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Abstract

Radiotherapy for the treatment of cancer is undergoing an evolution, shifting to the use of heavier ion species. For
a plethora of malignancies, current radiotherapy using photons or protons yields marginal benefits in local control
and survival. One hypothesis is that these malignancies have acquired, or are inherently radioresistant to low LET
radiation. In the last decade, carbon ion radiotherapy facilities have slowly been constructed in Europe and Asia,
demonstrating favorable results for many of the malignancies that do poorly with conventional radiotherapy.
However, from a radiobiological perspective, much of how this modality works in overcoming radioresistance, and
extending local control and survival are not yet fully understood. In this review, we will explain from a radiobiological
perspective how carbon ion radiotherapy can overcome the classical and recently postulated contributors of
radioresistance (α/β ratio, hypoxia, cell proliferation, the tumor microenvironment and metabolism, and cancer stem
cells). Furthermore, we will make recommendations on the important factors to consider, such as anatomical location,
in the future design and implementation of clinical trials. With the existing data available we believe that the expansion
of carbon ion facilities into the United States is warranted.
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Towards the establishment of a national ion
therapy R&D center
Despite the initial relative success of treatments after the
discovery of X-rays in 1895, physicians were left with
very few techniques to treat common malignant and be-
nign pathologies that yielded adequate local control (LC)
while limiting toxicity and damage to normal tissues and
structures [1]. Yet, X-rays were still being used in the
clinic without any understanding of their biological char-
acteristics. This lack of understanding unlocked a new
and rapidly developing field aimed at comprehending
the biological mechanisms of radiation – radiation bio-
logy. Clinically, this field focused on the need to achieve
better LC, which still remains relevant in modern day
radiation therapy (RT) research.
While multiple proton therapy centers are already in

operation in the United States, with more under con-
struction, clinical facilities capable of delivering other

heavy ions exist notably in Japan and Germany, with more
beginning operations or under construction throughout
Europe. HIMAC, the Heavy Ion Medical Accelerator in
Chiba, Japan, began the first full clinical trials with
carbon ion therapy in 1994. HIMAC was joined by two
more carbon-beam facilities in 2002 (Hyogo) and 2010
(Gunma). In Germany, the Gesellschaft für Schwerio-
nenforschung (GSI) center has been treating patients
with carbon ions since 1997. Preliminary data from those
centers suggest carbon ion therapy has the potential to be
a superior treatment modality for certain cancer types, but
further investigation is necessary. (Discussed below).
In the United States, radiobiology research and clinical

treatment using carbon, neon, silicon, and argon ion
beams took place from the 1970s to 1993 at the Bevelac,
a project at Berkeley’s Heavy Ion Linear Accelerator
(HILAC). Worldwide, over 11,000 patients have been
treated at heavy-ion facilities [2]. Due to the develop-
ment and use of heavy ion therapy internationally, and a
renewed interest by the Department of Energy to apply
accelerator expertise to the medical industry, the ability
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to conduct carbon ion research may once again become
available in the United States [3].
An inter-agency effort to develop and operate a

particle beam therapy R&D center at the Walter Reed
National Military Medical Center (WRNMMC) in
Bethesda, Maryland, was formally launched in August of
2012. This national resource, the only fully operational
accelerator-based federal medical research facility in the
United States, would be capable of producing ion beams
from protons to carbon with the purpose to: 1) serve as a
platform for high-quality and high-impact translational,
pre-clinical and clinical trials; and 2) operate a fully
capable treatment room dedicated solely to radiobiol-
ogy, medical physics and accelerator physics research
and development.
The biggest barriers to clinical research and develop-

ment of particle beam therapy in the United States for
charged particles heavier than protons, are the high cap-
ital costs and the high operational costs in the setting of,
lack of reimbursements and lack of data demonstrating
cost-effectiveness. A zeroth order estimate of the cost of
an R&D center in the U.S. is in line with estimates from
other groups which have estimated the cost of a center
to be on the order of 138.6 million euros [4]. Clearly,
securing private investments of this magnitude in order to
design, build, and operate a heavy particle R&D center in
the United States appears impossible and out of reach
especially if investors must wait for effectiveness data to
mature [5].
It has been observed in the economic evaluations of

proton therapy that in jurisdictions that do not wish to
engage in formal reimbursement in the absence of cost-
effectiveness data, the introduction of proton therapy
may be seriously hampered and will again perpetuate
the lack of outcome and cost data [6]. This is even more
so in the United States for heavier particle therapy.
Pijls-Johannesmaa and colleagues in their assessment of
cost effectiveness of particle therapy suggest that other
approaches should be considered [5].
An inter-agency collaboration within the U.S. could be

one such approach since the agency budgets have virtu-
ally no dependence on revenue generated from billing
private insurers. Rather cost-avoidance has the potential
to provide some savings to federal agencies to offset the
costs to their R&D budget, for which many are already
spending significantly on cancer research. This together
with the well-established national healthcare systems of
the various U.S. federal agencies, the large numbers of
eligible beneficiaries they care for, the high quality of cancer
care that they deliver, and the proven ability of multiple
federal agencies (e.g. the National Cancer Institute’s
Center for Cancer Research and the Veterans Adminis-
tration Office of Research and Development) to design
and conduct high impact clinical oncology trials on a
national scale make a federal inter-agency effort in
collaboration with academia and industry an approach.
Grutters, et al., astutely observe that postponing the
decision to adopt a potentially cost-effective treatment
induces costs in terms of health benefits forgone [7]. In
the case of particle therapy for the treatment of non-
small cell lung cancer (NSCLC) they assert that because
of the high value of information, it is recommended to
acquire more evidence on the effectiveness of particle
therapy in NSCLC. However, they point out that collecting
clinical evidence requires particle facilities. They therefore
conclude that, it might be worthwhile to invest in a par-
ticle facility, which should initially be used for clinical
research only [7]. We agree and believe that investiga-
tors in the U.S. would have much to contribute to this
important research.
Following the recommendations of the Summary Report -

Workshop on Ion Beam Therapy, the proposed R&D
center would exist to advance both research and treatment
options for tumors a) exhibiting a high-risk of local failure
post photon (or proton) RT, b) radio-unresponsive due to
histology, hypoxia, and other factors, c) recurring, d)
efficient at repairing cellular damage, or e) adjacent to
critical normal structures, especially if resection could
lead to a substantial loss of organ function [8].
In this review, our aim is to discuss how radio- and

tumor biology, anatomical factors, and other non-classical
mediators of photon-therapy resistance should be taken
into account when optimizing the use of carbon ion ther-
apy for cancer management. Additionally, we will provide
recommendations for the design of future clinical trials,
and recommend which malignancies could be initial pri-
mary targets for the introduction of carbon ion therapy
into mainstream clinical practice. It is worthwhile to men-
tion that the use of other high LET particles have been
used for decades (e.g. fast neutron therapy) or are current
candidates for therapeutic use (helium and oxygen), in
many of the same histologies that are discussed here; how-
ever, this comparison is beyond the scope of this review.
Many of the same conclusions drawn here may also be
valid, to a lesser degree, for other heavy ion particles.
Future work should be done in analyzing dose and frac-
tionation schemas implemented with fast neutrons to help
determine dose settings in future phase I/II carbon ion
clinical trials.

