3

c
r


x¼x

m

�

þ 2E2

�
Um

x
� aqT

mðxÞ � 3
c
q


x¼x

m

��
dx: ð39Þ

5.2. Boundary conditions

5.2.1. Continuity conditions
The unknowns Km

1 , Km
2 , Bm1 , B

m
2 , A

m
1 and Am

2 (the constant of
integral in Eq. (39)) are determined by applying the necessary
boundary conditions between two adjacent sub-domains. For this
purpose, the continuity of radial displacement, radial stress and
electric potential are imposed at the interfaces of the adjacent sub-
domains. These continuity conditions at the interfaces are:

Um

x¼x

mþ hm

2
¼ Umþ1


x¼x

mþ1� hmþ1

2
;

dUm

dx


x¼x

mþ hm

2

¼ dUmþ1

dx


x¼x

mþ1� hmþ1

2

;

smr


x¼x

mþ hm

2
¼ smþ1

r


x¼x

mþ1� hmþ1

2
;

Fm

x¼x

mþ hm

2
¼ Fmþ1


x¼x

mþ1� hmþ1

2
;

Tmx


x¼x

mþ hm

2
¼ Tmx


x¼x

mþ1þ hmþ1

2
;

vTmx
vx


x¼x

mþ hm

2

¼
vTm

x

vx


x¼x

mþ1þ hmþ1

2

;

(40)

5.2.2. Global boundary conditions
In this section, the appropriate electrical and mechanical

boundary conditions are examined.

� Case 1: Mechanical boundary condition (the converse piezo-
electric effect)
In case 1, the piezoelectric hollow sphere is subjected to an
internal uniform pressure and zero electric potential difference. In
this case, the sphere acts as an actuator.

case 1 : srð1Þ ¼ �1; srðhÞ ¼ 0; Fð1Þ ¼ 0; FðhÞ ¼ 0; (41)

� Case 2: Electrical boundary condition (the direct piezoelectric
effect)

In case 2, free mechanical boundary conditions on both internal
and external surfaces are imposed. However, in this case a uniform
electrical potential difference is prescribed. In this case, the sphere
acts as a sensor.

case 2 : srð1Þ ¼ 0; srðhÞ ¼ 0; Fð1Þ ¼ 1; FðhÞ ¼ 0; (42)

The continuity conditions (Eq. (40)) together with the global
boundary conditions (Eqs. (41) and (42)) yield a set of linear alge-
braic equations in terms of Km

1 , Km
2 , Am

1 , A
m
2 , B

m
1 and Bm2 . Solving the

resultant linear algebraic equations, the unknown coefficients are
calculated. Then the displacement components, the stresses and
the electric potential are determined in each radial sub-domain.
Increasing the number of divisions improves the accuracy of the
results. A brief flowchart of these procedures is shown in Fig. 3.
5.3. Time-dependent electro-thermo-elastic creep behavior
of sphere

To obtain time-dependent stresses and electric potential, the
creep strains in Eqs. (37)e(39) must be considered. Creep strain



Fig. 4. The flowchart of the method of successive approximation (Mendelson) for a hollow sphere.
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rates are related to the material uniaxial creep constitutive model
and the current stress tensor by the well known PrandtleReuss
relation. In this case PrandtleReuss relation is written as
(Mendelson, 1968)

_3r ¼ _3e
se

½sr � sq�;

_3q ¼ _3z ¼ �_3r
2
:

(43)

The Von Mises’s effective stress for spherical symmetry is
written as:

se ¼ 1ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðsq � srÞ2þ

�
sq � sz

�2þ�sz � sr
�2q

¼ jsr � sqj: (44)

To obtain histories of stresses and deformation as well as electric
potential, a numerical procedure on the basis of the method of
successive approximation has been tailored.
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Fig. 6. The effect of time-dependent creep on the circumferential stress for mechanical
boundary condition.
5.4. Numerical procedure to obtain history of stresses, deformation
and electric potential

We have employed Mendelson’s method of successive elastic
solution to obtain histories of stresses, electric potential and
displacement as follows:

It was shown that creep strains and their derivatives are
involved in non-homogenous part of differential Eq. (25). Imme-
diately after loading, the creep strains are zero and the solution is
an elasticity problem. To solve differential Eq. (25) for long time
after loading, method of successive elastic solution is used. Step by
step procedure is explained in Fig. 4.
6. Numerical results and discussion

Using the numerical procedure outlined in Section 5.4, the
effects of time-dependent on electro-thermo-mechanical creep
could be studied from Figs. 5e12, in which the histories of
dimensionless radial and circumferential stresses, electric potential
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Fig. 8. The effect of time-dependent creep on the radial displacement for mechanical
boundary condition.
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Fig. 9. The effect of time-dependent creep on the radial stress for electrical boundary
condition.
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Fig. 11. The effect of time-dependent creep on the electric potential for electrical
boundary condition.
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and displacement versus dimensionless radius are illustrated in
Figs. 5e8, respectively, for mechanical boundary condition and in
Figs. 9e12 for electrical boundary condition.

