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Electric vehicle smart charging and vehicle-to-grid operation

Siddhartha Mal*, Arunabh Chattopadhyay, Albert Yang and Rajit Gadh

Department of Mechanical and Aerospace Engineering, UCLA, 420Westwood Plaza, Engineering 4,
Los Angeles, CA 90024, USA

(Received 1 February 2012; final version received 1 February 2012)

Electric vehicle (EV) charging must be optimised for grid load while guaranteeing that
drivers’ schedules and range requirements are met. A system encompassing EV owner
input via a mobile application, an aggregation middleware, a charge scheduling and
vehicle-to-grid (V2G) operation algorithm and a radio-frequency identification reader
is proposed. The algorithm’s parameters and effectiveness are presented and discussed
using simulation results. Simulation results show the algorithm to effectively optimise
charging and V2G operation for a given electricity price curve. The proposed system is
shown to alleviate grid load during peak hours, take advantage of off-peak charging
benefits and generate revenue for the parking garage operator.
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1. Introduction

One million electric vehicles (EVs) and plug-in hybrid electric vehicles (PHEVs) are

expected to be in use by individuals and fleets by 2015 [20]. Unmanaged EV charging will

add to peak grid load and would require additional generation capacity [7,8]. Charging must

be scheduled intelligently in order to avoid overloading the grid at peak hours and to take

advantage of off-peak charging benefits. EVs can also serve as an energy resource through

vehicle-to-grid (V2G) operation by sending electricity back into the grid thereby

preventing or postponing load shedding [3,6]. Charging and V2G services must be

optimised for grid load while guaranteeing owner schedule and range requirements are met.

A system leveraging mobile devices and application to facilitate ‘smart’ charging have

been proposed [1]; however, integration of the mobile component with a charge scheduling

component is not specified. In addition, the described system does not account for

discrepancies between specified user charge profiles and actual distance travelled and times of

arrival and departure. A conceptual framework for V2G implementation has been developed

[3]; however, EV owner input into the system has not been considered. The market penetration

of smart technologies and advanced metering infrastructure have resulted in smarter EV

charging techniques which minimise charging cost to the consumer and grid load at peak

hours. Shao et al. [15] proposed a quick charging method by which a higher load (240V, 30A)

is drawn to enable quicker charging during evenings (after 6 pm) and off-peak hours. Home-

based off-peak charging (9 pm–11 am) is also considered by Yu [23].

In this paper, we present a system that performs electricity price optimised scheduled

charging and V2G operation of EVs in a parking garage using owner charge profiles – charge
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scheduling optimised for electricity price is implicitly optimised for electricity demand.

A literature review of radio-frequency identification (RFID), V2G and charge scheduling is

given in Section 2. In Section 3, the system architecture and its individual components are

described. The charge scheduling algorithm is detailed in Section 4 and results are presented

in Section 5. Concluding remarks are given in Section 6.

2. Literature review

2.1 Radio-frequency identification (RFID)

RFID has been playing an important role in various kinds of supply chain-based industrial

applications such as warehousing, pharmaceutical tracking and retailing since the past

decade. An RFID system consists of one to many readers which communicate with

multiple tags by inquiring their identification (ID) [2]. This technology has been widely

adopted in supply chain systems to streamline the flow of information regarding ID,

arrival/departure and status of objects in the system. Tags are periodically queried by their

respective readers, which in turn notify a software service/middleware of their presence or

absence, which can be further processed to deliver useful service. RFID tags are separated

into three categories based on their energy usage: passive, active and semi-passive

depending upon their power consumptions [12]. RFID tags are also categorised based on

the frequency at which they operate such as low frequency, high frequency, ultra high

frequency and microwave depending on the application [10].

