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Abstract
In this paper, the ducting model has been generalized by considering the temporal pulse shape
function used to formulate it. This generalized form of the ducting model can be used to
describe the propagation of laser pulses with various temporal shapes. In particular,
propagation of Gaussian shaped laser pulses has been simulated. The model results have been
compared with the results of the multi-focus structure and the moving nonlinear foci models,
and it is shown that good correspondence exists between the results of our ducting model and
those of the other two models. Our simulation results indicate that the Gaussian laser pulse
creates a multi-focus structure inside the nonlinear Kerr medium which moves inside it at a
very fast velocity. It is shown that this fast movement of focal points can create filaments in
the form of conical frustums during pulse propagation.

(Some figures may appear in colour only in the online journal)

1. Introduction

A growing interest in self-focusing phenomena and the
formation of filaments of nanosecond laser pulses occurred
during the early development of nonlinear optics [1–3]. It is
still a subject of intensive investigation, since self-focusing
of laser pulses can initiate damage in transparent media
and limits the attainable intensity of high power lasers [4].
Self-structuring and self-spectral broadening can also be
visible in the output pulse of these lasers due to self-focusing
phenomena.

Over the past four decades, a great number of
publications have been devoted to various aspects of the
propagation of laser beams in nonlinear optical media.
Several theoretical models of self-focusing were proposed
and investigated (a complete list of models can be found in
various chapters of [5]). Following the first paper of Chiao
et al [6], most of the models describing the propagation
of light in nonlinear media were concerned with Kerr
nonlinearity, wherein the refractive index varies linearly with
the light intensity. Each one of these models has its own
advantages and disadvantages and can describe some of the

experimentally observed features of pulse propagation in
nonlinear Kerr media. Among these models, the multi-focus
structure (MFS) [7] and moving nonlinear foci (MNLF) [8]
models have been the most developed theoretically and
have been confirmed in many experiments, especially for
laser pulses with nanosecond durations [9, 10]. Indeed, Loy
et al [11] investigated the self-focusing of a single-mode ruby
laser beam of 8 ns pulse duration in toluene and CS2 and
confirmed the MNLF prediction that the observed filaments
are traces of the nonlinear focal locations which move along
the propagation axis during that time [9].

Recently, a ducting model has been developed for
predicting the Gaussian beam parameters during propagation
in nonlinear Kerr media [12]. This is a stationary model which
is based on the aberration-free theory and the assumption
that nonlinear Kerr media are of a ducting nature. However,
one must note that in real experiments that are designed
for observing the self-focusing phenomenon, the incident
beam is not often stationary. These experiments are mostly
set up using pulsed lasers wherein the beam power varies
with time in accordance with the pulse envelope. In order
to increase the conformity of the ducting model with real
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experimental conditions, we have further developed the model
by considering the time dependence of the laser beam
intensity that appears in the refractive index of the Kerr
medium. The model results have been obtained assuming a
Gaussian shape laser pulse with nanosecond duration. It is
shown that the model results are in good accord with the
results of the MFS and MNLF models and are capable of
providing more useful information about the characteristics
of pulsed beam propagation in nonlinear Kerr media.

2. Description of the model

The index of refraction of the Kerr medium changes with
intensity as

n = n0 + n2I (1)

where n0 is the linear refractive index, n2 is the nonlinear
refraction coefficient and I denotes the intensity of the laser
beam within the sample [13]. Considering the propagation
of a spatially Gaussian laser pulse in the z direction, in the
aberration-free theory the complex amplitude of the electric
field within the nonlinear Kerr sample is written as [14]

E(r, z0 + z) = E0
w0

w (z)
exp

(
−
αz

2

)
exp

(
−r2

w2(z)

