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Abstract

A review of some of the most important existing parallel solution algorithms for stochastic

dynamic problems arising in ®nancial planning is the main focus of this work. Optimization

remains the most di�cult, time and resource consuming part of the process of decision support

for ®nancial planning under uncertainty. However, other parts of a specialized decision

support system (DSS) are also brie¯y outlined to provide appropriate background.

Finally, ®nancial modeling is but one of the possible application ®elds of stochastic dy-

namic optimization. Therefore the same fairly general methods described here are also useful

in many other contexts.

Authors hope that the overview of this application ®eld may be of interest to readers

concerned with development of parallel programming paradigms, methodology and tools.

Therefore special care was taken to ensure that the presentation is easily understandable

without much previous knowledge of theory and methods of operations research. Ó 2000
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1. Introduction

Large-scale optimization methods, especially for structured problems, such as
dynamic, stochastic and stochastic dynamic problems, have long been known for
their extreme requirements on computer memory and computing power. Each sig-
ni®cant increase in available processing power, and especially the advent of parallel
computers, was seen as a chance to solve new important and di�cult classes of
optimization problems. Yet one cannot help noticing the discrepancy between the
availability of parallel computers in numerous research centers as well as commercial
institutions and the availability of specialized optimization software able to utilize
those vast resources.

This is not caused by the lack of appropriate parallel algorithms: those have been
proliferating for more than a decade now (not to mention the parallel methods that
came before the time of parallel computers). One can enumerate decomposition-
based approaches like [2,14,18,24,29,31,33], data parallel algorithms [20,21,32] and
even specializations of general optimization methods for solution of a structured
problem, like [7,34]. Some generic parallel optimization algorithmic paradigms have
also been developed a relatively long time ago (see, e.g., [8,9]). The authors believe
that one of the causes for the slow development of practical parallel optimization
systems is the di�culty of implementing even a conceptually simple and inherently
parallel method using the parallel programming tools of today. In fact, it is imme-
diately apparent to the reader of most of the works listed above, that a parallel
implementation was only mentioned as a possible future course of research (e.g., [7]),
or that some sequential implementation was produced and simulations of parallel
execution were performed (e.g., [21,31]). Eventually, after years of hard work new
publications appear in which successful truly parallel implementations are described
(e.g., [1,4,13,35]). Sometimes the parallel implementations fail to materialize at all.

While parallel optimization methods are likely to be the single most important
factor in the development of a parallel ®nancial management DSS, there are even
more di�cult implementation issues that have to be faced when designing an ap-
plication which is considerably more complex.

In the following we will use our DSS currently under development as part of the
authors' on-going research [12,27], as an example of a complex application which
consists of many non-trivial, possibly highly parallel components, each working on a
structured set of data. The individual structures present at consecutive stages of data
processing result from the di�erent (sometimes unrelated) mathematical models and
methods adopted. Each structure is best de®ned and operated on using a distinct
collection of symbols and representations typical for the mathematical method. The
transition from one form to the other can be seen as one of the major sources of
di�culty of parallel implementation.

We believe that such an overview of the ®eld may be of interest to everyone
concerned with development of parallel programming paradigms, methodology and
tools.

In Section 2 the ®nancial management optimization problem will be outlined,
while in Section 3 we shall provide a brief description of the structure of the DSS.
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The main part of this paper, Section 4 is devoted to the discussion of parallel so-
lution methods for stochastic optimization problems arising in ®nancial manage-
ment, as well as in many other contexts. The conclusions from our survey are
presented in Section 5.

2. The decision problem

The basic problem in ®nancial management is to decide about the portfolio
structure, i.e., how much should be invested in bonds, stocks and other equities, how
much should be kept in cash and how much of loans to give and credits to take.

This basic decision problem is characterized by the following features:
· the prices of the possible ®nancial instruments (bonds, stocks, loans, forwards, op-

tions, etc.) are known now, but uncertain in the future,
· the returns on investment are therefore also unknown,
· the portfolio may be restructured in the future, in reaction to changed market con-

ditions.
The ®nancial management problem turns out to be a stochastic, dynamic decision

problem.
A decision problem is called dynamic, if a sequence of decisions �x1; x2; . . . ; xd� has

to be made one after the other in time (see Fig. 1). The irreversibility of time causes a
natural ordering of the decisions: the decision xn�1 has to be taken under the con-
straints implied by the previous decision xn.

A decision problem is called stochastic, if some parameters needed for the decision
are unknown now and only revealed later as an outcome of a random event. In a
stochastic recourse problem (see Fig. 2), there are two levels of decision: an imme-
diate decision x1 and a decision after the uncertain parameters have been observed

Fig. 1. Discrete time dynamic problem structure. Decisions are taken at the nodes. Arrows indicate the

¯ow of time.

Fig. 2. Recourse problem structure.
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(the recourse decision). Assume that there are k possibilities for the uncertain pa-
rameters. Then we have to introduce k recourse decisions x2; x3; . . . ; xk�1. The con-
straints for these recourse decisions depend on the decision x1 made immediately and
on the actual (single) outcome of the random event.

The stochastic dynamic decision problem is a combination of both a stochastic
and a dynamic problem. We have a discrete-time, discrete-state stochastic vector
process X�t�; t � 1; 2; . . . ; T as the process of uncertainties. This vector process
models all economic time series which are the source of uncertainty and risks for the
®nancial management decision problem, like interest rates, exchange rates, stock
market prices, etc.