RFID technology has been used for some time in parking lots in the form of near field

communication (NFC). The typical role of NFC in parking lots is to grant entry to

authorised users. Our system would use an RFID reader at every access gate to read an

entering vehicle’s tag. Once the tag’s ID has been read, it is transmitted to the system

middleware that performs a database lookup. The middleware will either grant the vehicle

access and assign it to a parking spot or deny access.

Porter et al. discuss the implementation of RFID-based vehicle mileage logger at gas

stations [11]. They discussed rates of getting successful reads by the RFID mileage loggers

from devices placed in vehicles and the issues that affect the read rates of the RFID

readers. They also discussed an architecture by which a middleware bills the drivers of the

vehicles with the toll based on the distance they drove on toll highways after collecting the

data through the RFID readers. They also implemented GPS-based technologies to

supplement the mileage collection process. Theo and Jonas [19] discuss the concept of an

Energy Name Service for the smart grid energy infrastructure. The concept they have

explained is inspired by the principle of domain name system (DNS) and object name

system (ONS) which are very closely related with the concept of internet of artefacts using

RFID-tagged objects. The philosophy of their work is that how every entity in the energy

domain (such as charging stations, vehicles, etc.) would be given an ID, which would be

helpful in ID and hence execution of seamless transactions for charge consumption

between multiple geographical entities. This would be similar to the mobile phone service

by which a user would be billed for their usage regardless of the location of usage of the

mobile phone service. They also introduced the concept of Internet of Energy similar to

the internet of things by which every object related to the energy food chain is

interconnected to each other through the internet. Their paper discusses the architecture of

such an energy network and methodology for the energy naming service by which an

object is given an energy ID based on certain parameters such as geographical location,

type of object, etc. Song discusses the implementation of a home electricity management

box installed at every household which acts as an intelligent node to optimise the

S. Mal et al.250

D
ow

nl
oa

de
d 

by
 [

Is
ta

nb
ul

 U
ni

ve
rs

ite
si

 K
ut

up
ha

ne
 v

e 
D

ok
] 

at
 1

4:
42

 0
1 

N
ov

em
be

r 
20

14
 



consumption of electric energy [17]. They propose using the RFID-enabled car keys as

instruments to authenticate EVs for charging.

2.2 Charge scheduling

Soares et al. [16] have proposed a Particle swarm optimisation (PSO)-based approach to

perform V2G-based charge scheduling. Their charging plan also encompasses distributed

power generation systems such as fuel cell, solar, etc. which contribute to the net power

generation. Their goal is to minimise the generation cost which includes generation

production cost and V2G discharge payment. They compare their optimisation approach

with General Algebraic Modeling System (GAMS)-based optimisation software.

However, they do not explain the technique used by the GAMS software to optimise

the charge scheduling which makes it challenging to assess the two techniques. In the final

result, they show that the GAMS-based software results in lower total costs but the PSO-

based approach has a lower execution time. However, this claim is also hard to validate as

very little light has been thrown on the technique used by the GAMS optimisation

software. Venayagamoorthy et al. proposed a real-time digital simulator-based vehicle

parking lot performing V2G transactions [21]. They have used a binary particle swarm

optimisation technique to control the power flow to and from a vehicle. The goal of their

optimisation technique is also to minimise the cost of charging a given EV. In this paper,

they analyse the effects of large bidirectional power surges to the batteries and the

inverters of individual plug-in vehicles as they are switched from a state of charging to

discharging. They concluded that grid faults can be detrimental to vehicles performing

V2G transactions unless advanced control and protection are provided. Hutson et al. [5]

extended the work by Venayagamoorthy on V2G-based charge scheduling in parking lots.