Radiobiological factors
It is tempting to present carbon ion technology as a
valid option for most malignancies based on a variety of
radiobiological parameters. Considering the higher relative
biological effectiveness (RBE) and increased linear energy
transfer (LET) carbon ions possess, they should theoretic-
ally produce greater outcomes for any malignancy for
which they are being employed. However, multiple reasons
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exist for the selective use of carbon ions including, the
significant cost associated with construction and operation
of facilities, and moreover, the lack of long term data
regarding toxicity and secondary malignancy.
According to Fokas et al., high LET radiation should

be selectively used for radiobiological reasons in tissues
that are: slowly proliferating, later responding, have a
high capacity for sub-lethal damage repair (SLDR), a low
α/β ratio, and in those histologies which have been
shown to be highly resistant to conventional treatment
[9]. This statement challenges the balance of high RBE
for carbon ions, against radiobiological and anatomical
factors. This dichotomy limits its actual implementation
for many malignancies. In this section, we will discuss
the classical radiobiological factors that play critical roles
in determining which malignancies should theoretically
respond well to carbon ion RT.

The α/β ratio
A hallmark component of classical radiobiology, the α/β
ratio, is one of the overriding parameters used to model
cell killing by radiation. It is the byproduct of the linear
quadratic (LQ) model, which describes cell killing as a
single hit versus double hit hypothesis, where linear cell
kill is expressed by the α component, while quadratic
cell kill is expressed by the β–component [10]. The ratio
is obtained from isoeffect curves plotted using the sur-
vival fractions (SFs) of a single cell line at different doses
per fraction [11,12]. Presently, this ratio is used as a
staple for predicting the clinical effects in response to
RT despite various limitations.
A high α/β ratio (6–14 Gy), seen in most human tumors,

suggests a predominance of the α-component, implying a
decreased response to fractionation and therefore, clinical
benefit from hyperfractionation. (Hyperfractionation is
implemented in order to spare normal tissues, prevent
accelerated repopulation, and maximize therapeutic
gain). A lower α/β ratio (1.5–5 Gy) is usually associated
with late responding normal tissue, and is the basis for
the therapeutic gain achieved using hypofractionation.
However, some tumors have been postulated to have a
low α/β ratio, including prostate cancer, rhabdomyosar-
coma, and melanoma [13,14].
In theory, a possible rationale for the administration of

carbon ion therapy can be successfully argued for both
high and low α/β tumors. For low α/β tumors, carbon
ions could eliminate the relative radioresistance to pho-
ton treatment, by decreasing the predominance of the
β-component, and subsequently decrease the capability
for SLDR. Sublethal damage is typically associated with
photon irradiation. By contrast, carbon ions tend to cause
“clustered” damage, which is less prone to SLDR, and
accordingly, may potentially increase the LC of low α/β
ratio tumors [15,16]. High α/β tumors on the other hand,
already tends to show a more robust response to photon
irradiation by virtue of their high α component. Yet, like
low α/β tumors, they too can derive theoretical benefit
from carbon ion treatment twofold: (1) increased cell kill-
ing beyond what is achieved by photon RT, as a result of
superior RBE, and (2) a decrease in toxicity to normal tis-
sue due to the superior depth dose distribution of carbon
ions (Figure 1).
Examination of the α/β ratio of various tumors is

necessary to utilize this ratio in guiding the selection of
tumors. Yet, these data are not widely available for a variety
of common human tumors due to, significant concern over
its determination in cell lines (some of which may be inad-
equate), the influence of the tumor microenvironment
in vivo, and the difficulty accounting for hypoxia. Where
available, it has been obtained from experimentally derived
tumors irradiated and assayed in situ by growth delay [14].
An alternative to the α/β ratio is to look at the surviving
fraction at 2 Gy (SF2) of various tumors, as a surrogate for
the radiosensitivity of photon irradiated tumors.
Deacon et al. classified tumors into 5 categories A to

E according to radioresponsiveness based on the SF2,
with A being the most radioresponsive and E the most
radioresistant [17]. Fitting the LQ equation to the mean
SF2’s correlated with a α/β ratio of 60.4 for group A and
5.77 for group E. Not surprisingly, tumors identified by an
elevated SF2, such as category E tumors (glioblastoma,
melanoma, osteosarcoma, and renal cell carcinoma)
remain difficult to control using photon RT. Based on
multiple experimental findings, this particular set of
tumors maintain an increased ability for SLDR, and
have a wide α/β ratio range, thereby exhibiting relative
radioresistance to photon irradiation.
Expectedly, the category E tumors that have been treated

with carbon ions have responded with promising results.
Mucosal malignant melanoma treated with carbon ion RT
in conjunction with DAV chemotherapy gave a survival
rate of 58%, similar to the survival rate with post operative
photon RT or carbon ion therapy alone, 51.5% and 35%
respectively [18,19]. Bone and soft tissue sarcomas of the
head and neck, another category E tumor, specifically when
unresectable, were shown to have a 5-year LC rate of 73%
and a 5-year overall survival (OS) rate of 48% [20]. When
using photon RT alone, these tumors have a LC rate of
only 43-50%.
Prostate cancer, another category E histology that to

date, has been increasingly treated with carbon ions has
shown success, although its treatment with carbon RT
may not be necessary [21]. Photon and proton therapy
have been the standard of care and have shown success
[22-24]. The argument to use carbon ions for this malig-
nancy is to decrease the risk of potential side effects that
can be encountered with photon RT due to the superior
depth dose profile of carbon ion treatment. In addition



Figure 1 Radiation Species determine the importance of the classical radiobiological factors. (A) The oxygen enhancement ratio (OER) has
an inverse relationship with the linear energy transfer (LET). While the cell killing effect of photons (grey) and protons (brown) are dependent on
the oxygen tension, carbon ions (blue) are able to induce the same cell kill effect with a significantly lower degree of dependence on oxygen
tension. (B) The attractiveness of protons (orange) and other heavier ion species, such as, neon (red), helium (purple) and carbon (green) is the
existence of the Bragg Peak, which allows for minimal damage to the surrounding tissue, while low LET radiation, which does not exhibit this
peak can induce greater damage to the surrounding tissue. Carbon ions have become a more popular option as it has the lowest entry RBE of
other heavy ion species, and unlike protons, does exhibit fragmentation tails intermediary of the other heavy ion species, however more importantly, at
the Bragg Peak has a significantly higher RBE compared to protons. (C) Under normoxic conditions low LET photons hydrolyze water and induce
breaks in the phosphodiester bonds of DNA. Subsequently the DNA radicals in the presence of molecular oxygen will be fixed or become permanent.
Under hypoxic conditions, however, the DNA radical becomes reduced by sulfahydrl groups and the DNA breaks become repaired. With high LET
radiation (carbon) the particle directly acts on the phosphodiester bond of DNA inducing clustered damage which is less amenable to repair.
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to this, hypofractination, which is often employed in
carbon ion treatment, could improve patient convenience.
Previous trials suggest toxicity similar to or better than

proton therapy, with slightly improved OS in higher risk
groups [21]. These findings are not surprising as they
adhere to current radiobiological thought. It is likely that
the higher risk prostate cancers are more radioresistant
(low α/β and SF2), and therefore, more likely to benefit
from carbon ion treatment. Considering the SF2 and α/β
ratio, low and intermediate risk prostate cancers may
derive equal benefit from both proton and carbon RT.
This observation fuels the argument that the use of

carbon ions may improve LC in other category E tumors.
Interestingly, little literature is available on the α/β ratio or
SF2 on chordomas (α/β ratio: ~2.45), chondrosarcomas or
adenoid cystic carcinomas, however, these malignancies
are some of the primary malignancies treated with carbon
ions in a study that was terminated at GSI [25,26]. Pre-
sumably, these tumors were chosen because of a high local
failure rate when given photon irradiation. Additionally,
anatomical considerations (discussed below), rather than
the availability of these data, may provide support for
using carbon ions.
Exploiting the α/β ratio, however, requires further

study, and in the absence of long term data, carbon
ions should not preferentially be employed in high α/β
tumors outside of a clinical trial, unless significant
retrospective evidence exists producing a superior out-
come compared to photon RT.

