
A Survey of Database Inference Attack Prevention Methods

Michael Hylkema

12/2009



Abstract

Inference attacks are notoriously hard to mitigate due to the fact that some data always needs to be made available to legitimate
sources. It's di�cult to prevent a determined individual from connecting available non-sensitive data and making inferences
about more sensitive data. With more databases reachable from the web, this opens numerous opportunities for hackers to gain
knowledge about sensitive or con�dential data which they should not have.
This paper attempts a thorough coverage of the advancements in methods of inference attack detection and prevention. There

are a number of methods each with it's own advantages and disadvantages. There are design models which contribute to the
mitigation of these attacks as well as functionality which can be added to database front-end and/or back-end.
This paper pulls together information on each of the methods and models of inference detection / prevention and attempts

summarize them in an easy to understand manner. I'll also discuss the usefulness of each in di�erent situations and suggest
where two or more methods may compliment each other well. Lastly I'll note which currently available products support any
methods for implementing these techniques and how they might be used to accomplish it e�ectively.



Introduction

Evolution of information security threats.

The concept of information security has been around for as
long as there's been information worth securing. The classic
CIA model (Con�dentiality, Integrity, Availability) has been
the cornerstone of information security and a number of sys-
tems have been built with this model in mind. While all vec-
tors in the model are related, this paper will mainly focus on
the concept of con�dentiality. Con�dentiality in information
security refers to an assurance that information is shared only
among authorized persons or organizations. For example, if a
malicious user is able to capture and decrypt encoded informa-
tion which he is not authorized to view this would be considered
an attack on the con�dentiality of that data. Many strategies
have been developed over the years to protect against these
types of attacks, both technical (cryptography, access control)
and process-related (least privilege, paperwork control). More
and more, however, both information security professionals and
hackers (sometimes hackers �rst) have been shifting their focus
on deriving sensitive data from available nonsensitive data. The
nonsensitive data may not even be obviously related to the data
being derived. There is an entire �eld of research focused on
this method of obtaining data, and it is called inference. In-
ferences can be made by analyzing a number of di�erent data
sources, but the most common sources are databases so we will
focus our analysis there.

What Database Inference is and is not

Database Inference Is:

Database inference is not easily categorized in any other group
of information security attacks. This is due to the fact that
an inference attack leverages the human mind, or similar logic
systems, in order to obtain data that may be considered �se-
cure� in the traditional sense. There are many de�nitions of
what an inference is, but in the context of database security it
is de�ned as the act or process of deriving sensitive information
from premises known or assumed to be true. The �premises
known or assumed to be true� may be freely/publicly available
information or information gleaned through other methods.

Database Inference Isn't:

I have noticed in my research that there is some confusion about
what constitutes �inferencing�. Guessing at data without con-
�dence is not inferencing. Inferences are made with some level
of statistical con�dence. SQL Injection also is not inferencing.
While SQL Injection can be used to mine data or to test infer-
ences, it is not itself inferencing. Lastly, breaking encryption is
not inferencing. I believe the confusion is that you're obtaining
sensitive data from something which may have been publicly
available (encrypted documents) which is similar to the goals
of inferencing. Cryptanalysis may be assisted by inferencing
techniques to obtain keys to decrypt data, but is not itself in-
ferencing.

Where common security models fall

short

Today, most commercial MLS database systems supply func-
tionality similar to that outlined in the Bell-Lapadula model.
Mandatory and/or Discretionary access control (MAC/DAC)
is common. As far as models speci�cally designed to mitigate
database inference attacks, there are none which have yet been
widely adopted. Outside of suggestions made in research pa-
pers and proprietary implementations. For the most part, these
types of security features have been written into application
logic rather than the DBMS itself. Organizations develop their
own custom software to address their speci�c security needs.
This is good, however doesn't solve the problem of someone
directly accessing the database and bypassing the security fea-
tures of the front-end software.