)
f (t) (2)

where r is the radial coordinate, z0 is the position of the
medium entrance plane (assuming that the origin of the
coordinate system is set at the position of the Gaussian beam
waist), E0 is the value of the electric field at the center of the
beam waist plane, α is the linear absorption coefficient and
w0 and w(z) are the beam waist and the beam spot size at the
z position, respectively. The function f (t) has been introduced
to describe the temporal shape of the laser pulse. This function
can have any appropriate shape to describe the different kinds
of laser pulses, like Gaussian, super-Gaussian, rectangular,
hyperbolic secant, etc. From this point forward, the model will
closely follow the ducting model relations [12], apart from the
fact that now all the relations should contain the pulse shape
function f (t). Therefore, the time-dependent Gaussian beam
parameters, namely its spot size and radius of curvature, can
be found at each z position inside the Kerr medium using the
following relations [12]:
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where w1 and R1 are, respectively, the beam spot size and
radius of curvature on the entrance plane of the medium
and λn = λ0/n0 is the wavelength of the light inside the
medium. A(z, t), B(z, t), C(z, t) and D(z, t) are the ABCD
matrix elements of the Kerr medium that depend on time and
the z distance according to the following relations:[

A(z, t) B(z, t)

C(z, t) D(z, t)

]

=

 cos(γ (z, t)z)
sin(γ (z, t)z)

n′0γ (z, t)
−n′0γ (z, t) sin(γ (z, t)z) cos(γ (z, t)z)

 (5)

with

γ (z, t) =
2

√
aw (z, t)

√√√√ 1

1+ πn0w2(z,t) exp(αz)
2Pn2f (t)

(6)

where a is a correction factor that may take on values between
3.77 and 6.4 [12, 15] and P denotes the laser pulse peak power.

In order to be able to know the values of w(z, t) and R(z, t)
of the spatially Gaussian laser pulse during its propagation in
the Kerr medium, the same numerical procedure as described
in our previous report [12] can be used. At each instant
of time, w(z, t) can be obtained by numerically solving the
equation which is accessible by inserting the expressions
A(z, t) and B(z, t) into equation (3). Knowing the w(z, t)
values, γ and hence the ABCD matrix elements can be
calculated at each z position along the propagation direction
by using equations (6) and (5), respectively. Finally, R(z, t)
values can be obtained at each position by using the calculated
ABCD matrix elements in equation (4).

3. Results and discussion

Considering the propagation of a Gaussian shape laser pulse
in a nonlinear Kerr medium, the pulse shape function f (t) can
be written as [16]

f (t) = exp
(
−2 ln 2(t − t0)2

τ 2

)
where τ is the full width at half maximum (FWHM) of
the pulse and it is assumed that the pulse is centered
around time t0. In our simulations, we have assumed that
the laser pulse has a FWHM of 20 ns centered around
25 ns (inset of figure 1). Since the laser pulse is very
short, the striction or thermal nonlinearity mechanisms
cannot appear because redistribution of the density of matter
by the striction forces or by nonuniform heating requires
relatively longer times [17]. Furthermore, the temporal
response of the electronic Kerr effect does not usually
exceed 10−15 s and the electron nonlinearity mechanism
cannot appear until we reach picosecond pulse durations.
Therefore, for laser pulses with nanosecond durations, the
main contribution to the nonlinearity of the medium can
only be made by the orientational Kerr effect for, which
the characteristic establishment time is 10−10–10−12 s [17].
Hence, in our calculations we have used a value for n2 of
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Figure 1. Spot size variations of the pulsed laser beam at two
different instants of time. A moving multi-focus structure has been
formed inside the nonlinear Kerr medium. The inset shows the
temporal shape of the Gaussian laser pulse with 20 ns FWHM.

10−14 cm2 W−1 [18]. The laser wavelength λ0 and its peak
power P are also selected as 532 nm and 9 MW, respectively.
In addition, for the linear refractive index n0 and absorption
coefficient α of the Kerr medium, typical values of 1 [19]
and 10 m−1 [20] are set in our simulations. It is assumed that
the laser beam waist is equal to 0.033 mm and the medium is
placed 1 cm after the beam waist position where R1 is positive
and equal to 0.014 m and w1 has a value of 0.061 mm [12].

