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We derive analytical expressions for the single mode quantum field state at the individual output ports of a
beam splitter when a single-photon Fock state and a coherent state are incident on the input ports. The output
states turn out to be a statistical mixture between a displaced Fock state and a coherent state. Consequently
we are able to find an analytical expression for the corresponding Wigner function. Because of the generality
of our calculations the obtained results are valid for all passive and lossless optical four port devices. We show
further how the results can be adapted to the case of the Mach–Zehnder interferometer. In addition we
consider the case for which the single-photon Fock state is replaced with a general input state: a coherent
input state displaces each general quantum state at the output port of a beam splitter with the displacement
parameter being the amplitude of the coherent state.
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1. Introduction

Quantum optics is an exciting field, in which many fundamental
experiments, revealing the peculiarities of quantum mechanics, have
been conducted. The advantage of optical experiments, compared with
other fundamental experiments, is their simplicity. Quantum optics has
been one of the main vehicles in the development of quantum
information technologies and in particular of quantum cryptography
[1–4] and optical quantum computing [3,5,6]. The most widely used
quantum states in this respect are coherent states and Fock states [7].
Important basic building blocks in quantum optics are beam splitters
andMach–Zehnder interferometers, which are passive and lossless four
port devices [8–10]. Many cases of interference between vacuum, Fock
states and coherent states have already been theoretically studied [10].
A famous example is the so-called Hong–Ou–Mandel effect [11] where
two single-photon Fock states arrive simultaneously at each input port
of a balanced beam splitter. In this case there are no coincident photons
at the output ports. On the other hand interference between a
fluorescent photon and a classical field has been investigated [12]
where the photon is created from a coherently excited atom going
through its Rabi cycle of oscillation. This results in a time dependence of
the interferometric fringe visibility as a function of the atomic Rabi
frequency [13].

Without going into details of the time-dependent photon generation
a somewhat simpler butnevertheless importantproblemariseswhenwe
consider the interference between a true single-photonFock |1〉 state and
a coherent state |α〉. Based on an experiment in 2002 a displaced Fock
state has been synthesized to a good approximation by overlapping a
single-photon Fock state with a strong coherent pulse on a highly
reflective beam splitter [14]. To the best of our knowledge an exact
analytical expression for the evolving quantum state in this experiment
has not been published so that the reconstructed state (Wigner function)
of the beam splitter output could be compared with the theory.

In this work we calculate analytically the output of a beam splitter
(BS) in the case of a single-photon Fock state |1〉 and a coherent state |α〉
impinging respectively on its two input ports. In particularwe derive an
exact expression for the quantum state of the separate beam splitter
output ports. Because of the generality of our calculations, the resultswe
obtain are not restricted to the beam splitter, but are valid for all passive
and lossless optical four port devices. In addition we consider the case
for which the single-photon Fock state is replaced with a general input
state. We show that a coherent input state displaces the quantum state
at the output port of a beam splitter in phase space, whereby the
displacement parameter is the amplitude of the coherent state. In the
second part of this paperwe showhow the results can be adapted to the
case of a Mach–Zehnder interferometer (MZI). Additionally, the mean
photon numbers at the output ports of the MZI are determined. These
results serve as a first step of investigating more complex systems that
might find application in optical quantum computation.

The intention of this article is to present thematter in a concise and
didactic way.

2. Interference at a beam splitter

We consider a general beam splitter with complex reflection
coefficients r and r′ and transmission coefficients t and t′. The phase

http://dx.doi.org/10.1016/j.optcom.2010.12.019
mailto:Martin.Suda@ait.ac.at
http://dx.doi.org/10.1016/j.optcom.2010.12.019
http://www.sciencedirect.com/science/journal/00304018


1908 A. Windhager et al. / Optics Communications 284 (2011) 1907–1912
relation between the coefficients depends on the construction of the
beam splitter [15]. In the Heisenberg picture the annihilation
operators â of the incident fields transform as [10]

â2
â3

� �
= t′ r

r′ t

� �
â0
â1

� �
= B â0

â1

� �
; ð1Þ

where the indices indicate the corresponding ports (modes). The
unitary scattering matrix B must satisfy — for lossless devices — the
so-called reciprocity relations due to Stokes [16]

r′
�� �� = rj j; tj j = t′

�� ��; rj j2 + tj j2 = 1 ; r�t′ + r′t� = 0: ð2Þ

2.1. Input: Fock state and coherent state

In our setup (see Fig. 1) the incident field states are a single-photon
Fock state |1〉0 and a coherent state |α〉1 which can be written as the
following product state:

j1〉0 jα〉1 = D̂1 αð Þ â†0 j0〉0 j0〉1 = eα â
†

1−α� â1 â†0 j0〉0 j0〉1; ð3Þ

where â†0 is the creation operator and D̂1 αð Þ is the unitary
displacement operator.