With the process X�t� we associate the history process X�t� � �X�1�;
X�2�; . . . ;X�t��. Since the process X has only ®nitely many states, one may arrange
all states of the history process in a ®nite tree, called the scenario tree (see Fig. 3). Its
root is the starting state X1 � X�1�. The nodes of the tree may be numbered
n 2N � f1; . . . ;Ng such that each node number n corresponds in a one-to-one
manner to a history of the process X��� up to the time at which this node occurs. We
may and will consider the history as a function of the node number of the scenario
tree using the notation X�n�. The (unconditional) probability of reaching node n is
denoted by pn.

At each node of the tree a decision is taken. The depth of each node corresponds
to the time for this decision. The decision is how much assets (bonds, stocks, forward
contracts, futures, options, etc.) and liabilities (credits, loans, pensions, etc.) should
be bought and sold. We summarize all these ®nancial instruments under the name of
contracts. The node number n indicates the history of the economic environment and
this in turn determines the buying prices gb�n; j�, the selling prices gs�n; j� and the
induced cash ¯ows gc�n; j� for each contract j.

The decision vector components are: how much of contract j 2 J is bought
xb�n; j� or sold xs�n; j� at node n of the scenario tree. Let c�n� denote the cash at node
n and nÿ the predecessor of node n in the tree. The cash balance equation is

Fig. 3. A tree structured problem.
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8�n 2N� c�n� � c�nÿ� �
X
j2J

xs�n; j�gs�n; j�� ÿ xb�n; j�gb�n; j� � h�n; j�gc�n; j��;

where h�n; j� is the amount of contract j held right after the decisions at node n. The
bookkeeping equations are

8�n 2N; j 2 J� h�n; j� � h�nÿ; j� � xb�n; j� ÿ xs�n; j�:
All decision variables are non-negative, but other (for instance legal) constraints may
be added. At each terminal node t 2T �N the terminal wealth random variable
W �t� takes with probability pt the value

8�t 2T� W �t� � c�t� �
X
j2J

h�t; j�gs�t; j�:

The typical objective of the ®nancial management problem is to maximize a risk
functional of the terminal wealth. This functional contains expected wealth, but also
takes into account the decision maker's risk aversion. We maximize

E�W � ÿ qEjW ÿ E�W �j �
X
t2T

ptW �t� ÿ q
X
t2T

pt W �t�
����� ÿ

X
t2T

ptW �t�
�����; �1�

where q P 0 is a risk aversion factor to be determined by the decision maker (see
[23]). The whole problem is a large scale tree structured linear program.

The terminal wealth E�W � is a random variable. The objective (1) is only one of
many possible statistical characteristics of it. The best way to get insight into this
variable is to display its cumulative distribution function and some more statistical
characteristics, like lower semi-standard deviation, value at risk (5% quantile), etc.
(see Fig. 4).

Please keep in mind that the presentation above is, of necessity, simpli®ed and
does not deal with many detailed practical issues. Consequently, the model just
developed may only serve as a framework. Interested reader should de®nitely consult
more detailed practical model descriptions, such as those described and referenced

Fig. 4. Example of a comparison of cumulative distributions of wealth.
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in, e.g., the recent book [26] devoted entirely to issues of asset-liability management.
Most of the issues of ®nancial modeling, which were taken for granted above (e.g.,
providing a coherent set of prognoses of market prices), need separate complex
mathematical models.

3. Financial management DSS structure

The solution of the optimization problem is the core of the DSS. Other modules
of the DSS are responsible for data handling, contract pricing and model generation.
The typical integrated decision process contains the following computer supported
(and often computation intensive) steps:
· The relevant risks (interest rates, exchange rates, stock market prices) are identi-

®ed and historical time series are input.
· A number of risk factors are extracted by principal component analysis.
· The risk factors are modeled by a discrete-time, discrete-state Markov chain.
· The original risks are represented as functions of state of the Markov chain.
· Expert opinion about long-term trends may be added.
· After the planning horizon has been determined, the scenario tree is generated (see

[28] for description of a recently developed optimal scenario tree generation pro-
cedure).

· The prices and cash-¯ows of the di�erent contracts at all nodes of the scenario tree
are calculated. This pricing is often based on an extensive simulation, and can be
done independently, possibly in parallel, for each node of the tree (see [11] for a
description of a recent parallel implementation study).

· The optimization problem is solved and the ®rst stage decisions (the decisions to
be made immediately) together with a graphical representation of the terminal
wealth random variable are shown to the decision maker.

· The decision maker may now decide to change some of the model parameters and
repeat relevant parts of the process.
To give the reader the idea of problem sizes, let us assume that we have ®ve in-

dependent risk factors, each described by a binary lattice. Then at each node of the
tree there are 25 branches. A T-period tree will thus have �25�Tÿ1

nodes. This ex-
plosive growth of the tree is the major source of di�culty. Let us add that the
number of risk factors assumed above is rather moderate and the branching factor of
2 per risk factor is clearly the smallest possible. The number of periods T considered
would typically be 5 or more.

