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Genetic algorithm optimization of multi-peak 
problems: studies in convergence and robustness 

A. J. Keane 
Department of Engineering Science, University of Oxford, Parks Road, Oxford, UK, OXI 3PJ 

Engineering design studies can often be cast in terms of optimization problems. 
However, for such an approach to be worthwhile, designers must be content that 
the optimization techniques employed are fast, accurate and robust. This paper 
describes recent studies of convergence and robustness problems found when 
applying genetic algorithms (GAS) to the constrained, multi-peak optimization 
problems often found in design. It poses a two-dimensional test problem which 
exhibits a number of features designed to cause difficulties with standard GAS and 
other optimizers. The application of the GA to this problem is then posed as a 
further, essentially recursive problem, where the control parameters of the GA 
must be chosen to give good performance on the test problem over a number of 
optimization attempts. This overarching problem is dealt with both by the GA 
and also by the technique of simulated annealing. It is shown that, with the 
appropriate choice of control parameters, sophisticated niche forming techniques 
can significantly improve the speed and performance of the GA for the original 
problem when combined with the simple rejection strategy commonly employed 
for handling constraints. More importantly, however, it also shows that more 
sophisticated multi-pass, constraint penalty functions, culled from the literature 
of classical optimization theory, can render such methods redundant, yielding 
good performance with traditional GA methods. 

Key words: design optimization, genetic algorithm, constraint, cluster. 

1 INTRODUCTION 

When an engineer is faced with the problem of 

producing a new design the first stage in the process 
commonly consists of considering the number of 
competing options. Usually, there is a requirement to 
explore the effects on the design of changes in a number 
of key parameters, often using computerised design 
facilities. When more than two or three parameters are 
to be considered, their interactions can be very hard to 
predict and the design task becomes difficult. Such 
studies can often be cast in terms of an optimization 
problem, where some measure of merit or objective 
function is maximized or minimized by altering the 
design parameters while meeting various constraints. 
Methods for solving the general optimization problem 
have been studied for many years and there is a 
considerable literature (see for example Ref. 1). None 
the less, design often involves awkward problems 
that have highly non-linear relationships and many 
constraints that traditional methods find hard to cope 
with. 

Genetic algorithms have received much attention over 

15 

the last ten years as providing a mechanism for dealing 
with such difficult optimization problems. They are 
known to be good at handling cases where the objective 
function of the problem is characterized by a number of 
sharp peaks, which lead classical, slope driven methods 
to terminate at false optima. A comprehensive survey of 
this work is provided in Ref. 2. However, there is 
relatively less work in the literature dealing with the 
constraint surfaces that are commonly found in 
engineering design problems. Moreover, it is often the 
case that such constraints define the true global 
optimum solution to a design problem. They typically 
arise from material limitations, such as maximum stress 
or temperature levels. The calculation of these quantities 
is often complex and the designer has little a priori 
knowledge of how they will limit the choice of the free 
variables in the problem under consideration. This 
paper is concerned with the application of optimizers, 
and the GA in particular, to such constrained, multi- 
peaked function optimization. 

Genetic algorithms, along with many other techniques, 
have a number of difficulties when dealing with this kind 
of task; the two most severe appear to be: 
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(1) 
(2) 

convergence to sub-optimal solutions; 
robustness of the convergence for repeated 
attempts using different random number 
sequences within the routines. 

In an attempt to overcome these problems, a pro- 
gramme of work has been carried out to choose the best 
set of optimizer control parameters for a given test 
problem. The choice of control parameters forms one of 
the major difficulties in using optimization software: 
ideally an optimizer should require few such controls 
and, more importantly, the results, in terms of accuracy 
and speed, should be relatively insensitive to this choice. 
It is usually the case that, in any given problem, one 
particular optimizer can be tuned to give startlingly 
good performance; it is much more difficult to choose a 
method and select its control parameters so as to get 
good results at the first attempt. Since optimization is 
only really difficult where computation times for 

achieving an optimum are long, no real problem 
allows the luxury of such fine tuning. None the less, 
researchers working on optimizers must consider tuning 
aspects so they can assess competing methods. When an 
optimizer has many inter-related parameters, this forms 
an optimization task of its own, i.e. to choose a set of 
control parameters that will, on average, give good 
results in the minimum time when applied to a particular 
problem. This is the task considered in this work. Here 
the choice has been carried out using two methods to 
optimize the GA parameters for the underlying 
problem: the GA itself and simulated annealing (SA).3 

