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1. Introduction

As the most common Gaussian states of a radi-

ation field, coherent states, and squeezed states are

important topics in quantum optics and play signif-

icant roles in quantum information processing with

continuous variables, such as quantum teleportation,

dense coding, and quantum cloning.[1−3] Experimen-

tally, Gaussian states, such as Fock states, coherent

states, and squeezed states, have been generated, but

there are some limitations in using them for quan-

tum information processing.[4] Non-Gaussian coher-

ent states and non-Gaussian squeezed states with ex-

teme nonclassical properties may constitute powerful

resources for the efficient implementation of quantum

communication and computation.[5,6] It is well known

that operating-photon addition or subtraction of a

given Gaussian state is an effective method to generate

non-Gaussian states.[7,8] Thus, subtracting or adding

photon states, which have been successfully demon-

strated experimentally by Parigi et al.,[9] has received

increasing attention from both experimentalists and

theoreticians recently[10−14] because it is possible to

generate and manipulate various nonclassical optical

fields by subtracting/adding photons from/to tradi-

tional quantum states.[13,15,16]

In Ref. [17], Fan and Xiao introduced a new type

of squeezed coherent state (SCS), which differs from

conventional squeezed states whose displacement pa-

rameter depends on its squeezing parameter and is

more general. For instance, the SCS can be reduced

to the simple coherent state, the coordinate eigen-

state, or the momentum eigenstate. Then, a ques-

tion of what properties the new type photon-added

squeezed coherent state (PASCS) has is raised. In this

paper, we will introduce the PASCS and investigate

its statistical properties, such as Mandel’s Q parame-

ter, photon-number distribution (PND), as well as the

Wigner function (WF). This work is arranged as fol-

lows. In Section 2, we give a brief review of the SCS.

In Section 3, we introduce the PASCS and derive its

normalized constant, which turns out to be related to

a single-variable Hermite polynomial with a remark-

able result. In Section 4, Mandel’s Q parameter of the

PASCS is calculated analytically. The PND and WF

are discussed in Sections 5 and 6, respectively, and

the results display the nonclassicality of the PASCS.

Section 7 is devoted to projecting a scheme to prod-

uct the PASCS. The main results are summarized in

Section 8.
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2. Brief review of SCS

As is commonly known in quantum optics, single-

mode coherent squeezed states are constructed either

by[18]

|z, λ⟩ = D (z)S (λ) |0⟩

= sech1/2 λ exp

[
− 1

2
|z|2 + za†

+
1

2

(
a† − z∗

)
tanhλ

]
|0⟩ , (1)

or by

|λ, z⟩ = S (λ)D (z) |0⟩

= sech1/2 λ exp

[
− 1

2
|z|2 + za† sechλ

+
1

2
tanhλ

(
a†2 − z2

) ]
|0⟩ , (2)

where a† and a are Bose creation and annihilation

operators, respectively, [a, a†] = 1, |0⟩ is the vac-

uum state, and λ and z are the single-mode squeezing

and displacement parameters, respectively. In these

two kinds of states, λ and z are independent of each

other. By constrast, in Ref. [17], Fan and Xiao in-

troduced a special kind of unnormalized single-mode

squeezed coherent state whose displacement is related

to its squeezing, and the state also spans an overcom-

pleteness space

||z⟩g = exp

[
− 1

2
|z|2 + (fz + gz∗) a† − fga†2

]
|0⟩ , (3)

where z is the displacement parameter, and f =

|f | exp(iϕf ) and g = |g| exp(iϕg) are complex param-

eters satisfying |f |2 + |g|2 = 1, where ϕf and ϕg are

phase angles. Particularly, when g = 0 or f = 0,

|z⟩g will be reduced to a normalized coherent state.