We stress that most if not all of those tasks within a DSS which do not involve
user interaction may have to be performed in parallel (e.g., when memory resources
do not allow the computation to take place in just one computational node). Each of
those tasks belongs to a di�erent world: it works with di�erent data structures (e.g.,
dense and sparse matrices vs. graphs), uses di�erent terminology (statistical,
econometric, mathematical programming, etc.) and di�erent computational meth-
ods. That implies that a complex system like the one outlined above cannot be well
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supported by just one parallel programming paradigm, as, at least up until now, no
such paradigm is versatile enough to cater for all the needs.

In the following we shall present in more detail a number of optimization methods
used in stochastic optimization. The variety of parallel processing structures avail-
able in just this single part of the DSS is representative of most of the problem
structures present in the whole system.

4. Selected parallel optimization methods

A general form of a linearly constrained optimization problem is

min f �x�;
Ax � b;
x 2 X ;

�2�

where f ��� may be linear, quadratic or generally convex, making (2) a linear, qua-
dratic or convex program. When it comes to large-scale optimization problems (i.e.,
ones with 106, 108 or more constraints or variables) it is more than likely that behind
a general formulation (2) a highly structured matrix A, vectors b, c and set X are
hidden. Understanding and careful exploitation of this structure may make a dif-
ference between being able to solve a problem in a reasonable amount of time and
being unable to even store it in the computer's memory. The presence of structure
together with the problem size immediately suggests using parallel processing in
solution procedures.

In this section, we shall attempt to provide a simple, uni®ed description of the
principles behind some of the representative decomposition methods for multistage
stochastic problems. We shall only focus on issues important for parallel pro-
cessing. We are concerned with how the methods work and progress through the
iterations and not why they work. Thus convergence proofs, starting point calcu-
lation and many other mathematical issues will be omitted. Only the most fun-
damental mathematical ideas are going to be presented. We shall mainly talk about
problem structures and reformulations, data ¯ow, synchronization and communi-
cation.

Historical development of parallel optimization algorithms followed a few dif-
ferent routes:
1. Parallelism was found and exploited in some of the existing (sequential) optimi-

zation methods.
1.1. Typically it was discovered in the algebraic operations inside the algorithms

which led to either purely data-parallel linear algebra methods or a mix of
data parallelism and involved parallel algorithms for, e.g., matrix factoriza-
tion (see, e.g., [7,15]). The methods were either assuming a special structure
or were trying to identify one in an unstructured problem.

1.2. Other attempts include such reformulations of existing sequential algorithms,
which allow exploiting more parallelism (see, e.g., [16]).
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2. New inherently parallel algorithms were designed.
2.1. Some are based on a rather coarse grain parallel structure closely related to

the problem domain. Node decomposition on a tree [5,31] or scenario de-
composition [24,33] may serve as examples.

2.2. Others exploit only the ®ne grain structure of the constraint matrix of prob-
lem (2) and are thus well suited to solve both structured and unstructured
problems [20,32].

It is possible that the run time of some of these algorithms is longer on sequential
hardware than that of a classical sequential algorithm, but improved scalability
makes them more e�cient on truly parallel machines or distributed platforms. On
the other hand, there exist specialized decomposition algorithms which are the most
e�cient both on sequential and parallel computers (see, e.g., [29]).

In the following, we shall be concerned with the description of some of the known
methods belonging in the last two groups.

4.1. The principle of decomposition

4.1.1. A tree-structured stochastic optimization problem
The stochastic dynamic problem is an example of a structured optimization

problem. Recall its structure from Fig. 3.
De®ne a rooted tree T � �N;A� where N � f1; . . . ;Ng is a set of nodes and A a

set of arcs. Denote the root of the tree with r 2N, depth of the tree (identical with
the number of time stages) with T, predecessor of node i with iÿ and the set of
terminal nodes with T �N. Let iÿk denote the kth predecessor of i and de®ne a set
of siblings of node n 2N as S�n� � fk : kÿ � ng. Further assume that all terminal
nodes are at level T.

It is typical in the ®eld of mathematical programming to formulate all problems as
minimization rather than maximization. Hereafter we shall adhere to this custom.
Clearly, only a change in sign of the objective is needed to switch from one form to
the other. The linearly constrained stochastic dynamic optimization problem can be
expressed most directly using the tree structure introduced above:

min
P

n2N
fn�xn�;

8�n 2N� Tnxp�n� � Anxn � bn;

xn 2 Xn;

� �3�

where 8�n 2N� An 2 Rmn�nn , Tn 2 Rmn�nnÿ . To avoid treating the root node as a
special case, we de®ne R � Xrÿ � f0g, xrÿ � 0 and Tr 2 Rmr�1, Tr � �0�.

If functions fn are linear, i.e., fn�xn� � cT
n xn, and the decomposable constraints

xn 2 Xn have a simple form xn P 0, then problem (3) becomes a large-scale linear
problem with a dual

max
P

n2N
bT

n yn;

8�n 2N�
AT

n yn �
P

k2S�n�
T T

k yk

� �� zn � cn;

zn P 0:

( �4�
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The dual problem (4) is also a tree structured problem but the primal information
¯ow (i.e., the ¯ow of decisions) is reversed, as illustrated in Fig. 5.

It is well known that a linear problem may be solved either in its primal or dual
form. One of the decomposition methods described below, namely the Dantzig±
Wolfe decomposition, was actually designed to handle directly the dual problem.