The charge optimisation was again based on the Binary PSO (BPSO) algorithm previously

discussed. They considered two cases. The first case study takes the price curve and finds

the best selling price for each vehicle over the desired departure state of charge (SOC) and

the best buying price for each vehicle under the desired departure SOC. Case 2 allows for

multiple transactions to occur for each vehicle throughout the day leading to more profit-

oriented charging. However, the BPSO algorithm being stochastic, the same solution is not

found each time leading to a standard deviation of 0.045% of the average. Wu et al.

introduced the concept of intragrid which aggregates the contributing EVs under an

umbrella to act as a single unit feeding and taking energy from the grid [22]. They

considered different scenarios where either the cost of charging the EVs or the emission

from the charging or both can be minimised. The optimisation algorithm used is Particle

swarm optimisation. They achieved their optimum solutions after 1000 iterations. Saber

et al. [13] propose the concept of an intelligent unit commitment by using V2G to reduce

operational costs and emissions. BPSO was used to perform scheduling of thermal units

while Balanced PSO was used to determine the number of V2G units to be connected to

grid to minimise the cost of operation and emission by the thermal units. Different

scenarios were simulated by optimising the cost, emission and combined goals. Schieffer

et al. have proposed a decentralised charging strategy in their work [14]. First, they used

linear programming to optimise charging duration by minimising charging events during

peak load (or high priced) hours. On completion of this step, they use probability density

functions indicating the distribution of charging slots to determine the exact time choices

for charging. They have many similarities with our work such as charge time optimisation,

division of entire day into smaller charging/discharging time intervals etc. which would be

highlighted in greater detail during algorithm discussion.
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2.3 Vehicle-to-grid (V2G)

Guille and Gross [3] present a conceptual framework for implementation of V2G based on

bidirectional energy transfer between vehicle and grid and aggregated use of EVs as

generation and storage devices. Aggregated EVs can provide grid services such as up and

down regulation, load levelling, and peak shaving more economically and with less

environmental impact than current systems. EVs must be aggregated because individually

their battery capacity is small and would not make an appreciable difference at the grid level.

In contrast with unmanaged EV charging that can add to reserve and regulation requirements,

aggregated EVs can be charged during off-peak periods, thereby levelling grid load and

reducing these requirements. The proposed framework emphasises the Aggregator as the

enabling entity for V2G. The Aggregator has the following communications relationships: (1)

each EV sends status data and receives charging control signals, (2) the Energy Service

Provider receives charging and sends load levelling requirements and (3) the independent

system operator or regional transmission organisation ISO/RTO sends resource requirements

and receives resource availability data. This work presents seminal ideas for future V2G

work; however, specific components of the proposed framework are neglected including EV

owner input into the system and charge scheduling for random arrival and departure times.

Kempton and Tomić [6] present profit calculations for using EV fleets for V2G services

including up and down regulation. Assuming an availability of 17 h per day for 252 RAV4

EVs, an initial state of charge of 30–50%, a required range of 36 miles, and circuits able to

handle 6.6 kW, profits range from $144,800 to 912,000 for regulation down/up market

prices from 12.9/14.0–39.7/62.5 US$/MW-h. When a 15 kW limit is considered, the range

is $358,000–2,102,000. The results include equipment costs and battery life degradation.

Han et al. [4] present a method for optimally controlling EV charging to maximise EV

regulation service revenue. The model developed accounts for varying electricity and

regulation price over time, a variable time the vehicle will be parked, a variable amount of

charge needed and a maximum charge rate. A maximum revenue of $0.42 is determined

assuming a 20 kWh battery, maximum charge/discharge rate of 2 kW, an arrival time of

00:00 and departure time of 12:00.

3. System architecture

3.1 Overview

EV owners will register one or more vehicles with the system. Each registered vehicle will

put on an RFID access tag that will allow it with enter enterprise-owned and affiliated

garages. The tag’s unique ID is used by the parking garage aggregation middleware

(PGAM) to lookup the associated owner and act on his/her charging profile and billing

information. At the access gate (Figure 1), the driver will be designated a numbered

parking spot based on availability. Once the owner plugs into the EV supply equipment

(EVSE), the PGAM checks for an existing charging profile. If none is found, he/she will be

prompted to enter one via the EV Command Portal (EVCP) application on their mobile

device or charge station touch screen (Figure 2). Figure 3 shows the sequence of events

when a car arrives at the gate. If the user fails to enter a profile within a given time-

window, the system uses a default. The EV owner can use the EVCP to monitor the status

and control the charging modality of his/her vehicle within system parameters at any time.