Carbon ion RBE
RBE is not only cell type dependent, but also varies with
particle energy (Figure 1). The carbon ion energy distri-
bution over the treatment field is inhomogeneous, and
therefore, the ability to accurately predict RBE at various
dose depths and tissues will be crucial in eliciting a
therapeutic advantage over photon treatment [27]. The
RBE of carbon ions is optimal at the Bragg Peak, but the
Bragg Peak is also tissue dependent. Data on the RBE
with respect to different tissue types is emerging; how-
ever, it is not currently being employed directly in treat-
ment planning. By not fully using available experimental



Schlaff et al. Radiation Oncology 2014, 9:88 Page 5 of 19
http://www.ro-journal.com/content/9/1/88
RBE data in conjunction with different tissue types, the
risk of neglecting to identify the presence of a clinically
significant effect when carbon ions are incorporated in
clinical trials exists.

Hypoxia
The concentration of oxygen and its effects on radiosen-
sitivity have been meticulously investigated since the
early twentieth century, beginning with Petry in 1923,
where the observation was made that radiation inhibited
the germination of vegetable seeds [10]. This oxygen effect
was further confirmed through the quantitative measure-
ment of oxygen on growth inhibition of the Vicia faba
primary root [28]. Exhaustive research has since gone into
understanding this oxygen effect, as the absence of oxygen
is postulated to play a role in conferring radioresistance
in tumors. Investigators have now unequivocally demon-
strated the effect that the absence of oxygen has on ra-
dioresistance, and the negative effects it has on tumor
control, yet this observation cannot be fully explained by
radiobiology or physics [29-31].
Experiments have shown that at both low and high

doses of radiation, an enhancement of cell killing in aerated
conditions is observed when compared to hypoxic con-
ditions thus giving rise to the concept of the oxygen en-
hancement ratio (OER). Fascinatingly, minimal oxygen
effect has been observed for densely ionizing radiation
[10]. This may be explained by the complexity of DNA
damage that intermediate and densely ionizing radiation
(e.g. α-particles, carbon ions) are capable of inducing on
DNA [32] (Figure 1).
Following exposure to ionizing radiation, if molecular

oxygen is present, organic peroxide is produced, thus
“fixing” or making permanent the damage incurred by
DNA. Under hypoxic conditions however, DNA dam-
age induced by low LET radiation can be more readily
repaired. The DNA radical can be reduced by sulfahy-
dryl groups (SH groups) making DNA damage, both
single and double strand breaks, less severe under hyp-
oxic conditions. A related explanation may be that the
fixation of DNA damage by oxygen could be relevant
for indirect radiation effects, the dominant form in low
LET radiation, while direct action caused by high LET
radiation (e.g. carbon) is less affected by the presence
of oxygen [33] (Figure 1). Numerous alternative hy-
potheses try to explain this phenomenon, however, as
of yet, there is no uniform theory that is capable of
explaining the inverse relationship between OER and
LET [34-37].
Increased exploration showed that there is a very

complex correlation between the tumor microenviron-
ment and the significant heterogeneity in the pathways
that govern the response to hypoxia in different tumors.
Oxygen tension is known to be quite heterogeneous in
tumors with many regions having very low levels, much
lower than in surrounding normal tissues (in some
tumors less than 5 mmHg pO2) [38]. Studies have shown
an inverse relationship between dependence on oxygen
inducing cellular damage and the mass of the ion species.
Consequentially, one would expect tumors with larger
hypoxic fractions to benefit from carbon ion radiation.
A theoretical analysis by Wenzl and colleagues deter-

mined that dose dependence existed between OER and
the dose per fraction given [39]. They determined that
the behavior of the OER depended primarily on the α
and β parameters which in turn depend on LET, pO2,
and cell or tissue type. In comparing multiple studies of
various cell lines they observed that the α, αaeorbic/αhy-
poxic, and β, (βaerobic/βhypoxic)

1/2 components were in gen-
eral, substantially lower when exposed to high LET
carbon radiation, than those cell lines that were exposed
to low LET radiation.
The identification of tumors that are radioresistant by

virtue of hypoxia may offer a rationale for these tumors
to be targeted with carbon ion RT. Since it is difficult to
measure the α/β ratio in tumors, the measurement of a
hypoxia biomarker could lend additional information
in determining the therapeutic gain when deciding to
pursue carbon ion irradiation.
Identifying hypoxia induced genes and downstream

signaling molecules associated with radioresistance may
help in determining which types of tumors would benefit
from carbon ion RT. A plethora of evidence has shown
the increasing importance of the heterodimeric tran-
scription factor, hypoxia-inducible factor 1 (HIF-1) [40].
Expression of the α-subunit has been observed to correl-
ate with a poor prognosis, local recurrence and distant
metastases subsequently following irradiation. (reviewed
in [41]). In short however, the most characterized mech-
anism is that under normoxic conditions, the oxygen-
dependent degradation (ODD) domain is hydroxylated
and subsequently ubiquinated by prolyl hydroxylases
and pVHL-containing E3 ubiquitin ligase respectively,
leading to the degradation of HIF-1α. While, under hyp-
oxic conditions, HIF-1α is stabilized and activated, bind-
ing with HIF-1β, and the resulting HIF-1 protein binds
to the hypoxia-responsive element (HRE) inducing the
expression of genes leading to angiogenesis, invasion
and metastasis [41] (Figure 2).
Therefore, one possible model to explain hypoxic

cellular radioresistance is that vascular endothelial
growth factor (VEGF) expression is induced by the
activation of HIF-1. VEGF has been shown to protect
endothelial cells from the cytotoxic effects of radiation
allowing these vessels to supply oxygen and nutrients
to the tumor cells, promoting growth [42]. Alterna-
tively, hypoxia induces the upregulation of survivin in
tumor cells, a protein belonging to a family known to



Figure 2 The interplay of the tumor microenvironment on radioresistance and glucose metabolism. Under normoxic conditions (insert)
HIF1α is targeted for degradation. The ODD domain is hydroxylated and ubiquinated by prolyl hydroxylases (purple triangle) and pVHL-containing E3
ubiquitin ligases (circle). However, under hypoxic conditions HIF1α is stabilized and activated by binding to HIF1β and the resulting dimer
binds to the HRE inducing the expression of genes leading to angiogenesis, such as VEGF and SDF1, invasion, metastasis, and glycolytic
transporters and enzymes (GLUT1). Furthermore, the cells use of the inefficient ATP producing glycolytic pathway may affect hypoxic and
normoxic radioresistance. Key intermediaries of the glycolytic pathway, glucose-6-phosphate, pyruvate, lactate, and the reducing couples
NAD(P)H/NAD(P)+ and GSH/GSH-disulfide, have been observed to play roles in continuing the cycle of maintaining HIF1α. Glucose-6-phosphate can
either enter into the pentose phosphate pathway leading to the synthesis of erythrose-4-phosphate and ribose-5-phosphate which are necessary for
amino acid synthesis or can feed back into glycolysis and create lactate and pyruvate, which lead to HIF1α accumulation continuing the cycle
of transcription. Alternatively, glucose-6-phosphate can also lead to the transcription of HIF1α by entering into the pathway which ultimately
leads to the nuclear translocation of CREB-binding protein (CBP) which binds with Mlx leading to HIF1α transcription. Lactate and pyruvate
along with the reducing couples scavenge reactive oxygen species (ROS) free radicals which can also lead to radioresistance. It is still unclear
whether radiosensitizing drugs are necessary for carbon ions; however some experiments have shown that targeting specific crucial players of
the glycolytic pathway in combination with carbon ions leaded to enhanced cell kill. It may warrant targeting other important intermediaries
(i.e. glucose-6-phosphate) with carbon ions to possibly enhance treatments. Black asterisks represent experimentally determined radiosensitization; blue
asterisks represent hypothesized radiosensitization targets.
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inhibit apoptosis, and play crucial roles in this path-
way, as well as, cellular division. Reports have shown
that the expression of survivin correlates with the
radioresistance of pancreatic, colorectal and lung cancer
cells, and siRNA knockdown of this target enhanced ra-
diosensitivity [43]. These two models may work in con-
junction with each other since a copy of the HRE
element is present in the core promoter of survivin and
its expression has been shown to correlate with HIF-1α
expression [44-46].
The actual measurement of hypoxia in tumors has