From Eq. (1) together with Eq. (2) we easily obtain the following
relations:

â†0 = t′â†2 + r′â†3 and â†1 = râ†2 + tâ†3: ð4Þ

Obviously two vacuum states at the input ports of the beam splitter
transform into vacuum states at the output ports: j0〉0 j0〉1→BS j0〉2 j0〉3 .
We use the Baker–Campbell–Hausdorff formula [10] and Eq. (4) to see
howthe input state Eq. (3) transforms into the correspondingoutput state
under the action of the beam splitter:

j1〉0 jα〉1→BS eα r â
†

2 + t â
†

3

� �
−α� r�â2 + t�â3ð Þ t′ â†2 + r′ â†3

� �
j0〉2 j0〉3

= D̂2 rαð ÞD̂3 tαð Þ t′ â†2 + r′ â†3
� �

j0〉2 j0〉3:
ð5Þ

The density operator for the output state, Eq. (5), reads

ρ̂23 = D̂2 rαð ÞD̂3 tαð Þ ˆ̃ρ23 D̂
†
3 tαð ÞD̂†

2 rαð Þ; ð6Þ
1 0

1

2

3

BS
r', t'( )

r, t( )

Fig. 1. Beam splitter (BS) with a single-photon Fock state |1〉0 and a coherent state |α〉1
incident on its input ports.
where

ˆ̃ρ23 = t′ â†2 + r′ â†3
� �

j0〉2 j0〉3〈0 j3〈0 j2 t′� â2 + r′� â3
� �

: ð7Þ

In fact ˆ̃ρ23 would be the density operator of the beam splitter
output with vacuum instead of the coherent input state. The two
output modes (2 and 3) are in an entangled state. If we consider only
output mode 3 we have to find the reduced density matrix by taking
the partial trace over output 2, i.e.

ρ̂3 = Tr2 ρ̂23
� �

= D̂3 tαð ÞTr2 D̂2 rαð Þ ˆ̃ρ23 D̂
†
2 rαð Þ

� �
D̂
†
3 tαð Þ

= D̂3 tαð ÞTr2 D̂
†
2 rαð ÞD̂2 rαð Þ ˆ̃ρ23

� �
D̂
†
3 tαð Þ

= D̂3 tαð Þ∑
∞

n=0
〈n j2 ˆ̃ρ23 jn〉2 D̂†

3 tαð Þ:

ð8Þ

The operators D3(tα) and D3
†(tα) are not effected by the trace over

mode 2, therefore we can put them outside the trace. Further, in the
second and third line of the last equation wemade use of the rule that
the trace is invariant under cyclic permutations, Tr(ABC)=Tr(CAB),
and the unity relation D̂† αð ÞD̂ αð Þ = 1. Inserting ˆ̃ρ23 into the last
equation we get with some basic boson algebra

ρ̂3 = jt′j2jtα〉3〈tαj3 + jr′j2 D̂3 tαð Þj1〉3〈1j3 D̂
†
3 tαð Þ: ð9Þ

The result is a mixed state which is a convex combination of two
pure identically displaced states: a coherent state (displaced vacuum)
and a displaced Fock state [17], where the displacement and the share
of each pure state depend on the reflectivity and the transmittivity of
the beam splitter. For the other output port we get the analogous
result

ρ̂2 = rj j2 jrα〉2〈rα j2 + tj j2 D̂2 rαð Þ j1〉2〈1 j2 D̂†
2 rαð Þ: ð10Þ

2.2. Wigner function

With the simple form of the density operator for the output mode
3, Eq. (9), we can calculate itsWigner function. TheWigner function is
defined as [18–21]