What to look for: Data Mining

When an attacker attempts inferencing they generally have
some idea what they are looking for. They may start out with
that knowledge, or they may not. How would they initially
know what they should be looking for? Data Mining is a tech-
nique used to gather data and �nd frequent patterns, �nd as-
sociations between data and build rules for those associations
and patterns. For example, data mining techniques may de-
termine that there are a lot of references to particular words
or phrases in a group of documents stored in a database. It
may also determine that there are associations which can be
predicted (if a group of data contains items a and b, it is highly
likely to also contain item c). These predictions can be formed
into rules which can be applied using inferencing techniques to
infer missing or restricted data. Data mining can utilize any
collected data, although generally publicly available (via the
web) sources are used. Data may also be found accidentally, or
through social engineering.

Vulnerabilities

There are a number of vulnerabilities which can lead to making
inferences much more easily. A good database administrator
should be aware of these and make every e�ort to minimize
them.

Inconsistent security classi�cations for repli-

cated data

Most databases will unavoidably have some amount of replica-
tion. It is vital to ensure that all replicated data is classi�ed
uniformly. If even small amounts of sensitive data can be col-
lected elsewhere with lesser privileges the opportunities to build
association rules through data mining signi�cantly increase the
chances of successful inferencing.

Insu�ciently restricted data

Similar to the previous vulnerability, not su�ciently restricting
data to begin with is of course a problem as well. Understanding
the data and what should be restricted is crucial. Insu�ciently

1



restricted data are prime candidates for data mining and again
signi�cantly increase the chances of successful inferencing.

N-item k-percent rule violations

This rule applies to statistical data sets where only aggregate
queries have been allowed. It says that whenever a query is
made some number of items (N) should not represent greater
than a certain percentage (k) of the result reported. This is to
ensure that a where clause isn't added to an aggregate query
which reduces the rows calculated to few enough to to infer
speci�c data items. The most obvious case is where 1-item
represents 100-percent of the result. In other words a where
clause has been tailored to return only a single row value which
represents the entire result, therefor defeating the requirement
that only aggregate queries be allowed.

Unencrypted Index

While secure databases are often encrypted, the indexes fre-
quently remain unencrypted for quicker access. Indexes are
used to make searches and certain queries run more quickly.
Encrypting them defeats this purpose to some extent and there-
fore frequently the index are left in plain text. Data from un-
encrypted indexes can be used to piece together closely related
data just by noting table names and keys.

What's at Stake?

Database inference is an information security issue. Whenever
we talk about information security we think about the CIA
model (Con�dentiality, Integrity, Availability). Database infer-
encing is all about compromising con�dentiality. The end result
of a successful inference attack is equivalent to a leak of sensitive
information. Even if actual information is not leaked, certain
statistics about that information can provide enough informa-
tion to make inferences which may still constitute a legitimate
breach.

Methods of Attack

There are several di�erent methods used for e�ecting inference
attacks. They can be used individually, or more commonly (and
most e�ectively) in conjunction with each other.

Out of Channel Attacks

�Out of Channel� refers to using information from outside
sources to attack the target database. Most inference attacks
are e�ected using at least some out of channel data, but it's not
necessary. Extensive data mining of numerous publicly acces-
sible information sources and using that data to infer data in
a secured database is a good example. Out of channel attacks
are extremely di�cult to guard against as frequently the data
is out of the control of the target. The web makes all types
of information easily available and search-able. It's not always
possible or feasible to remove these sources of information.

Direct Attacks

These are attacks directly on the target database. They seek to
�nd sensitive information directly with queries that yield only a
few records. These are the easiest to detect and deny. MAC and
DAC methods can mitigate these types of attacks by ensuring
data is properly classi�ed. Similarly, triggers can be written
to ensure that queries conform to security policy standards.
Direct attacks are most e�ective when database security is lax
or systems have been miscon�gured.

Indirect Attacks

Indirect attacks seek to infer the �nal result based on a num-
ber of intermediate results. Intermediate result may be ob-
tained by aggregate (Sum, Count, Median, etc) or set theory.
A number of complex and surprisingly e�ective techniques can
be used. Intersections of sets can be examined. With statistical
databases linear systems of equations can be utilized to solve
for missing (sensitive) data values.