Based on user charge profile the aggregated charge scheduler (ACS) will schedule

charging to meet user charge requirements, minimise cost and maximise profit from V2G

services. Figure 4 shows the flow of the aforementioned data among system components.
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3.2 EV command portal application

Range anxiety is one of the main obstacles to consumer adoption of EVs. The problem stems

from (1) limited range compared with conventional gasoline vehicles and (2) inadequate

charging infrastructure [18]. This anxiety can be mitigated if EV owners have better access to

and control of the charging of their vehicles. This control can be achieved intuitively via a web

or mobile application. Users should be able to monitor their vehicle’s SOC, range, estimated

charge completion time and estimated cost of charging. They should be able to control the

Figure 1. Parking garage access gate.

Figure 2. Charging station equipment and activities.
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charging of their vehicle using parameters including desired SOC, time of arrival, time of

departure and, if available, V2G opt-in.

The EVCP application will play an integral role in the scheduled charging of EVs

by allowing owners to monitor the status of their vehicles as well as control the way

they charge. The application will provide the user with real-time updates on the SOC of

their battery, real-time charge status alerts, e.g. charge completed, and allow users to

control the charging modality of their vehicle by creating charging preferences and

schedules.

The EVCP interface comprises three screens: (1) charge status, (2) charging stations

and (3) EV profile. ‘Charge Status’ is the main screen and displays the EV’s SOC, range,

time remaining until charging is completed, current electricity price and estimated total

charging cost [Figure 5(a)]. The ‘Charging Stations’ screen displays charging stations on a

map along with charger type and real-time availability information. The ‘Charge Profile’

Figure 3. Event sequence for EV arrival at parking garage.
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screen displays a calendar and a list of existing profiles by which the user may create one

or more profiles per day. The profile creation screen allows the user to enter arrival and

departure times, initial and final SOC values, and their V2G participation preference

[Figure 5(b)].

Figure 4. Data flow among system components.

Figure 5. (a) Charge status screen. (b) Charge profile screen.

International Journal of Parallel, Emergent and Distributed Systems 255

D
ow

nl
oa

de
d 

by
 [

Is
ta

nb
ul

 U
ni

ve
rs

ite
si

 K
ut

up
ha

ne
 v

e 
D

ok
] 

at
 1

4:
42

 0
1 

N
ov

em
be

r 
20

14
 



3.3 Parking garage aggregation middleware

The PGAM is a lightweight middleware that handles parsing of user charging profiles,

aggregation and dissemination of charger and vehicle status, billing and alert notification

delivery.

A vehicle’s RFID tag is scanned at the access gate and the ID is sent to the PGAM

which verifies it in the system database. If it is authorised, the PGAM assigns a parking

spot, shown on the gate’s display screen, and signals the gate to open. The middleware

then checks for billing information and a charge profile. If either is missing, the owner is

prompted to enter the required information on his/her mobile device or via the touchscreen

at the charging station (Figure 6).

The EVSE sends charging voltage and current data to the PGAM. The vehicle’s SOC

is estimated using the initial state of charge (ISOC) provided by the user, charging power

as a function of time, and the vehicle’s battery charge profile. Charging cost is calculated

using power draw/supply data from the EVSE, electricity price as a function of time and

the vehicle’s charging schedule. EV updates are pushed to the EVCP over a long-poll

HTTP connection (Figure 6).

A buffer time, T_buff, is provided between when the ACS schedules cars to be charged

to the desired SOC and the specified departure time. By default this value is equal to zero.

