
See	discussions,	stats,	and	author	profiles	for	this	publication	at:	https://www.researchgate.net/publication/223796858

Genetic	Algorithm	Optimization	of	Multi-Peak
Problems:	Studies	in	Convergence	and
Robustness

Article		in		Artificial	Intelligence	in	Engineering	·	January	1995

DOI:	10.1016/0954-1810(95)95751-Q	·	Source:	DBLP

CITATIONS

65

READS

35

1	author:

Andy	J.	Keane

University	of	Southampton

293	PUBLICATIONS			6,028	CITATIONS	

SEE	PROFILE

All	in-text	references	underlined	in	blue	are	linked	to	publications	on	ResearchGate,

letting	you	access	and	read	them	immediately.

Available	from:	Andy	J.	Keane

Retrieved	on:	24	November	2016

https://www.researchgate.net/publication/223796858_Genetic_Algorithm_Optimization_of_Multi-Peak_Problems_Studies_in_Convergence_and_Robustness?enrichId=rgreq-02b5c9d80e0f2f67c5b814d6981321d5-XXX&enrichSource=Y292ZXJQYWdlOzIyMzc5Njg1ODtBUzoxMzkzODYwNTAwNjAyODhAMTQxMDI0MzYzMjUwOQ%3D%3D&el=1_x_2
https://www.researchgate.net/publication/223796858_Genetic_Algorithm_Optimization_of_Multi-Peak_Problems_Studies_in_Convergence_and_Robustness?enrichId=rgreq-02b5c9d80e0f2f67c5b814d6981321d5-XXX&enrichSource=Y292ZXJQYWdlOzIyMzc5Njg1ODtBUzoxMzkzODYwNTAwNjAyODhAMTQxMDI0MzYzMjUwOQ%3D%3D&el=1_x_3
https://www.researchgate.net/?enrichId=rgreq-02b5c9d80e0f2f67c5b814d6981321d5-XXX&enrichSource=Y292ZXJQYWdlOzIyMzc5Njg1ODtBUzoxMzkzODYwNTAwNjAyODhAMTQxMDI0MzYzMjUwOQ%3D%3D&el=1_x_1
https://www.researchgate.net/profile/Andy_Keane2?enrichId=rgreq-02b5c9d80e0f2f67c5b814d6981321d5-XXX&enrichSource=Y292ZXJQYWdlOzIyMzc5Njg1ODtBUzoxMzkzODYwNTAwNjAyODhAMTQxMDI0MzYzMjUwOQ%3D%3D&el=1_x_4
https://www.researchgate.net/profile/Andy_Keane2?enrichId=rgreq-02b5c9d80e0f2f67c5b814d6981321d5-XXX&enrichSource=Y292ZXJQYWdlOzIyMzc5Njg1ODtBUzoxMzkzODYwNTAwNjAyODhAMTQxMDI0MzYzMjUwOQ%3D%3D&el=1_x_5
https://www.researchgate.net/institution/University_of_Southampton?enrichId=rgreq-02b5c9d80e0f2f67c5b814d6981321d5-XXX&enrichSource=Y292ZXJQYWdlOzIyMzc5Njg1ODtBUzoxMzkzODYwNTAwNjAyODhAMTQxMDI0MzYzMjUwOQ%3D%3D&el=1_x_6
https://www.researchgate.net/profile/Andy_Keane2?enrichId=rgreq-02b5c9d80e0f2f67c5b814d6981321d5-XXX&enrichSource=Y292ZXJQYWdlOzIyMzc5Njg1ODtBUzoxMzkzODYwNTAwNjAyODhAMTQxMDI0MzYzMjUwOQ%3D%3D&el=1_x_7

ELSEVIER

Artijicial Inlelligence in Engineering 9 (1995) 75-83

0 1995 Elsevier Science Limited

Printed in Great Britain. All rights reserved

0954-1810/95/$09.50

Genetic algorithm optimization of multi-peak
problems: studies in convergence and robustness