2 THE GENETIC ALGORITHM 

The GA used here is fairly typical of those discussed in 
Ref. 2. Such methods work by maintaining a pool or 
population of competing designs which are combined to 
find improved solutions. In their basic form, each 
member of the population is represented by a binary 
string that encodes the variables characterizing the 
design. The search progresses by manipulating the 
strings in the pool to provide new generations of 
designs, hopefully with better properties on average 
than their predecessors. The processes that are used to 
seek these improved designs are set up to mimic those of 
natural selection: hence the method’s name. The most 
commonly used operations are currently: 

(1) Selection according to fitness, i.e. the most 
promising designs are given a bigger share of the 
next generation. 

(2) Crossover, where portions of two good designs, 
chosen at random, are used to form a new design, 
i.e. two parents ‘breed’ an ‘offspring’. 

(3) Inversion, where the genetic encoding of a design 
is modified so that subsequent crossover opera- 
tions affect different aspects of the design. 

(4) Mutation, where small but random changes are 
arbitrarily introduced into a design. 

In addition, the number of generations and their 
sizes must be chosen, as must a method for dealing 
with constraints (usually by application of a penalty 
function). 

The algorithm used here works with 16 bit binary 
encoding (although parameters that are selected from a 
number of fixed possibilities use only the minimum 
necessary number of bits). It uses an elitist survival 
strategy which ensures that the best of each generation 
always enters the next generation, and has optional 
niche forming to prevent dominance by a few moder- 

ately successful designs preventing wide-ranging 
searches. Two penalty functions are available. The 

main parameters used to control the method may be 
summarized as: 

N se”, the number of generations allowed (default 10); 
N P0P, the population size or number of trials used per 

generation, which is therefore inversely related to 
the number of generations given a fixed number of 
trials in total (default 100); 

P[best], the proportion of the population that survive 
to the next generation (default 0.8); 

P[cross], the proportion of surviving population that 
are allowed to breed (default 0.8); 

P[invert], the proportion of the surviving population 
that have their genetic material re-ordered (default 
0.5); 

P[mutation], the proportion of the new generation’s 
genetic material that is randomly changed (default 
0~005); 

A proportionality flag, which selects whether the new 
generation is biased in favour of the most successful 
members of the previoius generation or alterna- 
tively if all P[best] survivors are propagated equally 
(default TRUE); 

The penalty function choice. 

When using the GA to explore large design spaces 
with many variables, it has also been found that the 
method must be prevented from being dominated by a 
few moderately good designs that prevent further 
innovation. A number of methods have been proposed 
to deal with this problem; that used here is based on 
MacQueen’s adaptive KMEAN algorithm,4 which has 
recently been applied with some success to multi-peak 
problems5 This algorithm subdivides the population 
into clusters that have similar properties. The members 
of each cluster are then penalized according to how 
many members the cluster has and how far it lies from 
the cluster centre. It also, optionally, restricts the 
crossover process that forms the heart of the GA, so 
that large successful clusters mix solely with themselves. 
This aids convergence of the method, since radical new 
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ideas are prevented from contaminating such sub-pools. 
The version of the algorithm used here is controlled by: 

Dmin, the minimum non-dimensional Euclidean dis- 
tance between cluster centres, with clusters closer 
than this being collapsed (default 0.1); 

D max, the maximum non-dimensional Euclidean 
radius of a cluster, beyond which clusters sub- 
divide (default O-2); 

N clust, the initial number of clusters into which a 
generation is divided (default 25); 

Nbreed, the minimum number of members in a cluster 
before exclusive inbreeding within the cluster takes 
place (default 5); 

Q, the penalizing index for cluster members, which 
determines how severely members sharing an over- 
crowded niche will suffer, with small numbers 
giving a less penalty (default 0.5), i.e. the objective 
functions of members of a cluster of m solutions are 
scaled by m[l - (E/2D,aX)a], where E is the 
Euclidean distance of the member from its cluster 
centre (which is always less than D,,,). 