Based on the difference between specified departure time and actual departure time,

provided by the RFID reader at the garage exit, the middleware will alter the value of

T_buff for a given driver. A charge profile is received from the EVCP in XML format,

parsed by the middleware, and sent to the ACS. If the profile is verified by the ACS the

PGAM adds it to the database. If the ACS determines that the charge profile cannot be

satisfied it sends an error message to the PGAM, which sends an alert to the user, detailing

the parameter(s) and corresponding value(s) to change.

Figure 6. System sequence diagram.
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4. Aggregated charge scheduler

4.1 Overview

The ACS optimises EV charge scheduling for minimal cost using user charge profiles and

electricity price as a function of time. By optimising charge scheduling for electricity

price, it is implicitly optimised for electricity demand. The ACS sends a control signal to

each EVSE to charge, discharge or turn off according to the created schedule.

The ACS receives an owner charge profile from the PGAM which includes time of arrival

(t_arr), time of departure (t_dep), buffer time, T_buff, ISOC and final state of charge (FSOC)

of their EV. Charging must be completed T_buff minutes before the owner’s

scheduled departure. The value of T_buff is calculated by the PGAM based on owner

adherence to his/her specified departure schedule. Once the ACS receives a charge profile,

its task is to charge the EV from ISOC to FSOC within the time span of t_arr and t_dep –

T_buff.

4.2 Algorithm description

4.2.1 Charge scheduling

The 24-h period of a day is quantised into smaller time intervals which are the smallest

units of time used by the algorithm to schedule the occurrence of a charge, discharge or no-

activity (Figure 7).

The electricity price curve (Figure 8) is also quantised into time intervals in which each

interval has a fixed price, Pi. Using the charge profile for the given EV and the ISOC and

FSOC, the charge duration, T_ch, is calculated. In order to calculate T_ch, the charge

profile data of lithium-ion batteries of the Nissan Altra from Qian et al. [9] are used. If

T_ch is greater than the duration of the stay of the car (1), the algorithm rejects the plan and

notifies the PGAM to inform the user of the impossibility of charge completion within the

supplied parameters.

T_ch # t_dep2 T_buff 2 t_arr: ð1Þ

Otherwise, the algorithm calculates the number of charge intervals required for charging,

N_C, from T_ch. The algorithm chooses N_C charge intervals (Ci) with the lowest Pj in the

interval (t_arr, t_dep – T_buff) to charge the EV.

4.2.2 V2G operation

If the owner has opted to participate in V2G, the algorithm chooses N_C0 C0
i intervals with

the lowest Pj to charge the EV and N_D 0 D0
i intervals with the highest Pj to send energy

from the EV back into the grid (i.e. sell excess charge at the highest possible price) for

maximum profit.

XN_C0

1

C0
i 2

XN_D0

1

D0
i ¼ 0; ð2Þ

N_C0 ¼ N_D0: ð3Þ

Purchasing additional charge at cheap time intervals and selling them at higher priced time

intervals would generate net profit. It must be noted that the V2G-based additional charge

and discharge intervals (C0
i and D0

i) are equal such that when the EV owner departs, the

SOC of his battery is FSOC (2), (3). In scheduling charging and discharging for V2G
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operation, the algorithm must ensure that the vehicle’s SOC never exceeds 100% or goes

below 0% (4).

t_arr # t , t_dep2 T_buff 0 # SOCðtÞ # 100: ð4Þ

5. Results

5.1 Overview

The goals of scheduled charging optimised for electricity price are exploiting off-peak

charging benefits and avoiding charging during peak load hours. In addition, while

vehicles are parked and idle, their energy storage capacity is utilised to alleviate grid load

during peak demand.

5.2 Simulation set-up

In order to validate our algorithm, simulations were run using actual day-ahead electricity

prices (Figure 8), assuming all chargers deliver 6.6 kW, assuming all cars are Nissan Altras

and have the charge profile given by Madrid et al. [9], and using two EV driver scenarios:

Figure 7. EV charging algorithm flowchart.
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(1) variable schedule and charging requirements and (2) enterprise commuter schedule and

charging requirements.