proven to be difficult, and to date there is no single
standard method for its measurement. Popular methods
include pO2 electrodes, immunohistochemical (IHC) de-
tection of injected drugs, the IHC detection of proteins
that are overexpressed in hypoxia, such as HIF1α, and
imaging techniques involving hypoxic cell radiosensitizer
molecules via positron emission tomography (PET), and
magnetic resonance imaging (MRI) [47]. Certain meas-
urement modalities, like pO2 electrodes, can only be
applied to superficial tumors such as melanoma or cervix
cancers due to the invasiveness of the procedure. How-
ever, these electrodes have been used invasively in non-
superficial tumors such as GBM [48-50].
Nordsmark et al. 2005 has shown that a high degree

of hypoxia (defined by the 2.5 mmHg pO2 level) was sig-
nificantly linked to treatment failure in an overview of
397 head-and-neck cancer patients from seven centers
[51]. Cervix cancer has also been associated with
increased prognostic relevance of pO2 and a pO2 of
2.5-10 mmHg has been associated with decreased LC
[47,52]. In the case of glial brain tumors, hypoxia
imaging has been wrought with difficulties, with an
inability to distinguish whether nitroimidazole staining is
prognostic or merely indicative of tumor grade [53-55].
Thus, if we were able to identify the sets of patients

in whom hypoxia is responsible for radioresistance,
this could be exploited with carbon ion treatment,
and the possible addition of radiosensitizing agents.
Radiosensitivity and resistance are multi-factorial, and
a simple relationship between tumor hypoxia and radio-
resistance is unlikely. Solely measuring the oxygen
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concentration in the tumor is unlikely to help select
those tumors best suited for carbon ions; as the rela-
tionship between radioresistance and hypoxia is far
more likely to be a complex one not defined by this
one factor alone.

Cell cycle dependency and accelerated repopulation
The position of cells in the cell cycle has been shown to
be seminal in determining radiosensitivity [56]. Copious
literature exists illustrating that cells are most sensitive
to photon irradiation in the G2/M phases of the cell
cycle, and most resistant in late S phase [10]. This
increased radiosensitivity in G2/M appears to be related
to chromatin condensation and thus the effective repair
of DNA damage is less likely, due to the inability to
perform homologous recombination in the absence of a
complementary DNA strand [57]. Unlike low LET radi-
ation, the distribution of cells in the cell cycle has no
significant effects on radiosensitivity when employing
high LET radiation. However, preclinical studies have
suggested that S-phase specific radiosensitivity may exist
with high LET radiation [58]. If this observation holds
true, it would further bolster the argument that carbon ion
treatment can find a niche in low LET resistant tumors.
But, since carbon ions exhibit less cell cycle depend-

ency, this could potentially result in increased cell kill of
both slowly proliferating tumors and normal tissues,
which could decrease therapeutic gain. Conversely, the
ability to exploit molecular triggers for apoptosis in some
cell types (e.g. the ability to induce p53-independent apop-
tosis) could create a larger therapeutic window by taking
advantage of the superior dose depth distribution of
carbon ions, and decrease the impact of accelerated
repopulation in rapidly cycling tumors in the absence of
hyperfractionation [59].
At the beginning stages of treatment a majority of

tumor cells may lie quiescent, thereby being more radio-
resistant. As the tumor begins to shrink, the surviving
clonogens undergo accelerated repopulation, rapid
division, ultimately leading to local failure [60]. This
observation has prompted accelerated dose delivery,
using fractionation schemes that reduce the overall
treatment time to minimize the impact of repopulation.
Unlike low LET radiation, carbon ions, due to cell cycle
distribution independence, could overcome accelerated
repopulation without the need for accelerated treatment
regimens.

Tumor cell proliferation
The ability for tumors to proliferate can be expressed in
their potential doubling time (Tpot), volume doubling time,
Ki-67 index, or presence of mitotic figures [10,61-63].
While rapidly cycling cells may be initially more respon-
sive to photon irradiation, long term, they are more likely
to recur locally. The relationship between proliferation
rate and resistance to photon irradiation is particularly
strong in head and neck, and lung tumors [64].
Similarly, squamous cell carcinoma (SCC) of the head

and neck tends to exhibit rapid proliferation rates and
radioresistance with an elevated local recurrence rate
with photon irradiation. The possibility of accelerated
repopulation in between photon fractions due to their
new found access to oxygen, and their rapid proliferation
rate, has prompted manipulation of the fractionation
schedule for photon treatment with hyperfractionation
(i.e. accelerated hyperfraction and CHART). A study by
Fowler and Lindstrom found that with prolonged RT
there was a 12% average loss of LC per week [65]. The
disadvantages have been the organizational difficulties in
carrying out such schedules, as well as, the acute reac-
tions experienced by the patient. If a LC benefit becomes
realized with carbon ions, a carbon ion treatment sched-
ule would both offer improved outcomes and patient
convenience, and alleviate the need for hyperfractiona-
tion to counteract accelerated repopulation.
We have provided indirect evidence that carbon ion

RT may overcome low LET radioresistance, however it
is valuable to emphasize that the radiobiological factors
at work may differ from tumor to tumor, and even
among patients. Furthermore, in some tumors, resist-
ance to low LET irradiation could be secondary to com-
plex molecular switches some of which have yet to be
identified. Despite the radiobiological benefits of carbon
ions, the potential exists that their use may eliminate
the therapeutic gain between tumor and normal tissue
that may have historically been exploited using low LET
RT regimens. As a result, carbon ions should initially be
used in malignancies where using conventional photon
irradiation proves ineffective. The loss of therapeutic
gain can be offset by the decreasing amount of normal
tissue irradiated due to the superior depth dose distri-
bution of carbon ions.
Neo-radiobiologic factors: lack of response to
photons - beyond classical radiobiology
Having discussed the classical aspects of intrinsic radio-
resistance to low LET radiation, and how carbon ions
can be employed to exploit them, other factors such as,
the molecular aspects of tumor biology and its micro-
environment have recently become of interest. In fact,
these factors may even render some tumors radioresis-
tant above and beyond the classical contributors to
radioresistance. Some of the current interests include:
the presence of cancer stem cells (CSCs), the tumor
microenvironment, and metabolism. The presence of
adaptive radioresistance will also be discussed in this
context. It is our intention to show that these other
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factors may no longer confer radioresistance when treat-
ing with carbon ions.