By virtue of the IWOP technique[19] and the vacuum

projector |0⟩ ⟨0| =: e−a†a : , the overcompleteness can

be easily proved as follows:∫
d2z

π
||z⟩g g⟨z|| =

∫
d2z

π
: exp[−|z|2

+
(
fa† + ga

)
z +

(
f∗a+ ga†

)
z∗

− fga†2 − f∗g∗a2 − a†a] :

= 1. (4)

Moreover, ||z⟩g can be normalized as follows:

|z⟩g = (1− 4 |fg|2)1/4 exp
[
− 1

2
|z|2

+ (fz + gz∗) a† − fga†2
]
|0⟩ , (5)

whose overlap is

g ⟨z′′| z′⟩g

=

∫
d2z

π
g⟨z′′|z⟩ ⟨z| z′⟩g

= exp

[
−1

2

(
|z′|2 + |z′′|2

)]
exp

[
(fz′ + gz′∗)

1− 4 |fg|2

× (f∗z′′ + g∗z′′∗)

1− 4 |fg|2
− f∗g∗ (fz′ + gz′∗)

2

1− 4 |fg|2

− fg (f∗z′′ + g∗z′′∗)
2

1− 4 |fg|2

]
, (6)

where the overcompleteness relation of coherent state∫
d2z

π
|z⟩ ⟨z| = 1 (7)

has been used. Equation (6) indicates that the SCS

is non-orthogonal. Especially, when z′′ = z′ and

g ⟨z′| z′⟩g = 1, Eq. (6) proves that the SCS is capable

of making up a new quantum mechanical representa-

tion.

3. PASCS and its normalization

Enlightened by the above studies, we introduce a

new type of PASCS. Theoretically, the PASCS can be

obtained by repeatedly operating the photon creation

operator on a SCS as follows:

|z⟩g,m = Ng,ma
†m |z⟩g , (8)

where Ng,m is the normalization factor. Next, we shall

determine the normalization constant Ng,m, which is

the key to analyze the quantum statistical properties

of the PASCS. For this purpose, using the overcom-

pleteness relation of coherent state (Eq. (7)) and the

normalization condition, we have

1 = g,m⟨z|z⟩g,m

= N2
g,m(1− 4 |fg|2)1/2

∫
d2α

π
⟨0| exp

[
− 1

2
|z|2

+ (f∗z∗ + g∗z) a− f∗g∗a2
]
am |α⟩ ⟨α| a†m

× exp

[
− 1

2
|z|2 + (fz + gz∗) a† − fga†2

]
|0⟩

= N2
g,m(1− 4 |fg|2)1/2 d2m

djmdkm

∫
d2α

π

× exp[− |α|2 + (f∗z∗ + g∗z + j)α− f∗g∗α2

+ (fz + gz∗ + k)α∗ − fgα∗2 − |z|2]|j=k=0. (9)
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Further using the following integral formula:[20]∫
d2α

π
exp(ζ |α|2 + ξα+ ηα∗ + fα2 + gα∗2)

=
1√

ζ2 − 4fg
exp

(
−ζξη + ξ2g + η2f

ζ2 − 4fg

)
, (10)

whose convergent conditions are Re (ζ ± f ± g) < 0

and Re((ζ2−4fg)/(ζ±f±g)) < 0 (the conditions are

physical and always satisfied), Eq. (9) can be rewritten

as follows:

g,m ⟨z| z⟩g,m

= N2
g,m

d2m

djmdkm
exp

[
A1k −A2k

2

+A∗
1j −A∗

2j
2 +

kj

1− 4 |fg|2

]
|j=k=0

= N2
g,m

d2m

djmdkm

∞∑
l=0

kljl

(1− 4 |fg|2)ll!

× exp(A1k −A2k
2 +A∗

1j −A∗
2j

2)|j=k=0

= N2
g,m

∞∑
l=0

|A2|m

(1− 4 |fg|2)ll!