In this form the GA has 13 control parameters that the 
user may alter before applying the method. 

3 PENALTY FUNCTIONS 

As has already been mentioned, in most work on GAS, 
constraints are dealt with by the use of penalty 
functions: such functions are used to distort the 
objective function in order to force the search towards 
feasibility, when a constraint is, or is about to be, 
violated. Typically, a one pass external function is used 
so that, whenever a design violates a constraint, a large 
penalty is applied, effectively ruling it out of further 
consideration. This is very severe and sometimes the 
search stalls, particularly if it must follow along a 
constraint line to reach the optimum. Despite this 
disadvantage, the strategy is often quite successful, and 
requires a minimum of computer time when it works. 

Other penalty functions soften this severe distortion 
and to try to achieve less risk of premature stalling of the 
search. One such is the Fiacco and McCormick function 
which was originally conceived for use with multiple 
passes of classical, slope driven optimizers. In this case 
the function is set up to fit naturally within the GA by 
being applied with increasing severity to each new 
generation. It modifies the objective function to be 
maximized, f, as follows: 

(1) 

Here &’ are the violated constraint conditions and 4: 

those that are satisfied (in both cases being normalized 
so that violated constraints are negative and satisfied 
ones positive). p is a penalty quantity, less than one 
(default 0.5) chosen to suit the problem in hand, n the 
current function evaluation number, and Npop the 
number of members in each generation. Thus, to begin 
with, when n/N,,, is small, violated constraints are only 
slightly penalized along with satisfied ones that are near 
the constraint boundaries, effectively warning the 
optimizer of the presence of boundaries while allowing 
their exploration. As the optimization proceeds and the 
n,um$e’;;f evaluations increases, n/N,,, grows, causing 

P ’ pop-*) to become exponentially small, severely 
penalizing the violated constraints and removing the 
effect of the term involving the satisfied ones, causing 
the optimizer to chose feasible solutions where f’ reverts 
to f. Notice that here the division n/N,,,, is carried out 
in integer arithmetic, causing this quantity to be 
constant for members of the same generation. By also 
subtracting two, but preventing the result from being 
less than unity, the penalty is deliberately held low 
during the first three generations of the method, giving 
the GA chance to get started before the penalizing 
function takes effect (see Siddall’ for further details of 
the original usage of this function). The use of an 
evolving constraint penalty fits naturally within the 
general scheme of the GA yet does not seem to have 
been reported before, perhaps because more applica- 
tions of the GA to date have been to unconstrained 
problems. Certainly, the Fiacco and McCormick 
function has been widely discussed in the literature of 
classical optimization methods. 

4 A BUMPY EQUATION 

To simulate a multi-peak optimization problem the 
following simple objective function can be defined: 

f (x,v) = 
sin2(x - y) sin2(x + y) 

J_ 

This function produces a series of peaks that get smaller 
with distance from the origin and are nearly symmetrical 
about y = x. The optimization problem is then defined 
as finding x,y in the range 0 5 x, y I 10, starting from 
the point (5,5) to maximize the function f (x, y) subject 
to x + y I 15 and xy > 0.75 (see Fig. 1). This problem 
has a number of features that are designed to make 
optimization difficult: 

(1) 

(2) 

(3) 

The surface is nearly, but not quite, symmetrical 
in x = y, so that peaks always occur in pairs but 
with one always bigger than its sibling. 
The true maximum is 0.365 at (1.593, 0.471) 
which is defined by a constraint boundary. 
There is another similar peak of height 0.274 at 
(0.475, 1.578). 
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Fig. 1. The surface generated by eqn (2) with the constraints marked. 