Wρ̂ q;pð Þ = 1
2πħ ∫

∞

−∞
〈q−y= 2 j ρ̂ jq + y= 2〉 exp iyp= ħð Þdy; ð11Þ

where p and q are the field quadratures. By inserting Eq. (9) into
Eq. (11) we see immediately that we get a sum of two Wigner
functions at the output port,

W ρ̂3
= t′
�� ��2W

ρ̂ D̂ tαð Þ j0〉
� � + r′

�� ��2W
ρ̂ D̂ tαð Þ j1〉
� �; ð12Þ

where W
ρ̂ D̂ tαð Þ j0〉
� � is the Wigner function of the coherent state |tα〉

and W
ρ̂ D̂ tαð Þ j1〉
� � is the Wigner function of the displaced Fock state

D̂ tαð Þ j1〉. These two individual functions are well known [22] [17]. For
the coherent state it is

W
ρ̂ D̂ tαð Þ j0〉
� � q;pð Þ = Wρ̂ j0〉ð Þ q′; p′

� �
=

1
πħ exp − q′

q0

� �2

− p′q0
ħ

� �2
" #

;

ð13Þ
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and for the displaced Fock state it is

W
ρ̂ D̂ tαð Þ j1〉
� � q; pð Þ = Wρ̂ j1〉ð Þ q′; p′ð Þ

= − 1
πħ exp − q′

q0

� �2

− p′q0
ħ

� �2
" #

× 1 + 2 − q′
q0

� �2

− p′q0
ħ

� �2
 !" #

;

ð14Þ

where q0 =
ffiffiffiffiffiffiffiffiffiffiffi
ħ=ω

p
. The displacement quadratures

q′ = q−
ffiffiffi
2

p
q0 Re tαð Þ and p′ = p−

ffiffiffi
2

p ħ
q0

Im tαð Þ ð15Þ

shift the minimum of the Fock stateWρ̂ j1〉ð Þ = −1 (and the maximum
of the coherent state Wρ̂ j0〉ð Þ = 1) to q =

ffiffiffi
2

p
q0 Re tαð Þ and p =ffiffiffi

2
p ħ

q0
Im tαð Þ.

The Wigner function Eq. (12) for the output field at port 3 is
depicted in Fig. 2 for two different cases. In the first case we consider
a 50:50 BS, where the Wigner function is an equal mix between a
coherent and a displaced Fock state. The absolute minimum of this
function is zero, situated at the center of the displaced Fock state, as can
easily be seen from Eqs. (12) to (14), and the total Wigner function is
non-negative. In the second case we consider a highly reflective
(99:1) beam splitter comparable to the experiment mentioned in the
introduction [14], in which a displaced Fock state has been synthesized.
Fig. 2. Wigner function (×π, ħ=ω=1) of the beam splitter output 3, Eq. (12). It is a
statistical mixture between a coherent state and a displaced Fock state. (a) 50:50 beam
splitter (t = 1 =

ffiffiffi
2

p
) with the coherent input state jα =

ffiffiffi
2

p
eiπ=4〉. (b) Highly reflective

beam splitter (t=1/10) with the coherent input state |α=10eiπ/4〉. Note that tα is
identical for both (a) and (b).
However the high reflectivity would lead to a smaller displacement at
port 3, unless the intensity of the incoming coherent state is increased to
get an identical factor tα for Figs. 2a andb. Therefore the shift is identical,
but due to the different reflection and transmission coefficients of the
BS the relative weights of both input states are different. Indeed we
see from the Fig. 2b that the displaced Fock state is very dominant with
a pronounced minimum nearly reaching the original value of−1.

We have thus established an exact theory for the experiment of
creating a displaced Fock state [14] instead of the theory which the
experiment was originally based on [23–25] or the theory in [26].