Presence of stem cells
The discovery of CSCs and the discussion of a potential
hierarchical model, wherein only a subset of tumor cells
within the tumor bulk may possess the capacity to re-
generate have given rise to multiple avenues of research
aimed at the eradication of this cell population to improve
clinical outcome [66,67]. Incidentally, they have been
shown to be chemo- and radioresistant, as compared to
their well differentiated counterparts [10]. Additionally,
CSCs may be aiding in the maintenance of a tumor
microenvironment (a low pH, hypoxic and nutrient
deprived environment) increasing the likelihood of radio-
resistance to photons [10].
Solid tumors that have been shown to possess a CSC

subset consequentially include a significant proportion
of tumors previously identified as being radioresistant to
photon RT [68-73]. Interestingly, the very factors that
confer radioresistance in cancers cells (i.e. hypoxia and
nutrient deprivation) are the very same that promote the
growth of CSCs [74-76]. Moreover, it has also been
shown that treatment with low dose photons increases
the proportion of radioresistant stem cells (radioadaptive
resistance) [77,78]. Repopulation, as one would poten-
tially expect to occur with photon irradiation, has also
been shown to increase the presence of the radioresis-
tant CSC population.
The use of carbon ions could theoretically overcome

the radioresistance of CSCs due to the higher RBE and
increased LET, and cytotoxic effects of carbon that are
independent of hypoxia. Bao et al. showed that the frac-
tion of CSCs in glioma in fact increased after the admin-
istration of photon RT [73]. Additionally, this population
showed a survival advantage compared to the non-CSCs.
Subsequently, they found that the observed radioresis-
tance was related to the DNA damage response, where
CSCs were more readily able to repair DNA damage as
compared to their non-CSC counterparts. Again, this
represents a scenario where the use of carbon ions could
potentially eliminate radioresistance as the formation of
clustered damage is less amenable to repair.
Masunaga et al., showed that a pimonidazole-unlabelled

subfraction of quiescent tumor cells, considered the clos-
est representative subpopulation to CSCs, may be a critical
target in tumor control [76]. Treatment with carbon ions
were shown to decrease the difference in radiosensitivity
between quiescent and non-quiescent cells, as well as,
hypoxic and normoxic cells.
Tumor markers such as, CD133 and CD44, and other

assays (e.g. side population assay) are being used to iden-
tify subpopulations of CSCs. However, these methods
are laden with challenges, as there is no standard CSC
marker [79-81]. Also, certain non-CSCs may contain
some or all of the CSCs characteristics. If a consensual
agreement of CSC identification can be achieved, it can
be incorporated into the decision to use carbon ion ther-
apy. A significant therapeutic benefit could be elicited
when using carbon ions in patients shown to harbor a
large subpopulation of CSCs.

Tumor microenvironment and metabolism
The interplay between tumor metabolism and micro-
environment play a critical part in establishing the radio-
resistant phenotype by working in conjunction with, or
even affecting the classical and neo-radiobiologic factors.
Understanding and characterizing the tumor microenvir-
onment has recently become quite popular, as it is postu-
lated to play a large role in tumor invasiveness, metastasis,
maintenance, and recovery of the tumor bulk and blood
supply [82,83].
The microvasculature response to irradiation varies

over the range of doses given, and with current standard
fractionation schedules (1.5 to 2 Gy per fraction) the
effect on the microenvironment may be having the
opposite effect than desired. With current fractionated
radiotherapy, the microenvironment, especially the mi-
crovasculature is protected by the action of HIF-1. HIF-1
is also responsible for vascular protection, reestablishment
of tumor blood and nutrient supply, and post-irradiation
recurrence [40]. It also has been shown clinically, in
various cancers that may benefit from carbon ion RT, to
correlate with poor LC and increased mortality [84-86].
Upregulation of HIF-1 induces the tumor cell to produce
VEGF, amongst other proangiogenic factors, inducing
angiogenesis and vasculogenesis, along with other cellular
mechanisms, that protect the microenvironment from
radiation-induced endothelial apoptosis [87].
In addition to the secretion of VEGF, the secretion of

stromal-derived factor 1 (SDF1) is upregulated. Combined
VEGF and SDF1 result in the recruitment of bone
marrow-derived cells that promote neovascularization
and stimulate the regrowth and survival of tumor cells
[88,89]. Further evidence suggests that carbon ion RT
may suppress the production of x-ray induced angio-
genesis mediators, and in doing so increases radiosen-
sitivity [90].
With further exploration of this relationship, signifi-

cant benefit in other cancers that have shown a similar
relationship to angiogenesis and response to anti-VEGF
therapy, such as gliomas, could prove worthwhile. It
seems logical that tumors with high HIF-1 expression
may see markedly increased radiosensitivity. Notably,
however, not all tumor types express HIF-1α, therefore,
inhibition of HIF-1 may be more effective if combined
with carbon ion therapy imparting lasting deterioration
of the microvasculature, affecting many critical pathways
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(e.g. angiogenesis, neovasculogenesis, and glucose me-
tabolism) downstream, possibly resulting in enhanced
patient outcomes.

Glucose metabolism
A hallmark of cancer cells is the high rate of glucose
consumption and lactate production regardless of oxygen
tension, known as the Warburg effect [91,92]. Under
aerobic conditions normal cells generate energy (ATP)
by processing glucose both through glycolysis (ineffi-
cient) and mitochondrial oxidation (more efficient).
However, hypoxia decreases the rate of mitochondrial
oxidation causing the activation of a glycolytic switch
causing tumor cells to produce energy using glycolysis,
a process known as the Pasteur Effect or anaerobic
glycolysis [93,94].
It is interesting that tumor cells use the less efficient

glycolytic pathway for energy production regardless of
oxygen tension; however, this pathway actually serves
multiple purposes that enable tumor growth and prolif-
eration (Figure 2). Various hypotheses exist as to why
this phenomenon exists, with two revolving around the
mitochondria. One hypothesis is that the cell actively
tries to avoid the mitochondria for its survival, as it is
the organelle responsible for initiating apoptosis through
various cascades of caspases. The second: tumor cells
have damaged and permeable mitochondrial membranes
that reduce the efficiency of mitochondrial oxidative
phosphorylation (reviewed in [95]).
Additionally, the glycolytic products lactate and pyru-

vate induce HIF-1α accumulation, which in turn initiate
the transcription of transporters and enzymes that regu-
late glycolysis and the pentose phosphate pathway [40].
Furthermore, glucose-6-phosphate is incorporated in the
pentose phosphate pathway. This pathway is responsible
for synthesizing precursor macromolecules necessary for
tumor growth and proliferation [40]. When cells do not
need these macromolecules, the intermediates of the
pentose phosphate pathway, fructose-6-phosphate and
glyceraldehyde-3-phosphate, are recycled back into gly-
colysis to produce pyruvate and lactate, ergo continuing
the cycle.
Tumor cells face direct and indirect mechanisms of

damage from radiotherapy, notably the indirect action of
radiation-induced radicals and oxidative stress. To coun-
ter these, cells upregulate their endogenous antioxidant
capacity by accumulating the glycolysis metabolism
products: pyruvate, lactate, and the redox couples gluta-
thione (GSH)/glutathione disulfide and NAD(P)H/NAD
(P)+, which work as a buffer network that scavenges free
radicals and reactive oxygen species [96-99]. Moreover,
tumor glucose metabolism is involved in the synthesis of
these reducing species, which protects DNA from free
radical-mediated damage [96]. As carbon ions induce
direct action on DNA, and do not produce radicals and
oxidative stress, the concentration of glycolytic products
would decrease, theoretically reducing radioresistance.
The targeting of tumor glucose metabolism has been

shown to be an effective means of overcoming radiore-
sistance in many tumor histologies [100-102]. Disrupting
lactate efflux via monocarboxylate transporter (MCT)
inhibition has been shown to enhance radiosensitivity in
human glioma cells. Gliomas are highly glycolytic produ-
cing large amounts of lactate; when lactate efflux was
blocked by α-cyano-4-hydroxycinnamic acid (ACCA)
the levels of intracellular lactate and GSH decreased,
and enhanced radiosensitivity [100].
Intriguingly, targeting GSH itself has also been shown to

enhance radiosensitivity, however, only when combined
with carbon ion therapy. Depleting GSH via combined
dimethylfumarate and L-buthionine sulfoximine and
carbon ion, prevented the transmission of chromosomal
aberrations (complex rearrangements, chromosome breaks
and losses) in the head and neck SCC cell lines SQ20B and
SCC61, which are radio-resistant and -sensitive respectively
[103]. This phenomenon was not seen in cells irradiated
with X-rays. GSH depletion with carbon ion therapy may
give a considerable survival advantage to the patient as this
therapy appears to minimize genomic instability and may
enhance LC.