The major maximum within the boundaries has a 
height of 0.263 at (3.087, 1.517), which is thus 
quite competitive with solutions on the slopes of 
the true, constrained maximal peak (where the 
slope is much steeper and the base area much 
smaller), causing many solutions to be trapped on 
this sub-optimal peak. 
The starting point lies on the line x = y where the 
function is always zero, so that explorations 
carried out by making small equal changes in x 
and y show the function as invariant (affecting 
many heuristic methods). 

The problem is, however, dependent on only two 
variables, which aids display of the function and speed 
of calculation, but somewhat limits the generality of the 
results. None the less, it is an improvement over the one- 
dimensional functions used for many studies in this field. 

5 INITIAL OPTIMIZATION 

To gain some initial insights into this problem, four 
different optimization methods were deployed using the 
appropriate default control parameters. These were: 

(1) The GA. 
(2) Simulated annealing (SA), using ten temperatures. 

(3) 

(4) 

The simulated annealing approach is based on the 
kinetics of freezing crystals, where it is observed 
that minimum energy states are reached for 
sufficiently slow cooling. Essentially, the method 
makes random small changes to the design and 
these are accepted if they improve it and 
occasionally even if they worsen it. The like- 
lihood of changes that worsen the solution being 
accepted is controlled by a Boltzman probability 
function which is dependent on the so-called 
annealing temperature. The method is often cited 
as being an alternative to the GA. 
Repeated sequences of linear approximation 
followed by simplex solutions (see Siddall’s 
program, APPROX’). APPROX uses small 
explorations in the vicinity of the current design 
to establish the local slope. The problem is then 
assumed to be linear near this point and classical 
linear programming methods are used to find the 
best point in this sub-space. The process is then 
repeated around the new point and so on, with the 
size of the linear region being reduced at each new 
base point. This method is very rapid for smoothly 
varying problems with few variables but tends to 
find local rather than global solutions. 
The Hooke and Jeeves heuristic search followed 
by a local random search (see Siddall’s program 
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4 6 8 
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Fig. 2. The optimization paths taken by the four methods mentioned in section 5: (a) GA; (b) SA; (c) APPROX; and (d) SEEK. 

SEEK’). SEEK is a classical heuristic search that 
wanders around the design space following a 
preprogrammed pattern of moves, seeking the 
steepest ascent to the maximum. When used with 
a one pass penalty function it also uses random 
point generation to test its final solution for better 
points in the vicinity of the current design. When 
such an improvement is found this is used to 
restart the search. 

In all cases 1000 function evaluations was set as the 
suggested maximum and a simple one pass external 
penalty function used to deal with constraint violations. 
As has already been noted, this penalty function causes 
all solutions that do not meet the constraint require- 
ments to be considered as totally unworkable and 
consequently assigns them a very low, -102’, objective 
function value. The resulting optimization traces are 
shown in Fig. 2. Here, only the best generation/ 
annealing temperatures of the GA and SA are shown, 
together with all points from their final generation/ 
annealing temperature. The linear approximation and 

Hooke and Jeeves methods used many fewer than 1000 
points since they rapidly converged to the wrong peaks. 
Figure 3 shows all the points evaluated by the GA with 
these default settings and this demonstrates the con- 
siderable coverage achieved by the method. 

6 THE RECURSIVE PROBLEM 

Given the previously stated optimization task and GA, 
the recursive problem was set as selecting the best values 
for the 13 control parameters of the GA. To allow for 
the effects of different random number sequences on the 
behaviour of the algorithm the results were averaged 
over five different runs of the task, with slight weighting 
in favour of combinations that worked with the 
minimum number of function evaluations. Thus, the 
new objective function, here called Measure(S), becomes 

(3) 
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Fig. 3. All the points evaluated by the GA with default 
parameters. 

where i indicates the run number. Thus, sequences using 
less than 1000 function evaluations (the default of 10 
generations, each of 100 members) benefit while those 
using more are penalized. The index of 0.15 biases 
accurate solutions in favour of very rapid ones, e.g. if 
only 500 evaluations are used the average solution value 
needs to be at least (500/1000)““5 = 90% as good to be 
preferred, despite being twice as fast as the default. This 
new problem is much more demanding than the original 
for a number of reasons: 

(1) It has 13 rather than 2 variables. 
(2) Each function evaluation takes, obviously, 

around 1000 times longer to compute. 
(3) It is much more dramatically non-linear, with 

certain parameter choices acting as on/off 
switches. 