In figure 1, the spot size variations of the pulsed laser
beam has been shown at two different instants of time. The
two different instants of time have been selected at the leading
edge of the pulse, where the laser power is rising, and at
the pulse peak, where the laser power is maximum. At each
instant of time, a multi-focus structure is formed inside the
medium which is consistent with the predictions of the MFS
model. As was previously pointed out [12], this type of spot
size variation is to be physically expected since for laser
beams with Gaussian spatial intensity profiles propagating
in media with a positive sign for the nonlinear index of
refractions, the same effect as a convex lens occurs which
counteracts the normal effect of diffraction. The interplay
between these two effects leads to the depicted periodic
profiles in figure 1. In the MFS model, which is completely
based on wave optics, another plausible interpretation of the
observed periodic structure in figure 1 has been suggested.
According to this model, the light beam propagating in the
nonlinear medium splits into ring zones in the transverse
direction, and each zone is focused at different distances along
the propagation z axis. Only a portion of the initial light
beam power flows into the first nonlinear focus. A similar
process occurs for other ring zones of the beam, and hence
a multi-focus periodic structure will be obtained inside the
nonlinear medium [9, 10, 17].

It should be noted that some models predict that
propagation of a beam with power higher than the critical
power of self-focusing leads to collapse of the beam to zero
diameter [21]. However, as figure 1 shows, our model results
indicate approximately a two-fold decrease of the beam spot
size at the first self-focusing points. Furthermore, the beam
diameter varies with the time slice. Indeed, since the focusing

Figure 2. The normalized on-axis distributions of the light intensity
along the propagation z axis at the two instants of time.

Figure 3. Temporal variation of the normalized intensity at
different positions near the first self-focusing point.

power of the Kerr medium is determined by the n2I term in
equation (1), the transverse dimensions of the nonlinear foci
are smaller for t = 25 ns in figure 1, which corresponds to the
highest intensity of the pulsed laser beam.

To clarify the temporal dynamics of the pulse in the case
of self-focusing, the spatio-temporal distributions of intensity
have been calculated. Figure 2 shows the on-axis distributions
of the light intensity along the propagation axis at the two
instants of time. It is obvious that at each instant of time, when
the light reaches the self-focusing points its intensity greatly
increases. The form of intensity variations is quite similar to
that shown in the MNLF model [8].

Figure 3 shows the temporal shapes of the laser pulse
at different positions near the first self-focusing point (see
figure 1). As the laser power increases in the leading edge of
the pulse, a sharp increase occurs in intensity when the first
self-focusing point passes through the specified z positions in
figure 3. A sharp decrease also occurs when the laser power
decreases in the trailing edge of the pulse. These two sharp
changes deform the initial Gaussian shape of the laser pulse
(compare figure 3 with the inset of figure 1). To clearly see
why these sharp changes in intensity occur, the variations in
spot size of the pulsed laser beam are shown for different
instants of time in figure 4. The variations in spot size at z
equal to 4 and 5 mm reveal that for the two instants of time
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Figure 4. Variations in spot size of the pulsed laser beam at four
instants of time that illustrate movement of the first self-focusing
point inside the nonlinear sample.

Figure 5. Variation of the transverse dimension of the first three
focal points during the time interval of the laser pulse.

there is a sharp change in which self-focusing points locate on
either side of these positions. These sharp changes in spot size
reveal themselves as sharp changes in the intensity profiles in
figure 3. One must note that for the z positions far from the
self-focusing points (e.g. z = 3 mm in figure 3) the intensity
profile remains Gaussian since no sharp variations in spot size
occur at these points.

In figure 5, the radii of the first three foci inside the
nonlinear Kerr medium are shown at different instants of time.
It is clear that the transverse dimensions of the focal points are
minimum at the pulse peak (t = 25 ns) and become larger for
other instants of time during the pulse period. Figure 5 also
confirms the result of one of the first experimental works on
self-focusing phenomena with nanosecond lasers [22], i.e. the
focal points that are closer to the sample entrance plane have
smaller transverse dimensions.