A working example of a scenario tree to be used in the remaining part of this
section was shown in Fig. 3. It represents a three stage planning problem with the
number of second stage random events depending on the outcome of the ®rst stage
random event.

4.1.2. How decomposition works
If the matrices Tn were all zero, the problem (3) would trivially decompose into N

completely independent problems, which could be solved in parallel

8�n 2N�
min fn�xn�;
Anxn � bn;
xn 2 Xn:

8<: �5�

The main idea in some methods for parallel optimization is to coordinate the inner
optimization problems (5) in an iterative manner. To this end, a coordination
function Q�m�n �xn� is introduced and updated in an outer loop:

Algorithm 1. General decomposition algorithm

Step 0. m :� 1

Loop begin

Step 1. 8�n 2N� update the coordination functions Q�m�n �xn�.
Step 2. In parallel 8�n 2N� solve minfxn2Xn;Anxn�bng fn�xn� � Q�m�n �xn�.
Step 3. Stop if termination criteria met.
Step 4. m :� m� 1

Loop end

Fig. 5. Information ¯ow in a dual problem.
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The coordination function Q�m�n �xn� must in some way approximate the function

xn ! min
xj;j 6�n

X
N3j 6�n

fj�xj� s:t: 8�j 2N�Ajxj

(
� Tjxjÿ � bj; xj 2 Xj

)
: �6�

In other words, the coordination function should express the dependence of non-
local part of the global objective

P
n2N fn�xn� on the value of the local variable xn.

The update of the local coordination function may be either centralized or
decentralized. The local optimizations may be performed with more or less syn-
chronization. The original problem may be restructured according to its di�erent
interpretations, and thus have more than one parallel formulation treatable by
more than one method. Problem reformulations include also the choice of the right
granularity of the subproblems, where by the right granularity we mean such that
will result in highest possible solution e�ciency. On the one end of the spectrum of
possible granularities, the subproblems may be further decomposed. On the other
end, groups of subproblems may be amalgamated into larger, higher level form of
subproblems. Finally, it is typical (especially in the master±servant algorithms) that
the types of Q�m�n �xn� functions will be di�erent at di�erent levels, or more generally,
nodes of the tree, e.g., the master might try to build a global representation of (6)
while the slaves would only hold a local description, valid around the current
iterate.

All these issues will be discussed in the presentations of the particular methods
below.

4.2. The selected methods

4.2.1. The Dantzig±Wolfe and Benders decomposition methods
A number of methods, including some of the oldest and best known, were based

on the famous decomposition principle of Dantzig and Wolfe [10,14]. Although the
so-called Benders decomposition [2] is typically seen as dual to Dantzig±Wolfe ap-
proach, we shall try to express them both using the same terminology.

Let us ®rst recall the notion of a subgradient of convex function. The subdi�er-
ential (a set of subgradients) of convex function f at x�0� is de®ned as

of �x�0�� � fa : 8x f �x�P f �x�0�� � ha; xÿ x�0�ig:
A list of arguments �x�i��fi�1;...;mg pertaining function values f �x�i��fi�1;...;mg and sub-
gradients �a�i��fi�1;...;mg, a�i� 2 of �x�i�� is called dual information on f. If we have dual
information on f we may bound f from below by the subgradient approximation

f �x�P max
i�1;...;m

ff �x�i�� � ha�i�; xÿ x�i�ig:

If we know only the arguments x�i� and pertaining function values f �x�i��, we call this
primal information on f. Having primal information we may bound f from above by
the primal approximation
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f �x�6
Xm

i�1

kif �x�i�� if x �
Xm

i�1

kix�i�;
Xm

i�1

ki � 1 and 8i ki P 0:

For illustration we consider the following simple problem, where x1 denotes the ®rst
stage and x2 the second stage decisions:

min cT
1 x1 � cT

2 x2;
A1x1 � A2x2 � b;
x1 2 X1; x2 2 X2:

The ®rst stage subproblem is concerned with ®nding the optimal x1 and the second
stage subproblem is concerned with ®nding the optimal x2. Benders decomposition
and Dantzig±Wolfe decomposition di�er in the way how the problem is divided
between stages and how the relevant information is passed between the ®rst and the
second stage.
· In Benders decomposition, primal information (namely the proposed value of x1)

is passed from the ®rst stage to the second stage. In turn, the second stage problem
®nds the best x2 given x1 is ®xed and passes dual information back to the ®rst
stage. The ®rst stage problem constructs a subgradient approximation of the sec-
ond stage function, which is minimized and the solution passed again to the sec-
ond stage problem. For illustration see Fig. 6.

Algorithm 2. Benders decomposition
Step 1. Solve the master problem (first stage): x�m�1 2 Arg minx12X1

cT
1 x1 � Q�m�1 �x1�.

Step 2. Solve the subproblem (second stage): f2�x�m�1 � :� min cT
2 x2 subject to con-

straints x2 2 X2;A2x2 � bÿ A1x�m�1 .
Step 3. From the solution to the second stage problem obtain a subgradient y�m�2

and pass it back to the ®rst stage.
Step 4. Use f2�x�m�1 �, y�m�2 and Q�m�1 �x1� to calculate the re®ned approximation

Q�m�1�
1 �x1�.
Step 5. Set m :� m� 1. If not optimal, go to Step 1.