Iron metabolism
Iron metabolism through the dysregulation of the Iron
Regulatory Protein (IRP) 1-mediated pathway has re-
cently been shown to induce radioresistance in HL60
human myeloid leukemia cells to low LET, specifically
γ-radiation [104]. Iron is one of the most reactive metals
in cells, and is incorporated by a plethora of enzymes as
a co-factor. Due to the high reactivity, iron is able to
undergo Fenton and Haber-Weiss reactions with hydro-
gen peroxide yielding ferric iron (Fe3+), hydroxide, and
the highly damaging hydroxyl radical (·OH) [105,106].
To prevent these reactions from taking place, mamma-

lian cells have evolved to develop a rapid response iron se-
questration system mediated primarily through IRP1 and
2 [107]. An increasing body of evidence points towards
the association between radioresistance and substantially
reduced protein oxidation immediately following irradi-
ation in lower organisms. Through the knockdown of
IRP1 via short-hairpin RNA, Haro et al. found that human
myeloid leukemia cells were more resistant to low LET
radiation [104]. Furthermore, knockdown of IRP1 led to
more rapid DNA DSB repair and reduced protein oxida-
tion, thus the claim can be made that control of intracellu-
lar iron could be a novel radioresistance mechanism [104].
Interestingly however, when these same cells were

subjected to high LET radiation (α-particles), their clo-
nogenic survival and overall radiosensitivity remained
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unaffected. This may be partly explained by the com-
plexity of DNA damage that high LET radiation directly
imparts. Additionally, cells have been observed to have
become increasingly less dependent on apoptosis in
overall cell death [10].
Cumulatively, these data can be used as positive support

for treating malignancies with carbon ions, and it is evident
that tumor metabolism and the tumor microenvironment
are critical players in conferring the resistant phenotype; yet
more studies need to be done to fully understand the
interplay between the aberrant tumor metabolism and
microenvironment, and their impact on the mecha-
nisms of radioresistance. Furthermore, it is still unclear
whether radiosensitizers are necessary for enhanced
patient benefit with carbon ion therapy. Some evidence
appears to be indicating that targeting the tumor me-
tabolism and/or microenvironment with inhibitors
could augment cancer cell death, leading to the hypoth-
esis that their effect may be augmented when combined
with the high LET carbon ion beam.

Anatomical factors
The presence of significant sensitive structures adjacent
to the tumor mass can play a substantial role in selecting
appropriate treatment modalities. Anatomy can be the
limiting factor in both surgical resection and irradiation
due to the potential for sequelae and morbidity. Typical
anatomic constraints are: 1) the presence of nerves adja-
cent to the tumor whose integrity could be
Figure 3 Anatomical constraints can be overcome with carbon ions fo
sites which have anatomical constraints such as glioblastoma multiforme (i
pelvic) using treatment planning software for photons, protons and carbon
dosage to the target area (tumor) while limiting treatment to surrounding
compromised as a result of surgery or radiation, 2) the
inability to resect the tumor with negative margins
while preserving important structures, and 3) the inabil-
ity to radiate to a curative dose without overdosing the
organs at risk in the field, undermining the dose that
can be safely prescribed to the tumor.
While intensity-modulated radiation therapy (IMRT)

can often accomplish sparing of adjacent structures using
low LET irradiation, it is associated with a much higher
integral dose. As carbon ions exhibit a Bragg peak, they
enable the delivery of radiation to the tumor while
decreasing the dose delivered to adjacent organs at risk.
Moreover, carbon ions have a decreased lateral penum-
bra, thus enabling better dose accuracy (Figure 3). Con-
sequently, a number of clinical trials have been carried
out with tumors in areas with anatomic constraints
(Reviewed in [21,108]) (Table 1).

Intracranial tumors
Two of the most common intracranial tumors that have
received attention for carbon ion RT are gliomas and
meningiomas. Gliomas, the most common form of pri-
mary brain cancers, account for nearly 51% of all central
nervous system tumors [109]. GBM, a WHO Grade IV
glioma, has a median OS of approximately nine months
and has characteristically been described as radioresis-
tant [109-112]. Typically, maximal safe resection is first-
line therapy, yet often it can be difficult due to various
factors, such as the location of the tumor relative to
r various histologies. Comparing the same histologies at different
ntracranial), lung (thoracic region), and rectal carcinoma (abdominal/
it is evident that implementing carbon ions gives better biological
healthy tissue. Adapted with permission from [169-172].



Table 1 Effectiveness comparison for various histologies by anatomical location between Standard of Care (SOC) and
Carbon Ions

Site No. of carbon ion studies 5-year LC range Toxicity range (late ≥ GIII injury) References

SOC Carbon SOC Carbon

Intracranial

Glioma 2 < 20% - Location dependent - Trials ongoing§†

Meningioma 2 80-90% - Location dependent - Trials ongoing§‡

Head and Neck

Adenoid cystic 3 27-72% 26-96% 0-12.9% 0-17% [141,142]

Bone/soft tissue sarcoma 2 43-70% 24-73% 0% 2-18.5% [20,140,143-147]

Skull base 3 46-73% 82-88% 0-7% 0-5% [117-121,148]

Thorax

NSCLC 4 80-97% 90-95% 0-15% 3% (pneumonitis) [21,149]

Abdomen and Pelvis

HCC 4 75-96% 81-96% 7-22% 3-4% [21,130-133,150]

Pancreas 2 10-20% 66-100% 1.8-20% 7.7% [136,151-153]

Prostate 2 80-95%** 87-99%* 4-28% 0.1-25% [21,24,154-159]

Rectal cancer 1 24-28% 95% 14-27% - [21,160-162]

Cervix cancer 1 20% 53% 0-10.6 9.6-18.2% [163-165]

Sacral chordoma 1 55-72% 88% 17.6% 5.9%-17.9% [166-168]

Chondrosarcoma 1 20-40% 60% - - [167,168]

Abbreviations: SOC Standard of Care, LC Local Control, HCC Hepatocellular carcinoma, GIII Grade III toxicity, *OS (Overall survival); **bPFS (biochemical progression
free survival); §CLEOPATRA (NCT01165671); †CINDERELLA (NCT01166308); ‡MARCIE (NCT01166321).
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critical structures (i.e. optic chiasm, white matter tracts,
ventricles, motor and lingual cortices etc.). Meningiomas
are generally less aggressive, however, can have a very
high recurrence rate, depending on the subtype, when
treated with surgical resection alone; depending on their
location resection may be impossible. Proximity of the
tumor or tumor bed to the chiasm, optic nerves, or
brainstem can make the administration of doses ≥ 54 Gy
difficult as the dose tolerance to the chiasm and optic
nerves is 56 Gy, and the dose tolerance to the brain stem
is 54–60 Gy [113].
In both cases, sparing adjacent noninvolved brain is

also a concern in terms of late toxicity and secondary
malignancy, especially in younger patients with a more
favorable prognosis. And despite the administration of
curative intent doses to gliomas, these almost inevitably
recur, usually on the order of up to two centimeters
from the initial resection cavity [114,115]. For meningi-
omas especially, those tumors are adjacent to the skull
base or are in close proximity to cranial nerves, thus
rendering resection and RT challenging. The superior
RBE of carbon ions and the ability to dose escalate while
sparing organs at risk in the field may improve the prog-
nosis of glioma patients while sparing toxicity for pa-
tients with a more favorable prognosis (i.e. meningioma).
Carbon ion treatment of these malignancies is the
subject of multiple ongoing clinical trials (Table 1). For
the treatment of glioma, when rationalizing the use of
carbon ions, the emphasis is placed on improvement in
LC, whereas, in the case of meningioma, LC can be ob-
tained with conventional photon treatment. The emphasis
here is placed on minimizing toxicity, an important
consideration in discussing the design of future clinical
trials (discussed below).