A closer inspection of figure 1 reveals that by increasing
the laser pulse power, the locations of the foci move toward
the sample entrance plane. The amounts of movement are
smaller for the focal points nearer the sample entrance plane.
In order to see this feature more clearly, figures 6(a)–(c) show
the first three focal locations at different instants of time. It
is easy to see that the higher order focal points travel a larger
distance inside the nonlinear medium. The U-curves obtained

Figure 6. Distance of the first three self-focusing points from the
entrance plane of the nonlinear sample at different instants of time.

Table 1. Maximum movement distances of the first four
self-focusing points (SF) inside the nonlinear Kerr sample. Each
point moves twice along the specified distances.

Maximum movement distance (cm)

First SF Second SF Third SF Fourth SF

0.49 1.82 2.60 3.03

in figure 6 have already been shown to correctly describe the
motion of focal points inside a nonlinear Kerr medium [23].

As was previously pointed out in the MNLF model,
since the positions of the foci along the beam axis depend
on the initial power and the power itself varies with time,
the foci move along the beam axis [17]. In fact, in this
model the observed thin light filaments in experiments were
proposed to be traces of the nonlinear focal locations which
move along the propagation axis during time. In table 1
we show the maximum distances moved by the first four
focal points during pulse propagation in the nonlinear Kerr
medium. The obtained movement distances agree with the
experimentally observed length of filaments of about some
centimeters [17]. It must be emphasized that our ducting
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Figure 7. Time variations of the difference in distance between the
locations of two consecutive focal points corresponding to two
consecutive instants of time. The differences in distance have been
depicted for the first three self-focusing points.

model also predicts that these filaments cannot have a perfect
cylindrical shape, since the radii of the focal points change
during their movements (see figure 5). Indeed, combination of
the movement of the focal points along the optical axis with
their radial increase in the transverse direction should result
in the formation of conical frustums whose smaller bases are
located toward the nonlinear sample entrance plane.

A close examination of figure 6 indicates that for each of
the focal points, by decreasing the laser pulse power (compare
figure 6 with the inset of figure 1), the difference in the
distance between two consecutive locations increases. For the
first three focal points, at each instant of time, the difference
in distance between the location of the focal point at that time
and its previous instant of time is been shown in figure 7.

As can be seen, the differences in distance are negligible
when the laser pulse power is maximum (t = 25 ns)
and rapidly increase with decreasing power; finally, they
asymptotically approach infinity. This is in accord with the
concept of critical beam power which states that below a finite
laser power, the self-focusing disappears and the locations
of the focal points move toward infinity. Indeed, for the
parameters used in our simulations, we have found that for
the laser powers below 1.95 kW the self-focusing structure
in figure 1 disappears and the beam spot size continuously
increases due to its natural diffraction.

The different distances traveled in equal time intervals
in figure 7 indicate that the self-focusing points should have
different velocities during pulse propagation inside the Kerr
medium. In figure 8, the computed velocities of the focal
points are shown. The obtained results indicate that, despite
the prediction of the MNLF model [17], velocities of the focal
points do not increase monotonically. Furthermore, for all
instants of time, the movement velocities of the focal points
remain well below the velocity of light. Hence, the albeit
interesting but somewhat unrealizable result of moving faster
than the light velocity of the focal points that is predicted by
other models [3], does not occur here.

Different traveling speeds of the focal points in figure 8
suggest that the distance between the self-focusing points,
for instance the first and the second self-focusing points in

Figure 8. The movement velocity of the first three self-focusing
points inside the nonlinear Kerr medium.

Figure 9. Distance between the first four self-focusing points at
different instants of time during pulse propagation.

figure 1, should also vary in time. In figure 9, the distance
between the self-focusing points is shown during the time
interval of the laser pulse. Inspection of this figure shows that
for the initial stages of the laser pulse, the distances between
the focal points are large. They gradually decrease up to the
time of the pulse peak and again gradually increase thereafter.