Inferencing Categories

Logical Inferences

Uses association rules such as those gleaned from data mining
to make logical assumptions about data. If a,b,c� d and a,b,e
� d then probably a,b,f� d. Logical inferences are most com-
monly used to make associations between textual data. Tech-
niques borrowed from data mining such as apriori and cluster-
ing. These generally fall under the category of direct attacks,
but can also be considered indirect when more complex meth-
ods are used.

Statistical Inferences

Takes aggregate data and uses math/statistics to derive data
pertaining to individuals in the data set. Statistical inferencing
is generally applied to numerical data sets but can be extended
to use with textual data. Textual data can easily be enumer-
ated or represented as frequencies or counts. The same statis-
tical methods can then be used to derive associations. These
generally fall under the category of indirect attacks since re-
sult are based on a combination (sometimes quite complex) of
intermediate results frequently based on aggregate data.

Statistical Inference Example

Statistical inferencing can be extremely powerful as we'll see in
this example. Consider the following:

� We have 5 people who have associations within three
groups.

� Our database only allows aggregate queries, for example
averages by group.

� Our group averages are as follows: {P1,P2,P3} ,
{P2,P3,P4,P5} , and {P4,P5}

� Our goal is to �nd P1

� The average of {P2,P3,P4,P5} is equal to ({P2,P3} +
{P4,P5}) / 2

2



� We know {P4,P5} so we can compute {P2,P3}=
({P2,P3,P4,P5}*2)-{P4,P5}

� Since there are only two items in this average, {P2,P3}
multiplied by 2 gives us (P2 + P3).

� We can now solve the equation for the average of
{P1,P2,P3}, which is (P1+P2+P3) / 3.

� P1={P1,P2,P3}*3-(P2+P3) : We've found the salary of
Employee 1!

Keep in mind this is a very simple system of equations. Much
more intricate systems are possible with larger more complex
data sets.

Mitigation Controls

Inference attacks on the whole are quite di�cult to defend
against as we live in an extremely data rich world and it's nearly
impossible to completely control how information is accessed
and distributed. There are a number of methods which have
proven at least somewhat e�ective in controlling this, and we'll
describe them here. Simply denying data to unauthorized users
is the most obvious way to mitigate an inference type attack.
There are various controls which can be put into place to deny
information to the querying user. The two major categories of
controls are data item controls which are applied to individual
database items and query controls which are applied to queries
run against the database.

Data Item Controls

Data item conrols focus on denying certain information to the
querying user by applying some policy which states whether
they are authorized to have the data. Information may be com-
pletely denied or modi�ed in some way to �sanitize� it. Data
item controls are primarily useful against direct attacks.

Suppression

Suppression is just what it sounds like, not providing some
data to the querying user. Particular combinations of rows
and columns can be used to limit result sets. For statistical
databases we could provide only combinations of results to con-
ceal underlying information. This is accomplished by rounding,
presenting a range of results, or by presenting a random sample
of results.

Concealing

Another method of inference prevention is to modify the data
being returned to certain queries. There are many variations of
this including combining, approximation or rounding, present-
ing a range of results, presenting a random sampling of results,
and adding some level of error to the returned data.

Random Data Perturbation

Random data perturbation (RDP) is often used in statistical
databases to prevent inference of sensitive information about
individuals from legitimate aggregate queries. It operates by
randomly adding some error to the result set(s) returned. The

error may be + or - some degree or percentage, or it may be
totally �ctitious depending on the need or circumstances of the
query.

Partitioning

Partitioning means simply to separate our data, often times
physically, depending on classi�cation of the information. It is
also referred to as content dependent access control. It can be
done at the table level or the database level. The idea is to
create multiple "fragments" of the database for di�erent access
levels. This is similar to what many government agencies do.
It ensure security, however adds considerable redundancy as
much data will live in several �fragments� of the database. This
also adds complexity to administration and resources needed to
manage and store the information.