Head/neck and thorax tumors
Tumors of the head and neck, orbit, skull base, or upper
cervical spine present a therapeutic challenge to both
surgeons and radiation oncologists due to their proxim-
ity to the oral cavity, pharynx, larynx, paranasal sinuses
and nasal cavity, and salivary glands, as well as the cra-
nial nerves and the brain stem. For a great proportion of
these tumors, the extent of resection correlates with the
likelihood of LC and outcome. The lowest dose limiting
structure in this area is likely the eye lens, however;
since cataract surgery has become increasingly common,
it is likely that the salivary gland with a mean dose of
26 Gy for 20% risk of salivary dysfunction and xeros-
tomia would be the lowest limiting dose that has the
largest clinical impact [113].
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While xerostomia is detrimental to quality of life and
dentition, the brain stem and the spinal cord with the
risk of developing long term sequelae can present
significantly higher challenges to treating tumors with
curative doses in this area. This is especially true for
chordomas and chondrosarcomas that are in close
proximity to the spinal cord. Chordomas are usually
slow-growing, low-grade malignancies that can arise from
the sacrum (50-60% of cases), skull base (25–35%),
cervical vertebrae (~10%), and throacolumbar vertebrae
(5% of cases) [116]. Regardless, surgery remains the pri-
mary modality for the treatment of chordomas, however
due to the closeness of critical structures as mentioned
above, it is often difficult to achieve. Radiation too is prob-
lematic, as a result of dose constraints.
A dose of 50 Gy to the spinal cord carries a 0.2%

chance of myelopathy, whereas a dose of 60 Gy carries
as 6% chance [113]. For the brain stem, a dose of less
than 59 Gy to any 1 to 10 cc volume reduces the risk of
neuropathy or necrosis to < 5% [113]. Generally, doses in
the range of 60 to 70 Gy, are required to eradicate the
gross disease in most malignant tumors with the excep-
tion of lymphoma. This dose can be difficult to adminis-
ter safely to sites adjacent to the spinal cord or brain
stem (e.g. chordoma, chondrosarcoma, bone and soft
tissue sarcomas of the head and neck, and other locally
advanced head and neck or spinal tumors not amenable
to resection with negative margins). The sharp lateral fall
off of carbon ions can help spare these structures, and
may enable the administration of a higher dose to the
tumor, thus improving LC. An improvement in LC has
been observed in adenoid cystic carcinoma, bone and
soft tissue sarcoma, and skull base and upper cervical
tumors. A similar or better toxicity profile, as compared
to, proton or photon treatment has also been shown in
these sites (Table 1).
Achievement of wide negative margins appears to be

correlated with the rate of local recurrence and survival,
with recurrence rates near 70% when negative margins
are not achieved [116]. For skull base and upper cervical
spine tumors treated at NIRS, patients had a 5-year LC
and survival rate above 80% with 5% of patients experi-
encing > Grade III toxicity in one study, and no patients
experiencing Grade III toxicity in two other studies
[117,118]. Not only did carbon ion treatment provide a
similar or superior toxicity profile for chordomas, it also
showed superior 5 and 10 year LC as compared to pro-
ton or proton/photon treatment [119-121] (Table 1).
Tumors originating from the thorax can be difficult to

resect with negative margins. Furthermore, they can also
be difficult to radiate due to lung and heart dose con-
straints. Meeting lung constraints can be achieved with
using the field in field technique or IMRT; however, with
both of these techniques, the mean lung dose often
exceeds 14–15 Gy, increasing the likelihood of pneumon-
itis to > 15%. Additionally, it is often difficult to meet the
traditional dose constraint of V20 < 30% (volume receiving
20 Gy to represent less than 30% of the total lung volume)
[113]. The traditional dose constraint to the heart is V30
< 46% for < 15% risk of incurring pericarditis, however, the
constraint for long term cardiac mortality, V25 < 10% for
1% risk of cardiac mortality is rarely ever achieved when
attempting to treat to curative doses in the thorax [113].
In unresectable Stage I and II lung cancer, definitive

radiation is an established treatment option, and while
LC may be quite good (upwards of 85%), OS remains
poor. SBRT is an increasingly common method to treat
unresectable Stage I and II lung cancer, and has im-
proved both the coverage of the tumor, as well as, de-
creased toxicity [122,123]. In larger tumors or those in
close proximity to the mediastinum, SBRT is often not
possible to perform; it is these patients that may benefit
from carbon ion treatment [124-126]. Stage I patients
with tumors > 3 cm (T2) have been treated with carbon
ions and found that carbon provided superior dose dis-
tribution while treating less normal tissue, and the rate of
radiation pneumonitis was 3% (Table 1). Higher toxicity
was observed in patients treated prior to 2006 when only
1 to 2 portals were used in treatment.

Abdominal and pelvic sites
Hepatocellular carcinoma (HCC) is the third leading
cause of cancer mortality worldwide and accounts for
nearly 90% of primary liver cancers in the United States
[127]. The resection of HCC tumors is a major proced-
ure, especially in high-risk patients, with post-operative
death rates between 5 and 20% [128,129]. The prognosis
and outcome of HCC is generally poor, with only 10 to
20% of HCC tumors able to be successfully resected with
wide negative margins; the 5-year survival rate is close
to only 15% [21].
Traditionally, the treatment of liver tumors with exter-

nal beam RT has been limited by the dose constraint to
the liver, with a mean dose of 30 to 32 Gy for a < 5% risk
of development of radiation induced liver dysfunction
(RILD). This is often problematic as the capacity of the
liver to tolerate radiation in these patients may be
undermined by significant liver impairment prior to
the administration of RT. Currently, with the exception
of radiofrequency ablation; the administration of RT
remains largely a palliative modality as curative doses
cannot be administered. Some evidence suggests that
localized tumors > 5 cm may benefit from carbon ion
RT [130]. Four studies have investigated the adminis-
tration of carbon ion treatment for HCC (Table 1) with
promising results [21,131-133].
Pancreatic cancer is the fourth leading cause of cancer

mortality in the United States, with a 5-year OS rate of
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at most 5% [134]. Resection for ductal pancreatic adeno-
carcinoma, the most frequent pancreatic malignancy,
offers the only curative hope for patients and gives a sig-
nificantly improved prognosis of 14 to 20 months, and a
25% 5-year survival rate [135]. Yet, the prognoses for
pancreatic cancer remain poor for unresectable tumors,
with median survival around 4 to 8 months [134]. RT to
this area with curative intent is not possible due to
doses to organs at risk in the field which include liver
(discussed above), small bowel (with general dose con-
straint: max point dose of 45 Gy or QUANTEC dose
constraints of V15 < 120 cc and V45 < 195 cc for a 10%
risk of ≥Grade III toxicity), and stomach (D100% < 45 Gy
for risk of ulceration of 7%). Typically, however, the field
that would have to be treated postoperatively is exceed-
ingly large that the administration of even microscopic
disease doses is often difficult.
The superior depth dose distribution of carbon ions