4. Conclusion

In this work, the ducting model [12] for describing the
propagation of spatially Gaussian laser beams in nonlinear
Kerr media has been further developed by considering the
temporal pulse shape function in its relations. A general
form of the pulse shape function has been considered in
relations which increases the capability of the model to
describe the propagation of laser pulses with various temporal
shapes in nonlinear media. In this way it will be possible to
analyze the propagation of various types of laser pulses, like
super-Gaussian, rectangular, hyperbolic secant, etc, in future
works. In particular, propagation of Gaussian shaped laser
pulses has been simulated in this work. It is shown that the
obtained self-focusing structure and the movement of the focal
points inside nonlinear Kerr media are in good agreement with
the results of the well-developed MFS [7] and MNLF [8]
models, as well as the results of some experimental works.
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As a case in point, it is shown that the very fast movement of
the focal points can be the possible reason for the observation
of filaments in self-focusing experiments. Our generalized
ducting model predicts that since the transverse dimensions
of the self-focusing points gradually change during Gaussian
laser pulse propagation, these filaments cannot have a perfect
cylindrical shape. Indeed, they should be in the form of
conical frustums whose smaller bases are located toward the
nonlinear sample entrance plane. Experimental verification of
these conical filaments needs more precise spatial analysis,
since our simulations indicate that their transverse dimensions
change by around hundreds of micrometers during the laser
pulse propagation (see figure 5).

Because of the simple formulation of the ducting model
for obtaining the laser beam parameters during propagation in
nonlinear Kerr media, we are of the opinion that this model
can be used instead of the more complex models of nonlinear
wave propagation.

References

[1] Svelto O 1974 Self-focusing, self-trapping, and self-phase
modulation of laser beams Prog. Opt. 12 1–51

[2] Marburger J H 1975 Self-focusing: theory Prog. Quantum
Electron. 4 35–110

[3] Shen Y R 1975 Self-focusing: experimental Prog. Quantum
Electron. 4 1–34

[4] Boyd R W, Lukishova S G and Shen Y R 2009 Self-focusing:
Past and Present (Berlin: Springer) pp 3–20

[5] Boyd R W, Lukishova S G and Shen Y R 2009 Self-focusing:
Past and Present (Berlin: Springer)

[6] Chiao R Y, Garmire E and Townes C H 1964 Self-trapping of
optical beams Phys. Rev. Lett. 13 479–82

[7] Dyshko A L, Lugovoi V N and Prokhorov A M 1967
Self-focusing of intense light beams Pis. Zh. Eksp. Teor.
Fiz. 6 655

Dyshko A L, Lugovoi V N and Prokhorov A M 1967
Self-focusing of intense light beams Sov. Phys.—JETP Lett.
6 146

[8] Lugovoi V N and Prokhorov A M 1968 Possible explanation
of small-scale filaments of self-focusing Pis. Zh. Eksp. Teor.
Fiz. 7 153

Lugovoi V N and Prokhorov A M 1968 Possible explanation
of small-scale filaments of self-focusing Sov. Phys.—JETP
Lett. 7 117

[9] Boyd R W, Lukishova S G and Shen Y R 2009 Self-focusing:
Past and Present (Berlin: Springer) pp 145–55

[10] Lugovoi V N and Manenkov A A 2005 On the self-focusing of
femtosecond laser pulses in air: comments Laser Phys.
15 1269–75

[11] Loy M M T and Shen Y R 1969 Small-scale filaments in
liquids and tracks of moving foci Phys. Rev. Lett. 22 994–7

[12] Rashidian Vaziri M R, Hajiesmaeilbaigi F and Maleki M H
2013 New ducting model for analyzing the Gaussian beam
propagation in nonlinear Kerr media and its application to
spatial self-phase modulations J. Opt. 15 035202

[13] Rashidian Vaziri M R 2013 Z-scan theory for nonlocal
nonlinear media with simultaneous nonlinear refraction and
nonlinear absorption Appl. Opt. 52 4843–8