A. J. Keane
Department of Engineering Science, University of Oxford, Parks Road, Oxford, UK, OXI 3PJ

Engineering design studies can often be cast in terms of optimization problems.
However, for such an approach to be worthwhile, designers must be content that
the optimization techniques employed are fast, accurate and robust. This paper
describes recent studies of convergence and robustness problems found when
applying genetic algorithms (GAS) to the constrained, multi-peak optimization
problems often found in design. It poses a two-dimensional test problem which
exhibits a number of features designed to cause difficulties with standard GAS and
other optimizers. The application of the GA to this problem is then posed as a
further, essentially recursive problem, where the control parameters of the GA
must be chosen to give good performance on the test problem over a number of
optimization attempts. This overarching problem is dealt with both by the GA
and also by the technique of simulated annealing. It is shown that, with the
appropriate choice of control parameters, sophisticated niche forming techniques
can significantly improve the speed and performance of the GA for the original
problem when combined with the simple rejection strategy commonly employed
for handling constraints. More importantly, however, it also shows that more
sophisticated multi-pass, constraint penalty functions, culled from the literature
of classical optimization theory, can render such methods redundant, yielding
good performance with traditional GA methods.

Key words: design optimization, genetic algorithm, constraint, cluster.

1 INTRODUCTION

When an engineer is faced with the problem of

producing a new design the first stage in the process
commonly consists of considering the number of
competing options. Usually, there is a requirement to
explore the effects on the design of changes in a number
of key parameters, often using computerised design
facilities. When more than two or three parameters are
to be considered, their interactions can be very hard to
predict and the design task becomes difficult. Such
studies can often be cast in terms of an optimization
problem, where some measure of merit or objective
function is maximized or minimized by altering the
design parameters while meeting various constraints.
Methods for solving the general optimization problem
have been studied for many years and there is a
considerable literature (see for example Ref. 1). None
the less, design often involves awkward problems
that have highly non-linear relationships and many
constraints that traditional methods find hard to cope
with.

Genetic algorithms have received much attention over

15

the last ten years as providing a mechanism for dealing
with such difficult optimization problems. They are
known to be good at handling cases where the objective
function of the problem is characterized by a number of
sharp peaks, which lead classical, slope driven methods
to terminate at false optima. A comprehensive survey of
this work is provided in Ref. 2. However, there is
relatively less work in the literature dealing with the
constraint surfaces that are commonly found in
engineering design problems. Moreover, it is often the
case that such constraints define the true global
optimum solution to a design problem. They typically
arise from material limitations, such as maximum stress
or temperature levels. The calculation of these quantities
is often complex and the designer has little a priori
knowledge of how they will limit the choice of the free
variables in the problem under consideration. This
paper is concerned with the application of optimizers,
and the GA in particular, to such constrained, multi-
peaked function optimization.

Genetic algorithms, along with many other techniques,
have a number of difficulties when dealing with this kind
of task; the two most severe appear to be:

RD
Typewriter

RD
Typewriter

A. J. Keane 76

(1)
(2)

convergence to sub-optimal solutions;
robustness of the convergence for repeated
attempts using different random number
sequences within the routines.

In an attempt to overcome these problems, a pro-
gramme of work has been carried out to choose the best
set of optimizer control parameters for a given test
problem. The choice of control parameters forms one of
the major difficulties in using optimization software:
ideally an optimizer should require few such controls
and, more importantly, the results, in terms of accuracy
and speed, should be relatively insensitive to this choice.
It is usually the case that, in any given problem, one
particular optimizer can be tuned to give startlingly
good performance; it is much more difficult to choose a
method and select its control parameters so as to get
good results at the first attempt. Since optimization is
only really difficult where computation times for

achieving an optimum are long, no real problem
allows the luxury of such fine tuning. None the less,
researchers working on optimizers must consider tuning
aspects so they can assess competing methods. When an
optimizer has many inter-related parameters, this forms
an optimization task of its own, i.e. to choose a set of
control parameters that will, on average, give good
results in the minimum time when applied to a particular
problem. This is the task considered in this work. Here
the choice has been carried out using two methods to
optimize the GA parameters for the underlying
problem: the GA itself and simulated annealing (SA).3

2 THE GENETIC ALGORITHM

The GA used here is fairly typical of those discussed in
Ref. 2. Such methods work by maintaining a pool or
population of competing designs which are combined to
find improved solutions. In their basic form, each
member of the population is represented by a binary
string that encodes the variables characterizing the
design. The search progresses by manipulating the
strings in the pool to provide new generations of
designs, hopefully with better properties on average
than their predecessors. The processes that are used to
seek these improved designs are set up to mimic those of
natural selection: hence the method’s name. The most
commonly used operations are currently:

(1) Selection according to fitness, i.e. the most
promising designs are given a bigger share of the
next generation.