2.3. Input: coherent state and a general state

For future theoretical considerations and experimental demon-
strations it might be useful to replace the ideal Fock state by a general
state

jψ〉0 = ∑
∞

m=0
cm jm〉: ð16Þ

The input state then reads

jψ〉0 jα〉1 = D̂1 αð Þ ∑
∞

m=0
cm

1ffiffiffiffiffiffiffi
m!

p â†0
� �m j0〉0 j0〉1: ð17Þ

It is straightforward to see that the outputmode 3 of the BS is given
by an equation analogous to Eq. (8), whereby the density matrix ρ̂̃23

becomes

ˆ̃ρ23 = ∑
∞

m=0
∑
∞

l=0

1ffiffiffiffiffiffiffiffiffiffi
m!l!

p cmc
�
l t′ â†2 + r′ â†3
� �m j0〉2 j0〉3〈0 j3〈0 j2

� t′� â2 + r′� â3
� �l

:

ð18Þ

Similar to above ˆ̃ρ23 is the non displaced density operator which
would emerge at the output if the coherent state at the input would be
replaced by vacuum. Thus the coherent input state displaces any state
at the individual output port of a beam splitter compared to a vacuum
input (see Eq. (8)). In the limit of a highly reflective beam splitter
(t→0) Eq. (18) becomes ˆ̃ρ23→ j0〉2 jψ〉3〈ψ j3〈0 j2. If we furthermore
consider a strong coherent state (tα finite), we see from Eq. (8) that
the effect on an arbitrary input state is approximately a mere
displacement by tα of this state. A similar result has already been
shown using a different approach in [26] confirming our calculations.

3. Interference at a Mach–Zehnder interferometer

Now we consider a single-photon Fock state and a coherent state
at the input of a Mach–Zehnder interferometer (MZI) as shown in
Fig. 3. Again we want to calculate the quantum state at the output
ports.

3.1. MZI scattering matrix

As suggested in [9], a MZI can be considered as a lossless and
passive four port device. The annihilation operators of the field states
transform similar to Eq. (1) and yield

â4
â5

� �
= BMZI

â0
â1

� �
: ð19Þ

The necessary and sufficient condition for the scattering matrix
BMZI is that it has to be unitary. In fact, since we have already
considered a general scattering matrix in the case of the beam splitter,
Eq. (1), which essentially accounts for all passive and lossless four port
devices, the calculations from the last section are generally valid. The



Fig. 3. Mach–Zehnder interferometer (MZI) with a phase shift in path 3. The input
states at BS1 are a single photon Fock state |1〉0 and a coherent state |α〉1.
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scattering matrix of an arbitrary four port MZI, in particular, may be
represented as a composition of several unitary scattering matrices.

The scatteringmatrix for theMZI, depicted on Fig. 3 is composed of
3 unitary matrices, two matrices corresponding to the two beam
splitters (see Eq. (1)) and one matrix associated with the phase shift,
which in our case reads

Uθ =
1 0
0 eiθ

� �
: ð20Þ

Accordingly the annihilation operators of the field states transform
as

â4
â5

� �
= t2 r2′

r2 t2′

� �
1 0
0 eiθ

� �
t1′ r1
r1′ t1

� �
â0
â1

� �

= t′M rM
r′M tM

� �
â0
â1

� �
= BMZI

â0
â1

� �
;

ð21Þ

where in the last line we defined the following variables:

rM = r1t2 + eiθt1r2′;
tM = r1r2 + eiθt1t2′;
rM′ = t1′r2 + eiθr1′t2′;
tM′ = t1′t2 + eiθr1′r2′:

ð22Þ

The variables defined in Eq. (22) obey the reciprocity relations
Eq. (2), in particular jtM j = jt′M j and jrM j = jr′M j .

Here we add a short comment with respect to Fig. 3. The output
ports 4 and 5 can serve as two paths of a second MZI including a
second phase shift, subsequently followed by a third MZI of a similar
type. Such a cascade of 3 interferometers can operate as preparation,
distribution and measuring module of a simple linear optical gate
helpful in quantum computing systems. The resulting scattering
matrix of such a device would be a matrix product of 3 matrices
similar to BMZI used in Eq. (21).