[14] Akhmanov S A, Sukhorukov A P and Khokhlov R V 1968
Self-focusing and diffraction of light in a nonlinear medium
Sov. Phys.—Usp. 10 609–36

[15] Sheik-Bahae M, Said A A, Hagan D J, Soileau M J and
Van Stryland E W 1991 Nonlinear refraction and optical
limiting in ‘thick’ media Opt. Eng. 30 1228–35

[16] Agrawal G P 2007 Nonlinear Fiber Optics 4th edn (New York:
Academic) p 54

[17] Lugovoi V N and Prokhorov A M 1973 Theory of the
propagation of high-power laser radiation in a nonlinear
medium Usp. Fiz. Nauk 111 203–47

Lugovoi V N and Prokhorov A M 1973 Theory of the
propagation of high-power laser radiation in a nonlinear
medium Sov. Phys.—Usp. 16 658–79

[18] Boyd R W 2008 Nonlinear Optics 3rd edn (New York:
Academic) p 211

[19] Boyd R W 2008 Nonlinear Optics 3rd edn (New York:
Academic) pp 212–3

[20] Hubbell J H 1982 Photon mass attenuation and
energy-absorption coefficients from 1 keV to 20 MeV Int. J.
Appl. Radiat. Isot. 33 1269–90

[21] Magni V, Cerullo G and De Silvestri S 1993 ABCD matrix
analysis of propagation of Gaussian beams through Kerr
media Opt. Commun. 96 384–55

[22] Lipatov N I, Manenkov A A and Prokhorov A M 1970
Standing pattern of self-focusing points of laser radiation in
glass Pis. Zh. Eksp. Teor. Fiz. 11 444

Lipatov N I, Manenkov A A and Prokhorov A M 1970
Standing pattern of self-focusing points of laser radiation in
glass Sov. Phys.—JETP Lett. 11 300

[23] Shen Y R 1984 The Principles of Nonlinear Optics
(New York: Wiley) p 316

6

http://dx.doi.org/10.1016/s0079-6638(08)70263-4
http://dx.doi.org/10.1016/s0079-6638(08)70263-4
http://dx.doi.org/10.1016/0079-6727(75)90003-8
http://dx.doi.org/10.1016/0079-6727(75)90003-8
http://dx.doi.org/10.1016/0079-6727(75)90002-6
http://dx.doi.org/10.1016/0079-6727(75)90002-6
http://dx.doi.org/10.1103/PhysRevLett.13.479
http://dx.doi.org/10.1103/PhysRevLett.13.479
http://dx.doi.org/10.1103/PhysRevLett.22.994
http://dx.doi.org/10.1103/PhysRevLett.22.994
http://dx.doi.org/10.1088/2040-8978/15/3/035202
http://dx.doi.org/10.1088/2040-8978/15/3/035202
http://dx.doi.org/10.1364/AO.52.004843
http://dx.doi.org/10.1364/AO.52.004843
http://dx.doi.org/10.1070/PU1968v010n05ABEH005849
http://dx.doi.org/10.1070/PU1968v010n05ABEH005849
http://dx.doi.org/10.1117/12.55902
http://dx.doi.org/10.1117/12.55902
http://dx.doi.org/10.3367/UFNr.0111.197310a.0203
http://dx.doi.org/10.3367/UFNr.0111.197310a.0203
http://dx.doi.org/10.1070/PU1974v016n05ABEH004127
http://dx.doi.org/10.1070/PU1974v016n05ABEH004127
http://dx.doi.org/10.1016/0020-708X(82)90248-4
http://dx.doi.org/10.1016/0020-708X(82)90248-4
http://dx.doi.org/10.1016/0030-4018(93)90284-C
http://dx.doi.org/10.1016/0030-4018(93)90284-C

	Describing the propagation of intense laser pulses in nonlinear Kerr media using the ducting model
	Introduction
	Description of the model
	Results and discussion
	Conclusion
	References