(2) Crossover, where portions of two good designs,
chosen at random, are used to form a new design,
i.e. two parents ‘breed’ an ‘offspring’.

(3) Inversion, where the genetic encoding of a design
is modified so that subsequent crossover opera-
tions affect different aspects of the design.

(4) Mutation, where small but random changes are
arbitrarily introduced into a design.

In addition, the number of generations and their
sizes must be chosen, as must a method for dealing
with constraints (usually by application of a penalty
function).

The algorithm used here works with 16 bit binary
encoding (although parameters that are selected from a
number of fixed possibilities use only the minimum
necessary number of bits). It uses an elitist survival
strategy which ensures that the best of each generation
always enters the next generation, and has optional
niche forming to prevent dominance by a few moder-

ately successful designs preventing wide-ranging
searches. Two penalty functions are available. The

main parameters used to control the method may be
summarized as:

N se”, the number of generations allowed (default 10);
N P0P, the population size or number of trials used per

generation, which is therefore inversely related to
the number of generations given a fixed number of
trials in total (default 100);

P[best], the proportion of the population that survive
to the next generation (default 0.8);

P[cross], the proportion of surviving population that
are allowed to breed (default 0.8);

P[invert], the proportion of the surviving population
that have their genetic material re-ordered (default
0.5);

P[mutation], the proportion of the new generation’s
genetic material that is randomly changed (default
0~005);

A proportionality flag, which selects whether the new
generation is biased in favour of the most successful
members of the previoius generation or alterna-
tively if all P[best] survivors are propagated equally
(default TRUE);

The penalty function choice.

When using the GA to explore large design spaces
with many variables, it has also been found that the
method must be prevented from being dominated by a
few moderately good designs that prevent further
innovation. A number of methods have been proposed
to deal with this problem; that used here is based on
MacQueen’s adaptive KMEAN algorithm,4 which has
recently been applied with some success to multi-peak
problems5 This algorithm subdivides the population
into clusters that have similar properties. The members
of each cluster are then penalized according to how
many members the cluster has and how far it lies from
the cluster centre. It also, optionally, restricts the
crossover process that forms the heart of the GA, so
that large successful clusters mix solely with themselves.
This aids convergence of the method, since radical new

Optimization of multi-peak problems 77

ideas are prevented from contaminating such sub-pools.
The version of the algorithm used here is controlled by:

Dmin, the minimum non-dimensional Euclidean dis-
tance between cluster centres, with clusters closer
than this being collapsed (default 0.1);

D max, the maximum non-dimensional Euclidean
radius of a cluster, beyond which clusters sub-
divide (default O-2);

N clust, the initial number of clusters into which a
generation is divided (default 25);

Nbreed, the minimum number of members in a cluster
before exclusive inbreeding within the cluster takes
place (default 5);

Q, the penalizing index for cluster members, which
determines how severely members sharing an over-
crowded niche will suffer, with small numbers
giving a less penalty (default 0.5), i.e. the objective
functions of members of a cluster of m solutions are
scaled by m[l - (E/2D,aX)a], where E is the
Euclidean distance of the member from its cluster
centre (which is always less than D,,,).

In this form the GA has 13 control parameters that the
user may alter before applying the method.

3 PENALTY FUNCTIONS

As has already been mentioned, in most work on GAS,
constraints are dealt with by the use of penalty
functions: such functions are used to distort the
objective function in order to force the search towards
feasibility, when a constraint is, or is about to be,
violated. Typically, a one pass external function is used
so that, whenever a design violates a constraint, a large
penalty is applied, effectively ruling it out of further
consideration. This is very severe and sometimes the
search stalls, particularly if it must follow along a
constraint line to reach the optimum. Despite this
disadvantage, the strategy is often quite successful, and
requires a minimum of computer time when it works.