3.2. MZI output states

The states at the output ports 4 and 5 of the MZI can now be
calculated analogously to the output states of the single beam splitter
in the previous section. Therefore according to Eq. (5) and by
replacing the beam splitter scatteringmatrix Bwith theMZI scattering
matrix BMZI we get for the MZI output state

j1〉0 jα〉1→
MZI

D̂4 rMαð ÞD̂5 tMαð Þ t′M â†4 + r′M â†5
� �

j0〉4 j0〉5: ð23Þ

Further we get for the reduced density matrix at output port 5
(compare with Eq. (9)),

ρ̂5 = tMj j2 jtMα〉5〈tMα j5 + rMj j2 D̂5 tMαð Þ j1〉5〈1 j5 D̂
†
5 tMαð Þ ð24Þ

and output port 4

ρ̂4 = rMj j2 jrMα〉4〈rMα j4 + tMj j2 D̂4 rMαð Þ j1〉4〈1 j4 D̂
†
4 rMαð Þ: ð25Þ

The result is again, as in the case of the beam splitter, a mixed state
between a coherent state (displaced vacuum) and a displaced Fock
state, both displacements being identical. The Wigner function of this
state can be calculated using the analogue of Eq. (12). The calculations
where a coherent state and a general state are incident on a MZI are
equivalent to the beam splitter case, so the output state is again
merely displaced compared to aMZI with vacuum input instead of the
coherent input state.

3.3. Photon numbers

Finally we calculate the average photon number at the output
ports of the MZI. For port 5 it is defined as

nh i5 = Tr5 n̂5 ρ̂5
� �

= ∑
∞

n=0
〈n j â†5 â5 ρ̂5 jn〉5: ð26Þ

For the coherent state we obtain, of course,

∑
∞

n=0
〈n j â†5 â5 jtMα〉5 tMα jnh i5 = 〈tMα j â†5 â5 jtMα〉5 = tMαj j2: ð27Þ

For the displaced Fock state we obtain

∑
∞

n=0
〈n j â†5 â5D5 tMαð Þ j1〉5〈1 j D̂

†
5 tMαð Þ jn〉5

= 〈1 j D̂†
5 tMαð Þ â†5 â5 D̂5 tMαð Þ j1〉5 = 1 + tMαj j2;

ð28Þ

where in the last step the commutation relation [7] âD̂ tMαð Þ =
D̂ tMαð Þ â + tMαð Þ has been used. With the last two equations and
using that tMj j2 + rMj j2 = 1 we can now calculate the average photon
number, Eq. (26), and get

nh i5 = tMj j2 tMαj j2 + rMj j2 1 + tMαj j2
� �

= rMj j2 + tMαj j2: ð29Þ

For port 4 we get analogously

nh i4 = tMj j2 + rMαj j2: ð30Þ

Using this formalism themean squaredeviation 〈(Δn)2〉=〈n2〉−〈n〉2

of photons can be calculated leading to

Δnð Þ2
D E

5
= jtMα j2 1 + 2 jrM j2

� �
+ jrM j2 jtM j2;

Δnð Þ2
D E

4
= jrMα j2 1 + 2 jtM j2

� �
+ jrM j2 jtM j2

ð31Þ

for the two output ports.

image of Fig.�3


1911A. Windhager et al. / Optics Communications 284 (2011) 1907–1912
3.4. Discussion of a MZI with balanced BSs

As a particular example, that can be realized easily in an
experiment, we calculate the average photon numbers for the case
of two 50:50 dielectric layer beam splitters with a phase factor of
eiπ/2= i for the reflected beams ðt1 = t′1 = t2 = t′2 = 1=

ffiffiffi
2

p
;

r1 = r′1 = r2 = r′2 = i =
ffiffiffi
2

p Þ [15]. In this case the transmittivity and
the reflectivity are |tM|2=sin2(θ/2) and |rM|2=cos2(θ/2). Both are
completely determined by θ. The average photon numbers are then

nh i4 = sin2 θ = 2ð Þ + αj j2cos2 θ = 2ð Þ; ð32Þ

nh i5 = cos2 θ = 2ð Þ + αj j2sin2 θ = 2ð Þ ð33Þ

and the mean square deviations are given by

Δnð Þ2
D E

4
=

1
4
sin2 θð Þ + jα j2 cos2

θ
2

� �
+

1
2
sin2 θð Þ


 �
;

Δnð Þ2
D E

4
− Δnð Þ2
D E

5
= jα j2 cos θð Þ:

ð34Þ

Fig. 4 shows the average photon numbers as a function of the
phase shift θ for different coherent input states |α〉. The maxima and
minima in the graph indicate the cases where the quantum states at
the separate output ports are either a pure coherent state or a pure
Fock state.