Charge scheduling without V2G was simulated using a hypothetical parking garage

with 10 chargers and 30 vehicles using the variable scenario. Cost and power usage results

are compared with unmanaged charging for the same scenario.

The optimal charge interval duration for maximum V2G profit is determined.

Maximum V2G profit is simulated for both types of EV owners.

5.3 Charge scheduling

Charging is scheduled during the cheapest intervals an EV is parked. Comparing the price

curve (Figure 8) with the charging schedule for 30 variable car scenarios (Figure 10), it is

obvious that between intervals 10 and 20, when the price is greater than its median value of

8.2 ¢/kWh, charging is minimal. Those cars that are being charged during that interval

Figure 8. Electricity price [24].

Figure 9. Actual load [24].
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have time constraints that limit them from being charged at any other time. The V2G

schedule for the same 30 cars (Figure 11) shows a similar dearth of charging from

approximately interval 10–20. Most of the discharging happens during this interval when

electricity price and demand are highest.

Figure 10. Charging schedule for 30 cars, 10 chargers.

Figure 11. V2G schedule for 30 cars, 10 chargers.
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Scheduled charging is more cost-effective than unmanaged charging. The average

total cost over 1000 trials of scheduled charging of 30 variable scenario vehicles entering a

parking lot of 10 chargers over a 24-h period was $2.77. Unmanaged charging, which is

defined as charging the vehicle as soon as it parks, of the same vehicles cost $3.07. The

savings for the variable scenario was 10%. The same simulation was run for the enterprise

commuter scenario with 30 vehicles using 30 parking spots instead of 10, to accommodate

all the overlapping vehicles. Total average cost was $8.45 under unmanaged charging

versus $7.87 for scheduled charging, a savings of 7%.

Scheduled charging also reduces load during peak demand. For the load curve

(Figure 9), we define peak load as the interval from 11 am until 7 pm, when the load is

higher than its median from 7 am until 9 pm. Over 1000 trials for the enterprise commuter

scenario, unmanaged charging uses an average of 46.5 kW during the peak load interval

versus 24.9 kW for scheduled charging – a reduction of 46%. For the variable scenario,

unmanaged charging uses an average of 18 kW during peak load versus 7.89 kW for

scheduled charging – a reduction of 56%.

Figure 12. V2G profit per car as a function of the number of intervals per hour.

Figure 13. V2G profit (¢) contour plot for variable scenario.
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5.4 V2G profit

V2G services exploit vehicles’ idle time to provide an energy resource during times of

peak load. The parking garage operator can incentivise EV owners to participate in V2G

using the profits earned by providing V2G services. Profits are earned when vehicles are

charged during off-peak times, then send their stored energy back to the grid when demand

is high. The effectiveness of V2G services is measured by profit per car, not including the

cost of charging to fulfil owner charge profile requirements.

V2G profit per car based on the number of incoming cars and charging stations is

shown for incoming cars under the variable (Figure 13) and enterprise commuter scenarios

(Figure 14). It depends on the number and variability of incoming cars, number of

charging stations in the parking structure and the electricity price curve. Each car in the

variable car scenario has a random initial arrival time, ISOC and random FSOC and

departure time that are greater than their respective initial counterparts. In the enterprise

commuter scenario, arrival times are evenly distributed from 7 am to noon, departures are

evenly distributed from 4 to 9 pm, ISOC is log-normally distributed with a mean of 22.3

and a standard deviation of 12.2 [9], and FSOC is fixed at 100%.

One hour was determined to be the charge interval duration that maximised V2G profit

per car (Figure 12). Cars used in determining this value were given a random ISOC, FSOC,

arrival time and departure time. The test was run with 10 chargers, 100 cars and averaged

over 1000 trials.