×
∣∣∣∣ ∂l∂Al

1

Hm

(
A1

2
√
A2

)∣∣∣∣2 , (11)

where

A1 =
g∗z + f∗z∗ − 2g∗z |f |2 − 2f∗z∗ |g|2

1− 4 |fg|2
,

A2 =
f∗g∗

1− 4 |fg|2
. (12)

In the last step, we have used the generating function

of single-variable Hermite polynomials

Hn (x) =
∂n

∂tn
exp

(
2xt− t2

)
|t=0. (13)

Noticing the relation

∂l

∂xl
Hn (x) =

2ln!

(n− l)!
Hn−l (x) , (14)

the compact form of Ng,m is found to be

N−2
g,m =

m∑
l=0

(m!)
2 |A2|m

l![(m− l)!]2 |fg|l

∣∣∣∣Hm−l

(
A1

2
√
A2

)∣∣∣∣2 , (15)

which is related to a single-variable Hermite polyno-

mial. Especially when m = 0, the normalization con-

stant Ng,0 = 1, as expected.

4. Mandel’s Q parameter of the

PASCS

By virtue of the analytical expression of Ng,m, it

is easy for us to examine the sub-Poissonian statistics

of the PASCS in terms of Mandel’s Q parameter

Q =

⟨
a†2a2

⟩
⟨a†a⟩

−
⟨
a†a

⟩
, (16)

which measures the deviation of the variance of the

photon number distribution of the field state under

consideration from the Poissonian distribution of the

coherent state. It is well known that if Q = 0, the field

has Poissonian photon statistics, if Q > 0 (Q < 0), the

field has super- (sub-)Poissonian photon statistics. In

addition, the case of Q < 0 means that a state is non-

classical. However, the positive value of Mandel’s Q

parameter cannot be used to conclude that a state

is classical because a state may be nonclassical even

though Q is positive, as pointed out in Ref. [21].

To calculate Mandel’s Q parameter, we begin

with converting operators a†a and a†2a2 into its anti-

normal ordering form

a†a = aa† − 1,

a†2a2 = a2a†2 − 4aa† + 2. (17)

One can easily obtain⟨
a†a

⟩
= Ng,m

2
g⟨z|am+1a†m+1 |z⟩g − 1

=
N2

g,m

N2
g,m+1

− 1, (18)

and⟨
a†2a2

⟩
= N2

g,mg ⟨z| am
(
a2a†2 − 4aa† + 2

)
a†m |z⟩g

=
N2

g,m

N2
g,m+2

− 4
N2

g,m

N2
g,m+1

+ 2. (19)

Substituting Eqs. (18) and (19) into Eq. (16), we have

Q =
N2

g,mN
−2
g,m+2 − 4N2

g,mN
−2
g,m+1 + 2

N2
g,mN

−2
g,m+1 − 1

−
N2

g,m

N2
g,m+1

+ 1

=
N2

g,mN
2
g,m+1 − 4N2

g,mN
2
g,m+2 + 2N2

g,m+1N
2
g,m+2

N2
g,mN

2
g,m+2 −N2

g,m+1N
2
g,m+2

−
N2

g,m

N2
g,m+1

+ 1, (20)

which implies that Mandel’s Q parameter of the

PASCS is related to the difference values of the phase

angles ϕf and ϕg. From Fig. 1, one can clearly see that

all Mandel’s Q parameters become positive when the

modulus of f is larger than a certain threshold value,

and the threshold value achieves the maximum when

the values of the phase angles ϕf and ϕg are π/2.
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Fig. 1. (colour online) Mandel’s Q parameter of the PASCS as a function of r with z = (1 + i)/
√
2 and m = 0, 1, 5,

10, and 30 for (a) ϕg − ϕf = 0, π; (b) ϕg − ϕf = π/4, 3π/4; (c) ϕg − ϕf = π/2; (d) ϕg − ϕf = 3π/2.