Polyinstantiation

Polyinstantiation can be used in databases with MAC support
to avoid inference. It is a basic mechanism in databases with
multiple levels of security. It allows administrators to classify
every row in a table, ensuring access to sensitive data is re-
stricted to users with the appropriate clearance level. In other
words there could be several di�erent records containing infor-
mation about a subject, each of which contain slightly di�erent
data. Each record would be tagged by a security level so that it
could be accessed only by those who have clearance su�cient to
access it. This technique also allows for the creation of �cover
stories�. This means that every query on any subject would
return some information, however depending on the querying
users clearance level, the data returned may be less accurate,
more generalized or entirely false. This solves some of the issues
with suppression or obvious concealing since data is returned,
but it may or may not be factual.

Query Controls

Query controls parse either the incoming query, the results from
the execution of the query or both. If the query does not con-
form to a set of standards or it is deemed that an inference could
have been made from a combination of records requested, the
query may be denied. Likewise, if the results of a query are
such that an inference may be made, the query may be de-
nied. Complex statistical methods are used to determine the
likelihood that an inference is made.The two fundamental ways
to pre-process are to either check the query before it is exe-
cuted or after. Ideally of course you would do both. Processing
before ensures that rules regarding allowed structure are fol-
lowed. Processing after ensures that the results returned don't
give away uncleared secrets. For example (and the example
that my demo shows) the query can be �sanitized� by adding
or removing columns for easier analysis later. Query controls
are primarily useful against indirect attacks.

Preprocessing

Query preprocessing is used to catch suspect queries before they
are executed. For example, it may be that you want to restrict
queries to only aggregates of data to public users. You wouldn't
want anyone to search for an individuals salary, but it may

3



be OK to request the average salary of a particular group of
employees.

Result Analysis

Query result analysis after execution is used to catch result
sets which are too speci�c. For example, if someone requests
an aggregate which would be allowed by query preprocessing
however adds a where clause which narrows the query down
to a few, or even one employee then the preprocessing failed.
Analysis of the result would show that results from only one
record were shown and the query can be denied before data is
returned to the user.

Query History Retention

This refers to storing historical queries by a user or groups of
users in order to ascertain if multiple queries are being used to
make inferences about sensitive data. The queries are stored in
a database and analyzed along with new queries to detect infer-
ence attacks. There are a number of methods which can be used
to consider a �group� of users. Generally some type of cluster-
ing algorithm is used to group user based on similar character-
istics such as web browsing history and other resource useage.
Collecting information on groups can assist with mitigating col-
laborative inferencing however requires more resources and can
result in troublesome false positives.

A number of proposals have been made for systems which
collect information about a user or group of users' queries and
attempt to detect when inferences are likely to have been made.
Complex Bayesian networks are used to compute the probabil-
ities and query results are withheld if the probability grows be-
yond a certain limit. A few of these that I found in my research
are diagramed below:

Chen & Chu's Semantic Information Model (SIM)[1, 7]

Toland, Farkas & Eastman's D2MON Architecture[3]

Huebner's Fuzzy Inference Control Engine (FICE) [9]

In general all these systems look at query results and deter-
mine if an inference was made. If so, the query result is denied
otherwise it is allowed to be returned to the user. While some
have been implemented, others are simply design ideas left to
be implemented by others.
In my opinion this is where the serious work is being done

these days. Query controls have lagged behind other methods
of inference prevention/detection but Moore's law has been our
friend here. Cheaper and faster processors and storage medi-
ums have made these sorts of controls much more feasible. New
research into applying Bayesian networks to �guring out proba-
bilities of inferences has also advanced the �eld. New and faster
algorithms in the �eld of data mining are allowing us to collect
and make sense of huge amounts of data. Both these factors
should play a part in making it feasible to more closely track
queries on a database to detect inference attacks.