· In the Dantzig±Wolfe decomposition, dual information, namely a subgradient is
passed from the ®rst stage to the second stage problem. In turn, the second stage
problem passes primal information back to the ®rst stage. The ®rst stage problem

Fig. 6. Information ¯ow in Benders decomposition scheme. Primal information passes in the direction

indicated by arrows. Dual information is passed in the opposite direction.
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builds an approximation of the second stage objective, which is minimized togeth-
er with ®rst stage objective and then dual information is passed again to the sec-
ond stage. See also Fig. 7.

Algorithm 3. Dantzig±Wolfe decomposition
Step 1. Solve the master problem (first stage): min cT

1 x1 � Q�m�1 �x2� subject to con-
straints x1 2 X1, A1x1 � A2x2 � b, x2 �

Pm
j�1 kjx

�j�
2 ,

Pm
j�1 kj � 1 and

8�j � 1; . . . ; m�kj P 0.
Step 2. From the solution obtain the dual variables y�m�1 and pass them forward to

the second stage.
Step 3. Solve the subproblem (second stage): x�m�2 2 Arg minx22X2

�c2 ÿ AT
2 y�m�1 �T x2.

Step 4. Pass the x�m�2 and f2�x�m�2 � back to the ®rst stage.
Step 5. In the ®rst stage re®ne approximation Q�m�1�

1 �x2� :�Pm
j�1 kjf2�x�j�2 �x�j�2 .

Step 6. Set m :� m� 1. If not optimal, go to Step 1.

Both algorithms above have been ®rst introduced as two level methods, i.e., with
just one master problem and a number of slaves (subproblems). A stochastic re-
course problem (see Fig. 2) has several second stage problems, i.e. several sub-
problems. These subproblems may be solved in parallel.

In a tree-structured problem, all interior nodes (i.e., other than root and leaves)
are both masters and subproblems. The pertaining control structure is called nested.
Every subproblem is at the same time a master problem for the next level. Certain
amount of parallelism is present in the processing performed in all non-terminal
nodes. In a synchronous implementation, the information ¯ows ®rst in one direction
along the tree, then in the other, possibly across all levels. During an iteration one
such wave rolls forth and then back. The process repeats until stopping criteria are
met.

Both the method of Benders and of Dantzig±Wolfe can be implemented in a
nested fashion (see, e.g., [5] and Fig. 8 for illustration). Then they can handle directly
a tree structured problem (3) .

From the parallel computation perspective both methods can be characterized in
the same way:

Fig. 7. Information ¯ow in Dantzig±Wolfe decomposition scheme. Primal information passes in the di-

rection indicated by arrows. Dual information is passed in the opposite direction.
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· Node decomposition: Methods work using directly the tree structure of the prob-
lem, computing at the nodes and communicating along the arcs.

· Coarse grain parallel: The subproblems solved in parallel in both methods require
signi®cant computational e�ort; the communicated solution results take the form
of single vectors x�m�n and y�m�n .

· Synchronized by the master: First all slaves have to solve their problems before the
master starts gathering the data, then the master has to ®nish the solution before it
passes the result to slaves, which have been waiting idle.

· Asymmetric coordination: The master maintains a non-smooth representation of
the epigraph of the sum of all subproblems' objective functions, thus it holds an
approximation of the global objective function. In contrast, subproblems are only
given local representation of master's objective. In the Dantzig±Wolfe method
subproblems have an a�ne representation of the master: a price on the linking
constraints. In Benders method, subproblems are given the values of the linking
variables and produce the price on their perturbation.

4.2.2. Asynchronous nested regularized decomposition
Nested regularized decomposition [31] develops ideas of nested Benders decom-

position [5] and two stage regularized decomposition [30,29]. Unlike its predecessors,
it allows asynchronous parallel execution of both master and slave problems at all
nodes of the tree, thus greatly diminishing the scalability concerns caused by the
existence of a serial bottleneck ± synchronous master.

A precise discussion of this method should involve consideration of so-called
regularization at non-terminal nodes, iterative updates of the regularizing parameter
as well as many other complications. We believe those issues are not crucial to un-
derstanding of the asynchronous coordination mechanism. Since the regularization
changes the objective, and consequently the coordination functions Q�m�n , the deri-
vation of those will be omitted.

Asynchronous coordination is made possible by introducing communication
bu�ers between processing nodes. As seen in Fig. 9 there is one output bu�er as-
sociated with each non-terminal node. The bu�er stores the latest solution (primal

Fig. 8. Nested decomposition: a master (with all its subproblems) at one tree level is seen as a single

subproblem at a higher level.
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information) of this node's optimization problem, or is empty. It can be written to
only by its owner node and read by each of its siblings no more than once after it has
been ®lled with a value. Each problem other than the root stores the dual infor-
mation in an output bu�er. The output bu�er has the capacity to hold at least one
unit of dual information.

Each node problem operates using rather simple principles:
· each, except the root, begins its existence in an idle state,
· when not idle, it retrieves all the values which are stored in its incoming bu�ers,

forms Q�m�n and solves the resulting optimization problem,
� when problem is infeasible, it stores the dual information in the bu�er connect-

ing it to the lower level of the tree,
� when problem was solved to optimality and the solution is di�erent from the

previous one obtained at this node, it stores the dual information in the bu�er
connecting it to the lower level of the tree and the primal information in the buf-
fer connecting it to the higher level (if any),

� then it retires to the idle state,
· idle problem waits until at least one of its inputs contains new information, then it

switches to the active state.
When all problems are idle, the status of the last solution of the root problem

(optimal or infeasible) is the status of the whole problem and the optimization ends.
The characteristics relevant to parallel processing remain largely the same as in

the case of nested Benders and Dantzig±Wolfe methods. One notable exception is the
improved scalability resulting from asynchronous coordination.