Other penalty functions soften this severe distortion
and to try to achieve less risk of premature stalling of the
search. One such is the Fiacco and McCormick function
which was originally conceived for use with multiple
passes of classical, slope driven optimizers. In this case
the function is set up to fit naturally within the GA by
being applied with increasing severity to each new
generation. It modifies the objective function to be
maximized, f, as follows:

(1)

Here &’ are the violated constraint conditions and 4:

those that are satisfied (in both cases being normalized
so that violated constraints are negative and satisfied
ones positive). p is a penalty quantity, less than one
(default 0.5) chosen to suit the problem in hand, n the
current function evaluation number, and Npop the
number of members in each generation. Thus, to begin
with, when n/N,,, is small, violated constraints are only
slightly penalized along with satisfied ones that are near
the constraint boundaries, effectively warning the
optimizer of the presence of boundaries while allowing
their exploration. As the optimization proceeds and the
n,um$e’;;f evaluations increases, n/N,,, grows, causing

P ’ pop-*) to become exponentially small, severely
penalizing the violated constraints and removing the
effect of the term involving the satisfied ones, causing
the optimizer to chose feasible solutions where f’ reverts
to f. Notice that here the division n/N,,,, is carried out
in integer arithmetic, causing this quantity to be
constant for members of the same generation. By also
subtracting two, but preventing the result from being
less than unity, the penalty is deliberately held low
during the first three generations of the method, giving
the GA chance to get started before the penalizing
function takes effect (see Siddall’ for further details of
the original usage of this function). The use of an
evolving constraint penalty fits naturally within the
general scheme of the GA yet does not seem to have
been reported before, perhaps because more applica-
tions of the GA to date have been to unconstrained
problems. Certainly, the Fiacco and McCormick
function has been widely discussed in the literature of
classical optimization methods.

4 A BUMPY EQUATION

To simulate a multi-peak optimization problem the
following simple objective function can be defined:

f (x,v) =
sin2(x - y) sin2(x + y)

J_

This function produces a series of peaks that get smaller
with distance from the origin and are nearly symmetrical
about y = x. The optimization problem is then defined
as finding x,y in the range 0 5 x, y I 10, starting from
the point (5,5) to maximize the function f (x, y) subject
to x + y I 15 and xy > 0.75 (see Fig. 1). This problem
has a number of features that are designed to make
optimization difficult:

(1)

(2)

(3)

The surface is nearly, but not quite, symmetrical
in x = y, so that peaks always occur in pairs but
with one always bigger than its sibling.
The true maximum is 0.365 at (1.593, 0.471)
which is defined by a constraint boundary.
There is another similar peak of height 0.274 at
(0.475, 1.578).

RD
Highlight

78 A. J. Keane

0.4

0.3

.g

m
64

0.2 I

0.1

0

0

0

(4)

(5)

Y-axis 1o-‘,o g
X-axis

Fig. 1. The surface generated by eqn (2) with the constraints marked.

The major maximum within the boundaries has a
height of 0.263 at (3.087, 1.517), which is thus
quite competitive with solutions on the slopes of
the true, constrained maximal peak (where the
slope is much steeper and the base area much
smaller), causing many solutions to be trapped on
this sub-optimal peak.
The starting point lies on the line x = y where the
function is always zero, so that explorations
carried out by making small equal changes in x
and y show the function as invariant (affecting
many heuristic methods).

The problem is, however, dependent on only two
variables, which aids display of the function and speed
of calculation, but somewhat limits the generality of the
results. None the less, it is an improvement over the one-
dimensional functions used for many studies in this field.

5 INITIAL OPTIMIZATION

To gain some initial insights into this problem, four
different optimization methods were deployed using the
appropriate default control parameters. These were:

(1) The GA.
(2) Simulated annealing (SA), using ten temperatures.

(3)

(4)

The simulated annealing approach is based on the
kinetics of freezing crystals, where it is observed
that minimum energy states are reached for
sufficiently slow cooling. Essentially, the method
makes random small changes to the design and
these are accepted if they improve it and
occasionally even if they worsen it. The like-
lihood of changes that worsen the solution being
accepted is controlled by a Boltzman probability
function which is dependent on the so-called
annealing temperature. The method is often cited
as being an alternative to the GA.
Repeated sequences of linear approximation
followed by simplex solutions (see Siddall’s
program, APPROX’). APPROX uses small
explorations in the vicinity of the current design
to establish the local slope. The problem is then
assumed to be linear near this point and classical
linear programming methods are used to find the
best point in this sub-space. The process is then
repeated around the new point and so on, with the
size of the linear region being reduced at each new
base point. This method is very rapid for smoothly
varying problems with few variables but tends to
find local rather than global solutions.
The Hooke and Jeeves heuristic search followed
by a local random search (see Siddall’s program

Optimization of multi-peak problems 79

Cc)
4 6 8

x 4 6

Cd) x

Fig. 2. The optimization paths taken by the four methods mentioned in section 5: (a) GA; (b) SA; (c) APPROX; and (d) SEEK.