The following general observations might be made from the
above plots:

� Radial stresses and electric potential are constant with respect
to time at the interior and exterior surfaces of the sphere,
satisfying the constant mechanical and electrical boundary
conditions.

� Radial stress, electric potential and radial displacement are
increasing through-thickness with time at a decreasing rate so
that there is a saturation condition beyond which not much
change occurs.

� The history of the electric potential is fairly similar to that of
the radial stress as far as the rate change is concerned. That is
because the electric potential histories are induced by the
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Fig. 10. The effect of time-dependent creep on the circumferential stress for electrical
boundary condition.
compressive radial stress histories during creep deformation of
the sphere. This is expected from the piezoelectric character-
istic point of view.

� The change in the rate of radial and circumferential stresses,
electric potential and displacement, without commenting on
the magnitude, become less significant after 25, begin to
converge after 45, and reaches steady state after 50 years.

As for specific points, the following observations may be made:

� In mechanical boundary condition, which describes the
converse piezoelectric effect and use in actuators, the effect of
time-dependent creep causes to change radial stresses from
compressive to tensile after 15 years. Hence, the actuators are
not usable after 15 years and it must consider for actuators
applications in modern technologies. It is argued that the
actuators due to the layered structure, are mechanically fragile
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Fig. 12. The effect of time-dependent creep on the radial displacement for electrical
boundary condition.
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and as every piezoelectric ceramic, they are extremely sensitive
to tensile loads.

� In electrical boundary condition, which describes the direct
piezoelectric effect and use in sensors, the radial stresses are
compressive during the life of the sphere. This state is suitable,
because the sensors can be used for long time.

� Formechanical boundary condition, maximum change of radial
stresses occurs in the 1.25e1.35 range of x, while for electrical
boundary condition, minimum change of it occurs in the 1.25e
1.35 range of x.

� A distinguished fixed (skeletal) point at which the stress does
not change with time is observed for the circumferential
stresses corresponding to x of 1.7e1.8. An attraction of the
skeletal point concept is that it enables the stress state gener-
ated in a notch throat to be identified without a detailed
knowledge of the creep properties of a material being available.
It is noted that, Schulte (1960) was the first to observe this
behavior and used it to predict the creep deformation.

� As far as the effect of time-dependent creep on circumferential
stress is concerned, it decreases with time at the interior
surface and increases with time at the exterior with decrease
rates (maximum has occurred at the inner surface) for
mechanical boundary condition, while for electrical boundary
condition, it increases at the interior surface and decreases at
the exterior surface with decrease rates (maximum has
occurred at the outer surface).

� Maximum u occurs at the interior surface and it decreases
smoothly towards the exterior for mechanical boundary
condition, while for electrical boundary condition, Minimum u
occurs at the interior surface and it increases smoothly towards
the exterior.
Appendix A

D1 ¼ 3

D2 ¼ 4C2 þ 4E1E2 � 2� 2C3 � 4E22
C1 þ E21

D3 ¼ 2E2
C1 þ E21

D4 ¼ ð3E1 � 2E2Þð2E2aq þ E1arÞ þ 3ð2C2aq þ C1arÞ þ ðð1þ C3Þaq þ�
C1 þ E21

	

D5 ¼ ð � 4C1ar � ð4E1 þ E2Þð2E2aq þ E1arÞÞ � ð2E1 � E2Þ þ ð2ð1þ C�
C1 þ E21

	

D6 ¼ �
3
�
C1 þ E21

	
þ 2E21 � 2E1E2 � 2C2

C1 þ E21

D7 ¼ �6ðC2 þ E1E2Þ � 4E22 � 4E1E2 � 2C3 � 2
C1 þ E21

D8 ¼ �2ðC2 þ E1E2Þ
C1 þ E21
7. Conclusions

In this research, for the first time, time-dependent creep
behavior of a hollow radially polarized piezoelectric sphere sub-
jected to electro-thermo-mechanical loading has been investigated
using a semi-analytical numerical method, according to Mendel-
son’s procedure.

For both mechanical and electrical boundary conditions which
used in actuators and sensors, respectively, the effect of time-
dependent creep on stresses, electric potentials and displace-
ments are studied and presented graphically. Creep behavior of
these is fairly similar as changes in the rates for these become less
significant after 25, begin to converge after 45, and reaches steady
state after 50 years of operation. Numerical analysis shows that in
mechanical boundary condition, the effect of time-dependent
creep causes to change radial stresses from compressive to
tensile after 15 years. Hence, the actuators are not usable after 15
years and it must consider for actuators applications in modern
technologies. The study also indicates that the radial stresses are
compressive during the life of the sphere for electrical boundary
condition. This state is suitable for sensors, because these can be
used for long time. Also, a distinguished fixed (skeletal) point is
observed for the circumferential stresses corresponding to x of
1.7e1.8 which used to predict the creep deformation.
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