4.2.3. Augmented Lagrangian decomposition principles
The augmented Lagrangian decomposition methods discussed in this and the two

following sections are based on the following principles:
· the idea of relaxing inconvenient constraints (in our case ± those linking decom-

posable subproblems) and instead introducing a form of penalty for their viola-
tion,

· Lagrangian augmentation which enables use of a simple iterative method, the so-
called multiplier algorithm, for coordination by means of adjustments of the pen-
alties (see [3]),

Fig. 9. Nested regularized decomposition information ¯ow (data bu�ers shown).
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· use of a decomposable approximation of the augmented Lagrangian.
We shall demonstrate those ideas on a simpli®ed example again

min f1�x1� � f2�x2�;
A1x1 � A2x2 � b;
x1 2 X1; x2 2 X2:

�7�

Problem (7) would be decomposable, were it not for the linking constraint
A1x1 � A2x2 � b. The augmented Lagrangian function for (7) with the linking con-
straint relaxed is

K�x; y� � f1�x1� � f2�x2� � hy; bÿ A1x1 ÿ A2x2i � q
2

bk ÿ A1x1 ÿ A2x2k2;

where q > 0, xT � �xT
1 xT

2 �. De®ne X � X1 � X2. Now the optimization problem (7)
may be solved by the iterative procedure known as the multiplier algorithm [3]:

Algorithm 4. The multiplier algorithm
Step 0. Set m � 1. Choose arbitrary initial value for y�m�, required accuracy e P 0

and ®xed penalty q > 0.
Step 1. For ®xed y�m� solve x�m� 2 Arg minx2X K�x; y�m��.
Step 2. If Ax�m� ÿ b

  < e then stop (optimal solution found).
Step 3. Update the multiplier vector: y�m�1� :� y�m� � q�bÿ Ax�m��.
Step 4. Set m :� m� 1, go to Step 1.

For further reference note, that the update of vector y�m� in Step 3 provides the
coordination.

For simplicity, the index �m� will be omitted below. The main computational e�ort
in Algorithm 4 is to optimize the augmented Lagrangian function in Step 1. How-
ever, this function is itself only partly decomposable with respect to xi:

K�x; y� � hy � q
2

b; bi �
X
i�1;2

fi�xi�
h

ÿ hy � qb;Aixii � q
2

Aixik k2
i
� qhA1x1;A2x2i:

Decomposition is obtained by replacing K�x; y� with its approximation

~K�x;~x; y� � hy � q
2

b; bi �
X
i�1;2

~Ki�xi;~x; y�; �8�

where ~Ki�xi;~x; y� is de®ned as

~Ki�xi;~x; y� � fi�xi� ÿ hy � q�bÿ Aj~xj�;Aixii � q
2

Aixik k2; j 6� i �9�
and ~xT � �~xT

1 ~xT
2 � is an additional parameter.

Minimization in Step 1 of Algorithm 4 above is done in an inner loop where the
separate subproblems (9) are solved in parallel by means of a so-called Diagonal
Quadratic Approximation method (DQA).

Algorithm 5. The DQA method.
Step 0. Choose step length factor 0 < s < 1, set ~x :� x.
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Step 1. For i � 1; 2 solve in parallel xi 2 Arg minxi2Xi
~Ki�xi;~x; y�.

Step 2. If Ai�xi ÿ ~xi�k k < e for i � 1; 2 then stop (optimal solution found).
Step 3. For i � 1; 2 set ~xi :� �1ÿ s�~xi � sxi.
Step 4. Go to Step 1.

In [32] conditions on s are given, under which convergence of the algorithm above
is guaranteed.

The coordination function updated in each inner iteration (in Step 3 of both
Algorithms 4 and 5 is now Q�m��x�m�� � ÿhy � q�bÿ Aj~xj�;Aixii � q

2
Aixik k2

.
As it is clearly seen, the computational characteristics of this family of methods

are quite di�erent from those of nested decompositions of Sections 4.1.1 and 4.2.2:
· Coarse grain parallelism of subproblem solution: The Step 1 of Algorithm 5 is fully

distributed. Minimization of each ~Ki�xi;~x; y� is assumed to be a time consuming
task.

· Fine grain parallelism of coordination and termination: The coordination steps in
both nested loops are just elementwise vector operations. Additionally, since in
real life problems each block xi will be connected by linking constraints with only
a few other blocks, the coordination may exploit the resulting structure to save
most of the communication.

· Fully synchronized algorithm: the order of execution of steps of both Algorithms 4
and 5 above is entirely deterministic.