5. Photon-number distribution of

PASCS

Next, we discuss the photon-number distribution

of the PASCS. Using the un-normalized coherent state

|α⟩ = exp
(
αa†

)
|0⟩, we have |n⟩ = d

n

dαn
|α⟩ |α=0/

√
n!

and ⟨β|α⟩ = exp(αβ∗). Based on Eq. (8), the proba-

bility of finding m photons in the field is given by

P(n) = N2
g,m ⟨n| a†m|z⟩g g⟨z|am |n⟩

=
N2

g,m(1− 4 |fg|2)1/2 exp(− |z|2)
n!

d2n

dβ∗ndαn

× [β∗mαm exp (fz + gz∗)β∗ − fgβ∗2

+ (f∗z∗ + g∗z)α− f∗g∗α2]|α=β∗=0

=
N2

g,mn! exp(− |z|2)(1− 4 |fg|2)1/2 |fg|n−m

[(n−m)!2]

×
∣∣∣∣Hn−m

(
fz + gz∗

2
√
fg

)∣∣∣∣2 , (21)

which is a compact result of a single-variable Hermite

polynomial. In particular, when m = 0 (Ng,m = 1),

Eq. (21) is reduced to

P(n)m=0 =
exp(− |z|2)(1− 4 |fg|2)1/2 |fg|n

n!

×
∣∣∣∣Hn

(
fz + gz∗

2
√
fg

)∣∣∣∣2 , (22)

which is exactly the PND of SCS. From Eqs. (21) and

(22), it is easy to see that, when z, |f |, and |g| are
fixed, the value of P(n) or P(n)m=0 is only related to

the difference values of the phase angles ϕf and ϕg.

Now we firstly analyze the changes of the PND of

SCS with the difference values of the phase angles ϕf

and ϕg for given z, |f |, and |g|. Using Eq. (22), the

change of the PND of SCS with (ϕg−ϕf ) in the range

of [0, 2π] is shown in Fig. 2, from which we can see that

the PND is extremely sensitive to the difference values

of phase angles ϕf and ϕg. When (ϕg − ϕf ) ∈ [0, π],

the value of P(n)m=0 is symmetrical with respect to

(ϕg − ϕf ) = π/2, as shown in Figs. 2(a) and 2(b).

However, if (ϕg − ϕf ) ∈ [π, 2π], the value of P(n)m=0

is symmetrical with respect to (ϕg − ϕf ) = 3π/2, as

shown in Fig. 2(d). Especially, if (ϕg−ϕf ) = π/2, the

PND of SCS obviously shows squeezed vacuum os-

cillations for strong squeezing in Fig. 2(c), or else the

PND of SCS shows Schleich–Wheeler oscillations[22,23]

(nonclassical intense oscillations) which reflect two dif-

ferent oscillating behaviors for even and odd photon

numbers of the PND of squeezed states.
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Fig. 2. (colour online) Photon-number distributions of the SCS with |f | = 0.6, |g| = 0.8, z = (1 + i)/
√
2, and m = 0

for (a) ϕf − ϕg = 0, π; (b) ϕf − ϕg = π/4, 3π/4; (c) ϕf − ϕg = π/2; (d) ϕg − ϕf = 5π/4, 7π/4; (e) ϕg − ϕf = 3π/2.

Next we plot the PND of PASCS as a function

of m for given z, |f |, |g|, and (ϕg − ϕf ) in Fig. 3.

From Figs. 2(a) and 3(a)–3(d), we can see that as m

increases, the nonclassical intense oscillations of the

PND are more and more unconspicuous, and almost

disappear in Fig. 3(d). In addition, all peaks of the

PNDmove toward a larger photon-number region, and

the curves of the PND become more and more flat and

wide.