(4) Being essentially abstract, there is little obvious 
pattern to its behaviour. 

It is, however, an unconstrained problem, which 
obviates the need to consider penalty functions. 

6.1 Niche forming parameters 

Initially, the focus was placed on the subset of 
parameters controlling the niche forming behaviour as 
it was expected that these would be crucial to 
performance on multi-peak problems of the sort 
considered here. This gives a problem with seven 
variables, including turning the niche mechanism off 
and changing Ns,, or Npop. Both the GA and SA were 
used to optimize this recursive problem, in each case 
with 500 function evaluations (i.e. 25000 runs of the 
original optimization problem leading to typically 
25 000000 evaluations of the original function - 
indicating why such studies are only possible on test 
functions of the type considered here). The GA used 50 
generations of 100 points and the SA 17 temperatures of 

Table 1. Optimization results, niche parameters only 

Parameter Default GA(7) SA(7) 

N gen 
N 

POP 

P[best] 
P[cross] 
P[invert] 
P[mutation] 
Proportionality flag 
Penalty 

10 3 2 
100 96 96 

0.8 0.8 0.8 
0.8 0.8 0.8 
0.5 0.5 0.5 
0.005 0.005 0.005 

T T T 
1 -Pass 1 -Pass 1 -Pass 

Dmin 0.1 0.543 0.471 
D max 0.2 0.953 0.909 
N dust 25 55 23 
Nbreed 5 23 41 
cy 0.5 4 4 

Measure(S) 0.291 0.368 0.360 

Measure(50) 0.289 0.286 0.271 
%Peak A 50 32 28 
%Peak D 40 48 40 

294 points. The final results were further checked by 
averaging the results over 50 optimization runs of the 
underlying problem, leading to Measure(50). 

Table 1 gives the results of this analysis together with 
those obtained using the default settings. In this table 
Peak A refers to the true optimal peak at (1.593, 0.471) 
and Peak D to the largest peak fully within the 
constraint boundaries at (3.087, 1.517). Thus %Peak 
A indicates the percentage of runs that resulted in the 
final solution lying on Peak A when 50 trials were 
carried out, i.e. in 25 out of 50 cases for the default GA. 
Figures 4-6 illustrate the three combinations of 
parameters in the table, showing all 50 optimization 
traces used when calculating Measure(S) in each case 
(plotting the best generation points only). The following 
observations may be made about these results: 

x 

Fig. 4. The fifty optimization paths followed when evaluating 
Measure(50) for the GA with default control parameters. 
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Fig. 5. The fifty optimization paths followed when evaluating 
Measure(50) for the GA with niche control parameters 

(1) 

(2) 

(3) 

(4) 

optimized by the GA. 

The default parameters are more robust than 
those tuned on just five optimization runs. 
The tuned runs work 3-5 times faster than the 
original set. 
The GA outperforms the SA on this recursive 
problem. 
Both methods suggest that cluster penalties must 
be large (high Q), with small unfocused clusters, 
for the KMEAN algorithm to work well; this is 
probably related to the large number of peaks in 
the underlying test function. 

It should be noted that, since both the parameter sets 
produced here use many fewer function evaluations than 
the default GA, both Measure(S) and Measure(50) 
benefit from the weighting detailed in eqn (3); if this is 
removed these measures are reduced by around 20%. 

Fig. 6. The fifty optimization paths followed when evaluating 
Measure(50) for the GA with niche control parameters 

optimized by the SA. 

Thus far, the default approach gives a good account of 
itself, particularly with respect to accuracy and robust- 
ness, with the GA exhibiting some of the features 
mentioned earlier as being desirable. 

6.2 All parameters 

Next, all the control parameters in the GA were allowed 
to vary, leading to the results given in Table 2. Figures 7 
and 8 illustrate the last two combinations of parameters 
in the table, again showing all 50 optimization traces 
used when calculating Measure(50) in each case. The 
following observations may be made about this second 
set of results: 

(1) The default parameter set is no longer as robust as 
the tuned set. 