The difference between the FSOC and ISOC variables determines how much time is

required to charge the client car – the charging time is not included in V2G profit

calculations. However, longer charging times reduce V2G profits by reducing the time

available for V2G. Also since cars are used as energy storage, arrival and departure times

limit when V2G can occur for each car. V2G profits increase as the ratio of parking

duration to required charging time increases. In order to determine the maximum V2G

profit per car, contour plots were generated for the variable scenario (Figure 13) and

enterprise commuter scenario (Figure 14), showing V2G profit per car as a function of

number of EVs and number of charging stations. The number of incoming cars and

charging stations was varied from 1 to 1001 in increments of 50. Each figure plots 441

Figure 14. V2G profit (¢) contour plot for enterprise commuter scenario cars.
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different combinations of incoming car and station numbers run over 1000 iterations.

A charge interval duration of 1 h and buffer time of zero were used.

Each contour plot has two regions separated by a saturation limit line. This line

represents the car to station ratio in which every incoming car undergoes V2G and every

station is utilised. The slope of the line demarcating the saturation limit is dependent on the

variability of the incoming cars.

The variable incoming car scenario has a saturation limit slope that is greater than

one, in which the car to station ratio increases with the number of incoming cars. Since

there are no constraints on the entry and departure times of incoming cars, it is possible

for a charging station to accommodate more than one car. Also, as the pool of

incoming cars increases, there is an increased likelihood of a car with a later arrival

time to fit (park) into a previously occupied charging station after the previous car has

left. Below and to the right of this saturation limit line is the charging station

overcapacity region where every incoming car is able to park, charge and go through

V2G optimisation. Increasing the number of charging stations or decreasing the number

of cars in this area will have no affect on the average V2G profit per car, which is 6.9

cents. This particular profit value is a function of the electricity price curve and would

vary as the curve varies. In this region, every incoming car is accommodated by an

available charging station and thus the V2G profit per car is representative of the entire

car population. For example, one car at one parking station over many iterations will

have the same mean V2G profit per car as 200 cars at 1000 stations for a given

electricity price curve; as they will have similar optimised charge–discharge schedules,

giving similar profits. Above the saturation limit line is car oversaturation region where

there are insufficient charging stations to accommodate every incoming car. Unlike the

overcapacity region, increasing the number of cars or decreasing the number of

charging stations in the car oversaturation region significantly affects the V2G profit

per car calculation as discussed previously. Maximum profit per car over the entire

contour area is 11.7 cents.

For enterprise commuter cars, the latest possible arrival time is noon and the earliest an

occupied station is free is 4 pm. Because of these restrictions, it is impossible to have more

than one car per station for a large duration (between noon and 4:00 pm) and thus the

saturation limit line has a slope of approximately one. Average V2G profit per car is 5.6

cents – this is lower than the variable scenario because of the fixed FSOC requirement of

100%, versus the a random FSOC being greater than ISOC. Thus on an average, each

enterprise commuter scenario car has a longer charging duration and charging stations

have less time available for V2G, leading to lower profit.

6. Conclusion

A comprehensive system leveraging mobile and RFID technologies, aggregation

middleware and an aggregated charge-scheduling algorithm that effectively schedules

charging and V2G operations for cost savings and peak load reduction has been presented.

Intelligently scheduled charging yields a cost savings of 7% for enterprise commuters

and 10% for drivers with variable schedule and charging requirements. Peak load can be

reduced by 46% for enterprise commuters and 56% for drivers with variable schedules and

charging requirements. V2G services that utilise vehicles’ idle time, when they are parked

but not charging, can generate a net profit for the parking garage operator. A maximum

profit of 11.7 cents per vehicle was determined to be achievable for vehicles under the

variable scenario and 5.6 cents per vehicle for enterprise commuters.
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The proposed system would be well suited for implementation in an enterprise

environment where a large number of EVs could be aggregated to substantially impact

peak load alleviation and act as a significant energy resource.
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