4.2.4. Node-oriented augmented Lagrangian decomposition
Since we already stated three methods which see tree nodes as separate units, we

shall now show the augmented Lagrangian method operating on the same principles.
The tree structured problem (3) is seen here as a collection of node problems with

local constraints xn 2 Xn linked by the transfer of decisions xn along the branches

min
P

n2N
fn�xn�;

8�n 2N� Tnxnÿ � Anxn � bn;
xn 2 Xn:

� �10�

The constraints Tnxnÿ � Anxn � bn de®ne the dynamics of the decision process and
link the subproblems. They are relaxed by placing them in the augmented La-
grangian. Let yn denote the Lagrange multipliers related to those linking constraints.
The augmented Lagrangian is de®ned as

K�x; y� �
X
n2N

fn�xn�
h

� hyn; bn ÿ Tnxnÿ � Anxni � q
2

bnk ÿ Tnxnÿ � Anxnk2
i
:

It is not decomposable due to non-locality of predecessor mapping: the references to
variables xnÿ at node n will require communication. Clearly, substituting ~xnÿ in place
of xnÿ will render the augmented Lagrangian above decomposable, as it was shown
in (8) and (9). Distributed updates of Lagrange multipliers yn and parameters ~xnÿ are
straightforward (see Fig. 10).
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Parallel solution of the overall problem remains a mix of coarse grain parallelism
and elementwise vector operations in coordination functions' updates.

4.2.5. Scenario oriented augmented Lagrangian decomposition
The stochastic nature of the modeled phenomena provides yet another way of

seeing the optimization problem (3). Each time-ordered sequence of random events
(corresponding to a unique path from the root of the tree to a terminal node) is
called a scenario. Thus the stochastic problem can be de®ned as optimization of
decisions for separate scenarios s 2T with an additional constraint stating that a
decision at any node n may only depend on the random events that took place on a
path from the root to that node, inclusive. This constraint is commonly referred to as
non-anticipativity condition, as it prevents the decisions from depending on the
outcomes of future random events.

The notation is somewhat more involved than in the previous cases but the
underlying concept is simple. Let us ®rst add some new symbols: for s 2T de®ne
n�s; i� � sÿ�Tÿi�, which is the number of the node of the original tree (3) ap-
pearing in scenario s at period i. Scenario s includes nodes H�s� � fn�s; 1�;
n�s; 2�; . . . ; n�s; T �g with n�s; 1� � r and n�s; T � � s trivially holding. The problem
is now stated as

min
P
s2T

fs�xs�;

8�s 2T�
Asxs � bs;

xs 2 Xs;

8�t 2T; t 6� s�8fi : n�s; i� � n�t; i�g xs;i � xt;i;

8><>:
�11�

Fig. 10. Scenario tree example from Fig. 3 expanded into separate scenarios linked by non-anticipativity

constraints. Illustrates problem formulation (11).
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where the matrices and vectors above are de®ned as

xT
s � xT

s;1 � � � xT
s;T

h i
; Xs �

QT
i�1

Xn�s;i�; fs�x� �
PT
i�1

fn�s;i��xs;i�;

bs �
bn�s;1�

..

.

bn�s;T �

2664
3775; As �

An�s;1�
Tn�s;2� An�s;2�

. .
. . .

.

Tn�s;T � An�s;T �

266664
377775:

The linking non-anticipativity constraints are relaxed and placed in the augmented
Lagrangian

K�x; y� �
X
s2T

fs�xs�
"

�
X
T3t 6�s

X
fi:n�s;i��n�t;i�g

hys;t;i; xt;i

�
ÿ xs;ii � q

2
xt;ik ÿ xs;ik2

�#
:

Treating the scenario s as the unit of decomposition, we see that references to
variables xt;i are non-local and should be replaced by references to ~xt;i. Further details
follow the patterns outlined previously.

For parallel implementation of the method we should note that:
· there is a large degree of redundancy, as node data for all non-terminal nodes with

more than one successor (direct or not) is replicated,
· the number of subproblems is smaller than in the case of node decomposition but

the di�erence depends on the growth rate of the number of nodes at consecutive
stages, e.g., in case of a binary tree the number of scenarios 2Tÿ1 is nearly a half
of the number of all nodes N �PT

i�1 2iÿ1 � 2T ÿ 1,
· the subproblems are much larger then in node decomposition schemes because

each of them describes all T stages of a decision process,
· unlike in the case of Lagrangian node decomposition, the linking non-antic-

ipativity constraints are very simple, therefore the e�ort of calculation of their vi-
olation is much smaller,

· due to duplication of decisions, more communication is necessary to compare all
pairs �xs;i; xt;i�, to update ~xt;i and to pass and update all vectors ys;t;i than it was in
any case of node decomposition.

4.2.6. Unstructured data parallel methods
As mentioned before, the problem (3) can be stated as a general large-scale

optimization problem, which in the context of stochastic programming is called a
deterministic equivalent [36]. It then can be solved (at least in principle) by general
purpose optimization methods. The deterministic equivalent would be

min f �x�;
Ax � b;

x 2 X ;

�12�
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where x, X, f �x�, A and b are de®ned as follows:

xT � xT
1 � � � xT

n

� �
; X � Q

n2N
Xn; f �x� � P

n2N
fn�xn�;

b �
b1

..

.

bn

264
375; A �

A1

? A2

..

. . .
. . .

.

? � � � ? An

266664
377775:

The ``?'' characters in matrix A de®nition denote the fact that the exact location of
matrices Tn in A depends on the structure of the tree (3).