makes this modality attractive for pancreatic cancer
from an anatomical perspective, while the superior RBE
may make response even more likely in selected patients.
Carbon ions have been employed both pre- and postop-
eratively with favorable toxicity profiles [136,137]. The
combination of carbon ion treatment with Capacitabine
chemotherapy is the subject of ongoing clinical trials
PHOENIX (NCT01795274), as well as, treatment vol-
umes and movement management (KFO 214).
If the standard treatment for rectal cancers, concur-

rent chemo-radiation followed by surgical resection, is
done, postoperative pelvic recurrences are rare. Yet, if
only surgical resection is done the incidence of recur-
rence is still around 5 to 20% [21]. The curative intent
option for the management of a pelvic recurrence is
often a total pelvic exenteration. This surgery is highly
invasive and dramatically decreases the patient’s quality
of life. The resection rate for locally recurrent colorectal
cancers has been reported to be between 3% and 30%;
with a majority of these patients ineligible for resection
they are subsequently referred for RT [138]. The dose to
the cord, small bowel (discussed above), and kidneys (mean
< 15–18 Gy for < 5% clinical dysfunction,) in addition to,
the need to achieve as much sparing as possible of at least
one of the kidneys makes the administration of RT chal-
lenging. Here again the superior depth dose distribution
of carbon ions may make curative intent treatment or
even retreatment possible. The treatment of recurrent
rectal cancer with carbon ion is the subject of one trial
(Table 1), which reports very good LC (upwards of 95%);
however, toxicity results are scant and long term results are
not yet available. However, it is the subject of an ongoing
clinical trial aimed at determining the optimal dose and
PFS, as part of the phase II component of the trial [139].
When taking into account the anatomic barriers in

administrating RT, some of the dose constraints have, at
least partially, been overcome by IMRT, SBRT, or proton
treatment. With the exception of proton treatment, the
integral dose with these techniques is higher as com-
pared to conventional plans. Both anatomic and integral
dose constraints may have been overcome further by
proton treatment. This however, does not have the bene-
fit of a superior RBE. We feel that the majority of the
sites discussed here with significant anatomical con-
straints, would fare well with continued exploration of
carbon ion treatment due to: (1) superior depth dose
distribution which it shares with protons, and (2) a
superior RBE which may significantly improve tumor
control. Long term clinical data will be necessary to
make a complete assessment of optimal histologies; and
short and long term toxicities, as well as, optimal dose/
fractionation schemes will be necessary. Accrual of these
data is the subject of ongoing trials (Table 1).

Future clinical trial design
Currently, clinical trial design is based on the assump-
tion that the same biologic effective dose is administered
in the photon, proton and carbon ion arms. Additional
knowledge of how to equate these doses is necessary,
breaking away from the traditional referencing to photon
doses. To help improve understanding and clinical trial
design knowledge of the responses of various histologies,
in addition to, early and late responding normal tissues
to different radiation particles over a range of doses
needs to be increased.
It is imperative to look at differences in RBE and tissue

type in order to create the best therapeutic ratio. The re-
sponse in cells and tissues are likely to be different, and
certainly tissue dependent when administering large
doses of carbon ion therapy, as compared to the trad-
itional photon therapy fractionation 1.8 to 2.0 Gy/fraction.
These differences may translate into different degrees of
damage in the vascular structures of late responding
normal tissue or, ideally, in the tumor stroma and tissue.
Future clinical trial design should be aimed at exploiting
the differences in radiosensitivity between cells radiore-
sistant to low LET RT and sensitive to carbon ion RT to
enable (1) adequate selection of histologies, and (2)
adequate selection of patients most likely to benefit
from this modality based on biomarkers and imaging.
Clinical trial design involving carbon ion therapy should

proceed as one would if involved in any other therapeutic
intervention along phase I trials, proceeding into phase II,
and subsequently phase III, understanding that this logical
progression may at times require the combination of
phases to advance the field. Phase I trials have occurred in
a significant proportion of the tumors discussed in this
paper [21,140]. The selection of patients and tumor his-
tologies should ideally occur along the lines describes
in Figure 4, recognizing that none of the measures,



Figure 4 Grading scale of histologies to warrant carbon ion exploration in future clinical trials. Grading scale that should be used to
select patients and tumor histologies to determine inclusion earlier or later in clinical trials.
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whether hypoxia, α/β ratio, or tumor proliferation, may
be fully reflective of the tumor microenvironment and
true radiosensitivity of the tumor.
The addition of tumor biomarkers, that are as yet

unidentified, that may predict response to carbon ion
Figure 5 Considerations for the implementation of new carbon ion fa
of new carbon ion facilities, the decision is multi-factorial and a range of co
Carbon ion RT is an exciting new field, however, in its infancy, and needs t
base of its understanding.
therapy should be incorporated into the decision algo-
rithm once available. A cumulative score (Figure 4) of ≥ 5
would essentially describe a tumor radioresistant to low
LET irradiation, with the standard of care (SOC) treat-
ment causing significant toxicity. It would also include
cilities. When beginning the process for proposing the construction
nsiderations must be considered, from patients, to treatments, to cost.
o be implemented with caution only when there is a sound knowledge
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patients who have no curative options available. Tumor
histologies and patients with a score of 0–1 derive sig-
nificant benefit from current SOC, and thus would only
become candidates for trials with carbon ion tech-
nology once significant OS or PFS benefit has been ob-
tained in randomized trials, when compared to current
SOC (i.e. once benefit is seen over and above that with
low LET radiation in randomized trials, the technol-
ogy may then be extrapolated to additional sites that
already do well with current SOC in the hope of
deriving additional benefit or decreasing toxicity).
To a great extent, the currently available phase I/II tri-

als follow these guidelines. Once promising results have
been obtained, as is currently the case for a number of
sites, phase II trials can be advanced to randomized
phase III trials where carbon ion treatment should be
compared with current SOC for that histology or site.
An additional arm could explore the addition of a sys-
temic, concurrently administered, agent with carbon,
when the same agent is part of SOC when using low
LET irradiation.
A significant concern in proceeding with the compari-

son to current SOC is the problem of the carbon ion
RBE, and its comparison to the RBE of low LET radi-
ation. It is likely that further preclinical and clinical data
are required before a sound comparison can be made.
Although this describes the ideal way to introduce carbon
ion technology into SOC, it is unlikely that the natural
progression of phase III trials will occur this way, as equi-
poise may have been disturbed sufficiently prior to their
introduction, thus making the acquisition of patients in
such protocols unrealistic. However, since carbon ion
technology is expensive, and as a result difficult to acquire,
stringent control can be exercised thus ensuring that
patients will not be treated outside of established proto-
cols in order to advance the field and improve patient
outcomes.

Conclusions
In summary, carbon ion therapy is recommended for
tumors, some of which are described here, that are
radioresistant and/or located close to critical structures.
The use of carbon ion therapy is sensible, when the
advantages of using carbon ions outweigh the thera-
peutic advantages that can already be obtained with
fractionated photon RT. Future clinical trials should be
aimed at the comparison of photon, proton and carbon
ion treatment in conjunction with the identification of
molecular biomarkers of hypoxia, and metabolism, in
an effort to achieve optimal patient selection (Figure 5).
With the dawn of personalized medicine, those tumors
that have traditionally responded well to other radiation
species should continue to be treated with those spe-
cies, while the rare or non-responsive malignancies
should be treated with carbon ions in a patient specific
manner. Furthermore, the expansion of carbon ion
treatment facilities should be undertaken in the United
States.
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