Query Preprocessor in Python

To illustrate both query preprocessing and result analysis I
wrote a database front-end in Python which interacts with a
MySQL database. A simple command line interface is used for
entering queries to the database. For query preprocessing the
front-end restricts queries to aggregate results only. Each item
being �selected� is checked to ensure that only a supported ag-
gregate function is used for each. Additionally, a count is added
for each of the selected items to assist with later analysis. Re-
sult analysis is applied by enforcing N-item k-percent, speci�-
cally to withhold output if fewer than 2 items make up 100% of
the result. To accomplish this, the added count �elds are each
analyzed to see if any of them are less than 2. If so, the query is
denied before data is presented to the user. I arbitrarily set the
minimum record to 2 for the purposes of this example, however
any constant can be used, or possibly more useful a percent-
age of a whole can be used. The code for this example will be
included with this paper. It can be executed on any machine
implementing the Python interpreter and a MySQL database.
Variables for con�guring the username, password, and database
are provided for easier con�guration.

Other Novel Controls and Methods

Design time changes to the structure of the database can con-
tribute greatly to mitigating inference attacks. Reducing repli-

4



cation of data, creating easier to manage table structures and
implementing security right from the start are just the basics.
Some have suggested we go further and completely change the
way we structure the database in order to further mitigate in-
ference type attacks. Some of these methods I stumbled across
in my research are worth noting, even if implementation would
be complex and di�cult.

Extreme schema normalization

Biskup, Embley, and Lochner suggest an interesting concept
which attempts to reduce inference control to simply access
control. This requires that the relational database schema be
reduced to object normal form (ONF). ONF is an extension
of Boyce-Codd normal form. It then de�nes a con�dentiality
policy to the protect certain parts or combinations of tuples
which they denote as facts or �potential secrets�. The process
of determining what exactly a fact is is done through a complex
analytical algorithm. [2].

Tree structured schema

This solution works on a tree-like semi-structured data model.
Semi-structured data models are constructed without the rigid
structural requirements of traditional database management
systems. They can incorporate irregular, unknown, or rapidly
changing structure. Their proposed formal model is called the
Privacy Information Flow (PIF) Model. It is used to specify
how information is transferred among participants (e.g., people
and organizations) as well as to specify privacy requirements.
The privacy information �ow model consists of two main lay-
ers: a Privacy Information Flow (PIF) Graph that is created for
every application domain and participant type, and a Privacy
Contract that creates customized requirements for each indi-
vidual participant. The PIF graph represents the permitted
data items that can be transferred between two participants.
A privacy contract speci�es, for an individual participant, the
information that is not allowed to be transferred to or logically
entailed by the other participants. Also proposed is a privacy
architecture, called Privacy Mediator (PriMe), that enforces
the privacy requirements on every data transfer and provides
maximal data availability. [5]

Key representation

The core idea behind this proposed solution is to convert the
original database into a key representation database (KRDB).
This also involves converting each new user query from string
representation into a key representation query (KRQ), and stor-
ing it in a Audit Query table (AQ table). Three audit stages are
proposed to repel inference type attacks utilizing three seper-
ate algorithms. These algorithms enable the key representation
auditor (KRA) to specify illegal queries which could lead to
disclosing secrets. Key representation enables much simpler ap-
plication of tailored algorithms to detect potential inferences.
Because key representation only really works with numerical
data, this solution is targeted for statistical databases only.[10]

Challenges

As with any security measure there are challenges in imple-
menting any kind of database inference controls. The biggest

problem is that any obvious restrictions or noise in query re-
sponse will raise suspicions and con�rm that sensitive data is
available. This peek the interest of any attacker who will then
focus his attacks in an e�ort to attempt to uncover the sensitve
data he now knows must be there.

Methods such as RDP can be defeated by querying several
times to determine which data has been changed. To overcome
this the RDP algorithm would need to remember and replicate
previous changes for each querying user. This is a complicated
and resource intensive solution.

E�ective query controls are rough on the DBMS and re-
quire considerable e�ort to set up and maintain. While sys-
tems are becoming more and more powerful, emphasis is still
put on speedy response time especially for large mission critical
databases. Here is another example of a balance of security of
utility. Strong query controls are likely to slow down response
time, however users demand high performance.