SEEK’). SEEK is a classical heuristic search that
wanders around the design space following a
preprogrammed pattern of moves, seeking the
steepest ascent to the maximum. When used with
a one pass penalty function it also uses random
point generation to test its final solution for better
points in the vicinity of the current design. When
such an improvement is found this is used to
restart the search.

In all cases 1000 function evaluations was set as the
suggested maximum and a simple one pass external
penalty function used to deal with constraint violations.
As has already been noted, this penalty function causes
all solutions that do not meet the constraint require-
ments to be considered as totally unworkable and
consequently assigns them a very low, -102’, objective
function value. The resulting optimization traces are
shown in Fig. 2. Here, only the best generation/
annealing temperatures of the GA and SA are shown,
together with all points from their final generation/
annealing temperature. The linear approximation and

Hooke and Jeeves methods used many fewer than 1000
points since they rapidly converged to the wrong peaks.
Figure 3 shows all the points evaluated by the GA with
these default settings and this demonstrates the con-
siderable coverage achieved by the method.

6 THE RECURSIVE PROBLEM

Given the previously stated optimization task and GA,
the recursive problem was set as selecting the best values
for the 13 control parameters of the GA. To allow for
the effects of different random number sequences on the
behaviour of the algorithm the results were averaged
over five different runs of the task, with slight weighting
in favour of combinations that worked with the
minimum number of function evaluations. Thus, the
new objective function, here called Measure(S), becomes

(3)

80 A. J. Keane

Fig. 3. All the points evaluated by the GA with default
parameters.

where i indicates the run number. Thus, sequences using
less than 1000 function evaluations (the default of 10
generations, each of 100 members) benefit while those
using more are penalized. The index of 0.15 biases
accurate solutions in favour of very rapid ones, e.g. if
only 500 evaluations are used the average solution value
needs to be at least (500/1000)““5 = 90% as good to be
preferred, despite being twice as fast as the default. This
new problem is much more demanding than the original
for a number of reasons:

(1) It has 13 rather than 2 variables.
(2) Each function evaluation takes, obviously,

around 1000 times longer to compute.
(3) It is much more dramatically non-linear, with

certain parameter choices acting as on/off
switches.

(4) Being essentially abstract, there is little obvious
pattern to its behaviour.

It is, however, an unconstrained problem, which
obviates the need to consider penalty functions.

6.1 Niche forming parameters

Initially, the focus was placed on the subset of
parameters controlling the niche forming behaviour as
it was expected that these would be crucial to
performance on multi-peak problems of the sort
considered here. This gives a problem with seven
variables, including turning the niche mechanism off
and changing Ns,, or Npop. Both the GA and SA were
used to optimize this recursive problem, in each case
with 500 function evaluations (i.e. 25000 runs of the
original optimization problem leading to typically
25 000000 evaluations of the original function -
indicating why such studies are only possible on test
functions of the type considered here). The GA used 50
generations of 100 points and the SA 17 temperatures of

Table 1. Optimization results, niche parameters only

Parameter Default GA(7) SA(7)

N gen
N

POP

P[best]
P[cross]
P[invert]
P[mutation]
Proportionality flag
Penalty

10 3 2
100 96 96

0.8 0.8 0.8
0.8 0.8 0.8
0.5 0.5 0.5
0.005 0.005 0.005

T T T
1 -Pass 1 -Pass 1 -Pass

Dmin 0.1 0.543 0.471
D max 0.2 0.953 0.909
N dust 25 55 23
Nbreed 5 23 41
cy 0.5 4 4

Measure(S) 0.291 0.368 0.360

Measure(50) 0.289 0.286 0.271
%Peak A 50 32 28
%Peak D 40 48 40

294 points. The final results were further checked by
averaging the results over 50 optimization runs of the
underlying problem, leading to Measure(50).

Table 1 gives the results of this analysis together with
those obtained using the default settings. In this table
Peak A refers to the true optimal peak at (1.593, 0.471)
and Peak D to the largest peak fully within the
constraint boundaries at (3.087, 1.517). Thus %Peak
A indicates the percentage of runs that resulted in the
final solution lying on Peak A when 50 trials were
carried out, i.e. in 25 out of 50 cases for the default GA.
Figures 4-6 illustrate the three combinations of
parameters in the table, showing all 50 optimization
traces used when calculating Measure(S) in each case
(plotting the best generation points only). The following
observations may be made about these results:

x

Fig. 4. The fifty optimization paths followed when evaluating
Measure(50) for the GA with default control parameters.