The technical advantage of the MZI (with two 50:50 BSs) over a
single beam splitter is that tM and rM can simply be adjusted by
changing the phase θ in path 3. All desired states could be generated in
experiments without changing the setup by selecting another beam
splitter with the appropriate transmittivity tj j2 and reflectivity rj j2.

Let us compare the result for |α|2=1 with the case when two
separate single-photon Fock states are impinging on the input ports of
0.0 0.5 1.0 1.5 2.0
θ π0

1

2

3

4

(a)

0.0 0.5 1.0 1.5 2.0
0

1

2

3

4
n 5

(b)

θ π

Fig. 4. Average photon number at output 4 (a) and output 5 (b) of the Mach–Zehnder
interferometer with the coherent input states ||α|=0〉, ||α|=1〉 and ||α|=2〉. Note that
for |α|2=1 the mean photon numbers are independent of θ and equal to 1.
anMZI. The first balanced BS1 of the latter is reminiscent to the Hong–
Ou–Mandel (HOM) effect [11]. After the BS1 the state is
i j2〉2 j0〉3 + j0〉2 j2〉3ð Þ =

ffiffiffi
2

p
whichmeans that no coincidences appear

behind BS1 [10]. Introducing a phase shift θ in path 3 and a second BS2
(see Fig. 3) the wave function behind the MZI reads

jψ〉 = 1
2
ffiffiffi
2

p 1−e2iθ
� �

j0〉4 j2〉5− j2〉4 j0〉5½ �+
ffiffiffi
2

p
1 + e2iθ
� �

j1〉4 j1〉5
n o

:

ð35Þ

The probability for coincidences is W45=cos2(θ) while the
probabilities of measuring 2 photons at the output ports 4 and 5 are
W4 = W5 =

1
2
sin2 θð Þ. However, the mean photon numbers 〈n〉4

|ψ〉

and 〈n〉5
|ψ〉

are equal to 1 and therefore independent of θ. This can be
compared with the results of the present paper (see Eqs. (32) and
(33)) in which the mean photon numbers in output 4 and 5 also do
not depend on θ. Anyway, one has to keep in mind that these two
examples have completely different initial conditions although the
input mean photon numbers are the same in case of |α|2=1. In fact,
one has to compare the entangled quantum states of the HOM-effect
Eq. (35) on the one hand with the MZI-state Eq. (23) on the other
hand and realize that these are completely different. By executing the
trace operation for the separate output ports, however, entanglement
is eliminated in both cases yielding the identical outcomes for the
mean photon numbers.

4. Summary and outlook

To sum up, we have derived simple analytical solutions for a
quantum state and its Wigner function at the output ports of a general
passive and lossless optical four port like a beam splitter, when a
coherent state and a single-photon Fock state are incident on the input
ports. These calculations could be of interest in the fields of quantum
cryptography based on continuous variables and optical quantum
computing. We have obtained a statistical mixture between of a
coherent state and a displaced Fock state and have derived the
corresponding Wigner functions. Furthermore, we have shown that a
coherent input state displaces the quantum state at the output port of a
beamsplitter in phase spaceas comparedwith vacuumat the inputport,
when in both cases a general state is incident on the second input port.
Additionally, we have analyzed the quantum states behind a Mach–
Zehnder interferometer and have evaluated mean photon numbers at
the output ports. It turns out that for an input state |1〉0||α|=1〉1 the
meanphoton numbers behind theMZI do not dependon the phase shift
θ inserted in the interferometer.

In addition to the 3-interferometer-cascade mentioned in Section
3.1, a further possible application of the presented formalism can be
proposed. Instead of the reflector R in path 2 of Fig. 3 a beam splitter
can be inserted in such a way that beam 2 is both reflected and
transmitted. The beam splitter provides also an additional input. A
second MZI then can be added below the first one. In particular these
two interferometers have one beam path in common generating a so-
called two-loop interferometer which consists of 4 beam splitters and
2 reflectors providing 3 input and 3 output ports. Such a device
enables the superposition of three wave functions and will be
theoretically investigated in a next step.

The results of this paper can serve as a basis for further phase-
space investigations of higher Fock states in combination with
coherent, squeezed or thermal states as input states used in current
optical setups. Those setups (BS, MZI, Phase gate, CNOT gate) are
building blocks for linear optical quantum computers.
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