In the special case when functions fn��� are linear we can use one of the new data
parallel methods for linear programming introduced in [20,32] and related works. All
those methods share some common characteristics:
· they are based on the use of augmented Lagrangians,
· they are iterative with a varying number of loop levels,
· easily parallelizable elementwise vector±vector, sparse matrix±vector products and

some reduction operators (like vector norm or dot product) are the only mathe-
matical operations.
Thus they appear perfect candidates for ®ne grain data parallel implementation.

The simplest of those algorithms is based on the same principles as the other aug-
mented Lagrangian decomposition methods described here. The other methods are
constructed from the same building blocks. For all details of those methods, the
reader is referred to the publications mentioned above and further references therein.

In the linear case we de®ne f �x� �Pn2N fn�xn� �
P

n2N cT
n xn � cT x. We also as-

sume that X is the non-negative orthant. In the remainder of this section the unit of
decomposition denoted with xi will be a single variable and not the block of variables
corresponding to the decision at some node of the tree. Also, Ai will denote the ith
column of matrix A, etc. Keeping in mind this new notation we have the augmented
Lagrangian

K�x; y� � cT x� hy; bÿ Axi � q
2

b

 ÿXL

i�1

Aixi


2

;

which may be approximately decomposed treating each variable xi as an independent
decision

Ki�xi;~x; y� � cixi ÿ hy;Aixii � q
2

b

 ÿ Aixi ÿ
X
j 6�i

Aj~xj


2

; �13�

where ~x is ®xed. The problem of minimization of Ki�xi;~x; y� subject to xi P 0 has a
closed form solution. With additional de®nitions of z � cÿ AT y, r � bÿ Ax and
DA � diag� A1k k2; . . . ; Ank k2� we may write down in matrix notation a solution of
minxi P 0 Ki�xi;~x; y� for all i as

x̂ � Dÿ1
A AT r
��

ÿ 1

q
z
��
�
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where ���� denotes projection on the non-negative orthant. The updating of ~x and y is
performed in the same way as described before.

Sparse matrix-dense vector products (both of the form Ax and AT y) are the most
important operations in the whole algorithm. In case of a general matrix structure
(i.e., a random sparsity structure) both those operations would require a large vol-
ume of communication, however, the structure present in the constraint matrix of
the stochastic problem allows great savings.

Let us ®rst proceed with an abstract description of the parallel computation.
Assume that each variable xi with corresponding matrix column Ai; cost coe�cient
ci, etc., are assigned to one virtual processor. Let us denote this set of processors with
P. Another processor set D would hold the sets of values of yj, bj; and matrix row
�AT �j.1

Elementwise vector operations are then performed entirely in parallel. Interpro-
cessor communication only takes place in matrix±vector products. Then information
travels from P to D or in the opposite direction. The processor sets P and D are
most likely going to be mapped on the same real processors. Moreover, the number
or both rows and columns of A is likely to be orders of magnitude larger than the
number of processors, so that groups and not individual rows/columns have to be
assigned to each actual processor. See Fig. 11 for an example distribution.

With data distribution shown in Fig. 11, interprocessor communication will result
only from references to the non-diagonal blocks of the matrix. Furthermore, since
there is only one non-diagonal block in each row and a few consecutive blocks in

Fig. 11. Sparsity structure of a constraint matrix of a small stochastic dynamic linear program. The grid

illustrates the distribution of the matrix data among 10 processors with ith processor storing locally both

ith block of rows and ith block of columns.

1 This implies duplicate storage of matrix A: both by columns and by rows.
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some of the columns, all communication may be performed by sending contiguous
blocks of data. This is much easier to handle e�ciently than it could ever be in the
case of an unstructured sparse matrix.

To summarize the parallel computation characteristics of this and similar meth-
ods:
· they are ®ne grain parallel, with data parallelism providing the best means for al-

gorithm speci®cation,2

· they are entirely synchronous,
· communication to computation ratio may never be as favorable as in the case of

coarse grain methods described before,
· even a data parallel algorithm which ignores most of the knowledge of the struc-

ture, greatly bene®ts by saving communication.

4.2.7. Other methods
The methods presented above are just a sample of known parallel large-scale

optimization methods used in ®nancial planning under uncertainty as well as in
many other application areas. It is not possible to even mention all work that was
ever done in this ®eld. The reader interested in seeing the ``larger picture'' is en-
couraged to consult some of the stochastic programming textbooks, e.g., [6,22],
parallel optimization monographs, e.g., [8,9] recent ®nancial modeling collections,
e.g., [25,37]. Again, the sources listed above may serve as another level of intro-
duction.

5. Conclusions

The most challenging problems for high performance computing in operations
research are large combinatorial problems on one side and large structured linear or
convex problems on the other side. For the latter class of problems we have pre-
sented principles of organizing the decomposition into more or less coupled sub-
problems. The data and control ¯ow of these algorithms exhibit new challenges for
the design of high level parallel languages and compiler design. While support for
data parallel algorithms for dense and regular matrix algebra is well established,
there is no easy way of coding nested task parallel asynchronous algorithms, or a mix
of data and task parallel processing, as it appears in stochastic dynamic ®nancial
management problems.

Future development in language and compiler design should take these and
similar large-scale problems as examples of relevant problem structures and actual
software engineering requirements of the OR community.

2 Support for data parallel computations with sparse matrices is less than adequate in current

speci®cations and implementations of data parallel languages known to the authors [19,17].
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