Optimization of multi-peak problems 81

Fig. 5. The fifty optimization paths followed when evaluating
Measure(50) for the GA with niche control parameters

(1)

(2)

(3)

(4)

optimized by the GA.

The default parameters are more robust than
those tuned on just five optimization runs.
The tuned runs work 3-5 times faster than the
original set.
The GA outperforms the SA on this recursive
problem.
Both methods suggest that cluster penalties must
be large (high Q), with small unfocused clusters,
for the KMEAN algorithm to work well; this is
probably related to the large number of peaks in
the underlying test function.

It should be noted that, since both the parameter sets
produced here use many fewer function evaluations than
the default GA, both Measure(S) and Measure(50)
benefit from the weighting detailed in eqn (3); if this is
removed these measures are reduced by around 20%.

Fig. 6. The fifty optimization paths followed when evaluating
Measure(50) for the GA with niche control parameters

optimized by the SA.

Thus far, the default approach gives a good account of
itself, particularly with respect to accuracy and robust-
ness, with the GA exhibiting some of the features
mentioned earlier as being desirable.

6.2 All parameters

Next, all the control parameters in the GA were allowed
to vary, leading to the results given in Table 2. Figures 7
and 8 illustrate the last two combinations of parameters
in the table, again showing all 50 optimization traces
used when calculating Measure(50) in each case. The
following observations may be made about this second
set of results:

(1) The default parameter set is no longer as robust as
the tuned set.

Table 2. Optimization results, all parameters

Parameter Default GA(7) SA(7) GA(al1) SA(al1)

N sen
N

POP

P[best]
P[cross]
P[invert]
P[mutation]
Proportionality flag
Penalty

Dmin
D max
N dust
Nbreed

a

Measure(5)

Measure(50)
%Peak A
%Peak D

10 3 2 10 9
100 96 96 66 94

0.8 0.8 0.8 0.09 0.04
0.8 0.8 0.8 0.76 0.51
0.5 0.5 0.5 0.64 0.18
0.005 0.005 0.005 0.17 0.19

T T T T T
l-Pass 1 -Pass l-Pass F&M 1 -Pass

0.1 0.543 0.47 1
0.2 0.953 0.909

25 55 23
5 23 41
0.5 4 4

0.425
0.937

24
43

4

0.291 0.368 0.360 0.382 0.369

0.289 0.286 0.271 0.333 0.312
50 32 28 62 58
40 48 40 34 30

RD
Highlight

82 A. J. Keane

Fig. 7. The fifty optimization paths followed when evaluating
Measure(50) for the GA with all parameters optimized by the

(2)

(3)

(4)

(5)

(6)

Fig. 8. The fifty optimization paths followed when evaluating
Measure(50) for the GA with all parameters optimized by the

GA. SA.

The tuned runs are only slightly faster than the
default set.

The GA again outperforms the SA in setting the
control parameters.
By adopting the Fiacco-McCormick penalty
function the GA can reach very good results
without the clustering algorithm.
Both methods dramatically reduce P[best], which
means that very few parents are used to produce
each new generation.
Both methods significantly increase the mutation
level, leading to greater changes between parents
and offspring.

The last two points seem to suggest that a pure random
search might work as well as the GA; however, setting
P[best] to zero and P[mutation] to 0.5 has this effect and
Measure(50) then drops to 0.267, i.e. worse than for all
the other approaches. To gain some additional con-
fidence that optimal sets of parameters have been
produced in at least some sense, the best generation/
annealing temperature results of the overall problem
have been plotted in Fig. 9. This demonstrates that the
methods used had at least settled by the time that
the results given in the tables were taken. Moreover, the
highly oscillatory nature of the SA plots at low trial
numbers indicates that the annealing schedule used did,

++

++++ ++++++ XXXXXXXXXXXXXXM
xxxxxx

..x~.x~.,x.,x.,xx,,.,xx~

xx A

xxx A A
A

0.3; A A 0 0 0 ;; 0
A

E 0 ‘5 0 0 0
2 0
G?
x
0.2

0.1 I

1000

X
0
+
A S.A., (all)

2000 3000 4000 5000
Trial No.

Fig. 9. The best generation/annealing temperature results for the four optimization runs applied to eqn (3).