Table 2. Optimization results, all parameters 

Parameter Default GA(7) SA(7) GA(al1) SA(al1) 

N sen 
N 

POP 

P[best] 
P[cross] 
P[invert] 
P[mutation] 
Proportionality flag 
Penalty 

Dmin 
D max 
N dust 
Nbreed 

a 

Measure( 5) 

Measure(50) 
%Peak A 
%Peak D 

10 3 2 10 9 
100 96 96 66 94 

0.8 0.8 0.8 0.09 0.04 
0.8 0.8 0.8 0.76 0.51 
0.5 0.5 0.5 0.64 0.18 
0.005 0.005 0.005 0.17 0.19 

T T T T T 
l-Pass 1 -Pass l-Pass F&M 1 -Pass 

0.1 0.543 0.47 1 
0.2 0.953 0.909 

25 55 23 
5 23 41 
0.5 4 4 

0.425 
0.937 

24 
43 

4 

0.291 0.368 0.360 0.382 0.369 

0.289 0.286 0.271 0.333 0.312 
50 32 28 62 58 
40 48 40 34 30 

RD
Highlight



82 A. J. Keane 

Fig. 7. The fifty optimization paths followed when evaluating 
Measure(50) for the GA with all parameters optimized by the 

(2) 

(3) 

(4) 

(5) 

(6) 

Fig. 8. The fifty optimization paths followed when evaluating 
Measure(50) for the GA with all parameters optimized by the 

GA. SA. 

The tuned runs are only slightly faster than the 
default set. 

The GA again outperforms the SA in setting the 
control parameters. 
By adopting the Fiacco-McCormick penalty 
function the GA can reach very good results 
without the clustering algorithm. 
Both methods dramatically reduce P[best], which 
means that very few parents are used to produce 
each new generation. 
Both methods significantly increase the mutation 
level, leading to greater changes between parents 
and offspring. 

The last two points seem to suggest that a pure random 
search might work as well as the GA; however, setting 
P[best] to zero and P[mutation] to 0.5 has this effect and 
Measure(50) then drops to 0.267, i.e. worse than for all 
the other approaches. To gain some additional con- 
fidence that optimal sets of parameters have been 
produced in at least some sense, the best generation/ 
annealing temperature results of the overall problem 
have been plotted in Fig. 9. This demonstrates that the 
methods used had at least settled by the time that 
the results given in the tables were taken. Moreover, the 
highly oscillatory nature of the SA plots at low trial 
numbers indicates that the annealing schedule used did, 

++++++++++++++++++++++++++++++++++++++++ 
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Fig. 9. The best generation/annealing temperature results for the four optimization runs applied to eqn (3). 



Optimization of multi-peak problems 83 

in fact, start from a high enough temperature, where the 
solutions had ‘melted’. The fact that the two methods 
converge to different solutions demonstrates, however, 
how complex this recursive problem is. 

7 CONCLUSIONS 

The following principal conclusions may be drawn from 
this brief study into optimizing multi-peak, constraint- 
limited optimization problems: 

(1) 

(2) 

(3) 

(4) 

GAS are fundamentally good multi-peak optimi- 
zation routines. 
GAS must, none the less, be tried over several 
different sets of random numbers to guarantee 
that results are not flukes. 
Careful tuning of the niche control parameters 
may be needed to gain the best performance in 
these circumstances. 
The correct choice of the fundamental parameters 
may obviate the need for sophisticated niche 
control mechanisms, particularly if a good 
constraint mechanism is used and a sufficient 
number of trials are allowed. 

In the context of this last point, the use of constraint 
penalty functions developed for classical, sequential 

unconstrained maximization techniques (SUMT) such 
as the Fiacco-McCormick function may well give 
significant advantages since they may be smoothly 
integrated into the GA method by setting increasingly 
severe constraints on each successive generation. As 
such they form a natural partner to the GA when 
dealing with constrained problems and deserve wider 
attention. 
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