Another serious challenge is that many industry profession-
als still do not understand this threat and therefore are unlikely
to spend money to mitigate it. If a database programmer un-
derstood the problem himself and tried to explain to upper
management the need for inference control it's likely manage-
ment would not understand the immediate bene�t and approve
funding. Addressing inference concerns can be costly and time
consuming. It's di�cult for many to see the bene�ts to allocat-
ing resources to this problem. Like with many other security
related expenditures, the return on investment is not easily re-
alized until an incident occurrs..

Bene�cial Usages of Inferencing

It is important to point out that inferencing can be used for
bene�cial purposes. There are a number of applications of in-
ferencing which can be extremely useful in data analysis. For
example, using inferencing techniques to analyze Intrusion De-
tection System (IDS) log �les. Inferencing techniques can help
administrators perform risk assessment and harm prediction.
More predictive and proactive defenses can be designed by a
deeper understanding of attacker intent, objective and strate-
gies. Speci�c defenses can be prepared to mitigate traditionally
hard to handle attacks (ie. Distributed Denial of Service) when
the probability of attack is high as well as responses to ongoing
attacks.

Industry e�orts to address inference se-

curity

Industry e�orts have been limited as far as what I have been
able to �nd. A number of commercial DBMS have added MLS
type functionality to their software to address security concerns,
but not one mentions inference as one of those concerns. Sim-
ilarly, poly-instantiation is supported in some limited fashion.
Nowhere in any product literature or white paper have I been
able to �nd reference to speci�c functionality to address con-
cerns of inference attacks. Limited data item controls are com-
monly implemented through MAC and/or DAC functionality or
through virtual private database (VPD) functionality. Query
controls can be implemented, to some extent, through triggers
however are not well suited to the job.

5



In general industry has not caught on yet to the importance
of database inference control at the DBMS level requiring these
controls need to be implemented as an add-on solution. There
are a number of query optimizers out there which preprocess
queries. It is not that much of a leap to extend the functional-
ity of these to also include inference detection. Until the prob-
lem become more widely understood it's unlikely mainstream
database management systems will take the time to implement
more extensive inference control measures. Below are the lim-
ited e�orts I've found within the major DBMS providers to
provide functionality which could be used to mitigate inference
attacks.

Oracle:

Data compartmentalization features �rst appeared in an add-
on product to Oracle7, called Trusted Oracle7, primarily driven
by Oracle's clientele in the US military. Based on the Bell-
LaPadula security model, Trusted Oracle7 came pre-con�gured
with three security levels: Con�dential, Secret, and Top Secret.
By combining these levels with a set of compartments, say one
for each project that uses the database, it was possible to create
a hierarchical set of controls that limited each user to accessing
only the data from their project(s) at their security level. At
the top of the hierarchy, users could see data from any com-
partment with any security level. At the bottom, a user could
be restricted to seeing only Con�dential data (not Secret or
Top Secret) for their one compartment (or project). The com-
plexity of con�guring and implementing the system could be
quite daunting, particularly in a system hosting a dozen or more
projects with millions of rows of data stored in the database.
Recently many of the features of Trusted Oracle have been re-
designed and reimplemented in Oracle 10. Row level security,
referred to as "Label Security" allows administrators to clas-
sify every row in a table, ensuring access to sensitive data is
restricted to users with the appropriate clearance level.

Sybase:

Sybase's adaptive server enterprise (ASE) product includes a
Policy-Based Access Control framework that provides means
for protecting data down to the row level. Administrators can
de�ne security policies that are based on the value of individ-
ual data elements. The server then transparently enforces these
policies. This means that once a policy has been de�ned, it is
automatically invoked whenever the a�ected data is queried,
whether through an application, ad hoc query, stored proce-
dure, or view.