Optimization of multi-peak problems 83

in fact, start from a high enough temperature, where the
solutions had ‘melted’. The fact that the two methods
converge to different solutions demonstrates, however,
how complex this recursive problem is.

7 CONCLUSIONS

The following principal conclusions may be drawn from
this brief study into optimizing multi-peak, constraint-
limited optimization problems:

(1)

(2)

(3)

(4)

GAS are fundamentally good multi-peak optimi-
zation routines.
GAS must, none the less, be tried over several
different sets of random numbers to guarantee
that results are not flukes.
Careful tuning of the niche control parameters
may be needed to gain the best performance in
these circumstances.
The correct choice of the fundamental parameters
may obviate the need for sophisticated niche
control mechanisms, particularly if a good
constraint mechanism is used and a sufficient
number of trials are allowed.

In the context of this last point, the use of constraint
penalty functions developed for classical, sequential

unconstrained maximization techniques (SUMT) such
as the Fiacco-McCormick function may well give
significant advantages since they may be smoothly
integrated into the GA method by setting increasingly
severe constraints on each successive generation. As
such they form a natural partner to the GA when
dealing with constrained problems and deserve wider
attention.

REFERENCES

1.

2.

3.

4.

5.

Siddall, J. N. Optimal Engineering Design: Principles and
Applications. Marcel Dekker, New York, 1982.
Goldberg, D. E. Genetic Algorithms in Search, Optirniza-
tion and Machine Learning, Addison-Wesley, Reading,
1989.
Kirkpatrick, S., Gelatt Jr, C. D. & Vecchi, M. P.
Optimization by simulated annealing. Science, 1983, 220,
U-80.
Anderberg, M. R. Cluster Analysis for Applications.
Academic Press, 1975.
Yin, X. & Germay, N. A fast genetic algorithm with
sharing scheme using cluster methods in multimodal
function optimization, in Proceedings of the International
Conference on Artificial Neural Nets and Genetic Algo-
rithms, ed. R. F. Albrecht, C. R. Reeves & N. C. Steele.
Springer-Verlag, Innsbruck, 1993.

https://www.researchgate.net/publication/201975959_A_Fast_Genetic_Algorithm_with_Sharing_Scheme_Using_Cluster_Analysis_Methods_in_Multimodal_Function_Optimization?el=1_x_8&enrichId=rgreq-02b5c9d80e0f2f67c5b814d6981321d5-XXX&enrichSource=Y292ZXJQYWdlOzIyMzc5Njg1ODtBUzoxMzkzODYwNTAwNjAyODhAMTQxMDI0MzYzMjUwOQ==
https://www.researchgate.net/publication/201975959_A_Fast_Genetic_Algorithm_with_Sharing_Scheme_Using_Cluster_Analysis_Methods_in_Multimodal_Function_Optimization?el=1_x_8&enrichId=rgreq-02b5c9d80e0f2f67c5b814d6981321d5-XXX&enrichSource=Y292ZXJQYWdlOzIyMzc5Njg1ODtBUzoxMzkzODYwNTAwNjAyODhAMTQxMDI0MzYzMjUwOQ==
https://www.researchgate.net/publication/201975959_A_Fast_Genetic_Algorithm_with_Sharing_Scheme_Using_Cluster_Analysis_Methods_in_Multimodal_Function_Optimization?el=1_x_8&enrichId=rgreq-02b5c9d80e0f2f67c5b814d6981321d5-XXX&enrichSource=Y292ZXJQYWdlOzIyMzc5Njg1ODtBUzoxMzkzODYwNTAwNjAyODhAMTQxMDI0MzYzMjUwOQ==
https://www.researchgate.net/publication/235054568_Cluster_Analysis_For_Applications?el=1_x_8&enrichId=rgreq-02b5c9d80e0f2f67c5b814d6981321d5-XXX&enrichSource=Y292ZXJQYWdlOzIyMzc5Njg1ODtBUzoxMzkzODYwNTAwNjAyODhAMTQxMDI0MzYzMjUwOQ==
https://www.researchgate.net/publication/235054568_Cluster_Analysis_For_Applications?el=1_x_8&enrichId=rgreq-02b5c9d80e0f2f67c5b814d6981321d5-XXX&enrichSource=Y292ZXJQYWdlOzIyMzc5Njg1ODtBUzoxMzkzODYwNTAwNjAyODhAMTQxMDI0MzYzMjUwOQ==