IBM:

IBM's provides multilevel security support in DB2 as of ver-
sion 8. This support provides row-level security labeling and is
designed to meet the stringent security requirements of multi-
agency access to data. The basic idea of MLS with row-level
granularity is that any user reading or updating data in a DB2
table needs to be allowed to handle only the rows that his or her
security label allows. Each row in a table is assigned a security
label, and a user can read the row, only if his or her label domi-
nates the label of the row. Similar rules apply for updating rows
in a table with row-level security, only where updating within
an MLS environment is concerned, other principles concerning

write-down (that is, the declassi�cation of data) in�uence the
result of the update.

Microsoft:

Microsoft's SQL Server provides no built-in security measures
which prevent inference. Row level security is possible through
a complex con�guration of security labels and views, how-
ever this does not provide the same security a standard MLS
database implementing polyinstantiation would.

Conclusion

Database security is one aspect of overall information security
and is in keen focus of late. Sophisticated database systems
are key to any organization's operations. The security of these
systems and the data kept within them is of paramount im-
portance, especially with new legislation making it mandatory
for companies to make all reasonable actions to assure certain
data sets remain con�dential. A number of methods have been
proposed to help mitigate these attacks with limited success.
What really needs to happen is to build an entire system from
the ground up to be resistant to inference attacks with a layered
approach much like the security of any other system. Checks
need to be put into place in multiple locations to cover all pos-
sible avenues of attack. While this seems overkill, for some
systems containing extremely sensitive data it may very well
be necessary.

Finding a solution for the inference problem is one of the most
di�cult problems in the security world. This is due to the fact
that inference often comes from our brains making connections
between certain data sets. There is no perfect way to "defend"
against someone using their brain and own intelligence to make
inferences. Preventing human intelligence from doing what it
is supposed to do is a task that unlikely to be solved. Due to
the abstractness of inference, many security professionals are
unaware of this problem and/or dismiss it since there is no
quick and easy �x. We can only do our best to make it harder
for such events to occur.

6



Source Code for Query Control
Example

7



Bibliography

[1] Yu Chen, Wesley W. Chu. �Database Security Protection
via Inference Detection�. University of California Com-
puter Science Department. Los Angeles, CA. March 2006.

[2] Joachim Biskup, David W. Embley, Jan-Hendrik Lochner.
�Reducing inference control to access control for normal-
ized database schemas�. Information Processing Letters,
Volume 106, Issue 1, 31 March 2008, Pages 8-12

[3] Tyrone S. Toland, Csilla Farkas, Caroline M. Eastman.
�The inference problem: Maintaining maximal availability
in the presence of database updates�. Computers & Secu-
rity, In Press, Corrected Proof, Available online 26 July
2009

[4] Yasunori Ishihara, Toshiyuki Morita, Hiroyuki Seki, Mi-
noru Ito. �An equational logic based approach to the secu-
rity problem against inference attacks on object-oriented
databases�. Journal of Computer and System Sciences,
Volume 73, Issue 5, August 2007, Pages 788-817

[5] Csilla Farkas, Alexander Brodsky, Sushil Jajodia. �Unau-
thorized inferences in semistructured databases�. Informa-
tion Sciences, Volume 176, Issue 22, 22 November 2006,
Pages 3269-3299

[6] Bhavani Thuraisingham. �Privacy constraint processing in
a privacy-enhanced database management system�. Data
& Knowledge Engineering, Volume 55, Issue 2, November
2005, Pages 159-188.

[7] Yu Chen, Wesley W. Chu. �Protection of Database Secu-
rity Via Collaborative Inference Detection�. University of
California Computer Science Department. March 2008.

[8] Paul D. Stachour, Bhavani Thuraisingham. �Design of
LDV: A Multilevel Secure Relational Database Manage-
ment System�. IEEE Transactions of Knowledge and Data
Engineering Vol. 2, No. 2. June 1990.

[9] Richard A. Huebner. �Automated Mechanisms for Control-
ling Inference in Database Systems�. January, 2004.

[10] Asim A. Elshiekh, P.D.D Dominic. �E�cient Algorithms
for the Key Representation Auditing Scheme�. Interna-
tional Journal of Computer and Electrical Engineering,
Vol. 1, No. 3, August 2009.

8