Finally, we plot the nonclassical oscillations of the

PND of PASCS at various values of ϕg−ϕf for given z,

|f |, |g|, and m in Fig. 4. It is easy to see that the sym-

metry of the PND with respect to ϕg − ϕf is similar

to that in Fig. 2, but the PND exhibits squeezed vac-

uum oscillations when ϕg − ϕf = 3π/2. These results

indicate distinctly the nonclassicality of PASCS.
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Fig. 3. (colour online) Photon-number distributions of the SCS with |f | = 0.6, |g| = 0.8, z = (1 + i)/
√
2, and

ϕg − ϕf = 0 for (a) m = 1; (b) m = 3; (c) m = 5; (d) m = 9. Blue solid lines represent the even-photon-number

distribution, while red dotted lines denote odd-photon-number distribution.
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Fig. 4. (colour online) Photon-number distributions of the SCS with |f | = 0.6, |g| = 0.8, z = (1 + i)/
√
2, and m = 1 for

(a) ϕg−ϕf = π/4, 3π/4; (b) ϕg−ϕf = π/2; (c) ϕg−ϕf = 0, π; (d) ϕg−ϕf = 5π/4, 7π/4; (e) ϕg−ϕf = 3π/2. Blue solid

lines represents the even-photon-number distribution, while red dotted lines denote odd-photon-number distribution.

6. Wigner function of PASCS

The WF[24] is a powerful tool to investigate the

nonclassicality of optical fields. Its partial negativity

implies the highly nonclassical properties of quantum

states and is often used to describe the decoherence

of quantum states. In this section, we derive the ana-

lytical expression of the WF for the PASCS. For this

purpose, we first recall the Wigner operator in the

coherent state |z⟩ representation[25,26]

∆(β) = e2|β|
2

∫
d2α

π2
|α⟩ ⟨−α| e−2(αβ∗−α∗β), (23)

where β = (q + ip) /
√
2, the expression of the WF

W (β) = tr[ρ∆(β)], (24)

as well as the density operator of the PASCS

ρ = N2
g,ma

†m |z⟩gg ⟨z| a
m. (25)

Substituting Eqs. (23) and (25) into Eq. (24), we have

W (β) = N2
g,m e2|β|

2

∫
d2α

π2
⟨−α| a†m |z⟩gg ⟨z|

× am |α⟩ e−2(αβ∗−α∗β)

= (−1)
m
N2

g,m(1− 4 |fg|2)1/2 e2|β|
2

∫
d2α

π2

×α∗mαm exp[− |α|2 + (f∗z∗ + g∗z

− 2β∗)α− (fz + gz∗ − 2β)α∗ − f∗g∗α2

− fgα∗2 − |z|2]

=
N2

g,m eB1

π

d2m

drmdsm

∞∑
p=0

rpsp

(4 |fg|2 − 1)pp!

× exp
(
B2r +B∗

2s−B3r
2 −B∗

3s
2
)
|r=s=0

=
N2

g,m eB1

π

m∑
p=0

(−1)p (m!)
2 |B3|m

[(m− p)!]2p! |fg|p

×
∣∣∣∣Hm−p

(
B2

2
√
B3

)∣∣∣∣2 , (26)

where

B1 = [−2|z|2 − 2|β|2 − 4Re(fg∗z2 − βg∗z

− fβ∗z − 2fβ∗|g|2z − 2βg∗|f |2z

+2fgβ∗2)]/(1− 4|fg|2),

B2 = (2β − gz∗ − fz + 4fgβ∗ − 2gz∗|f |2

− 2fz|g|2)/(1− 4|fg|2),

B3 =
fg

1− 4|fg|2
. (27)

Equation (25) seems to be a new result related to

single-variable Hermite polynomials. In particular,

when the photon-added number m = 0, Eq. (25) is

reduced to

Wm=0(β) =
1

π
exp

[
−2|z|2 − 2|β|2

1− 4|fg|2

− 4Re(fg∗z2 − βg∗z − fβ∗z − fβ∗z

− 2fβ∗|g|2z − 2βg∗|f |2z

+2fgβ∗2)/(1− 4|fg|2)
]
. (28)
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Now we shall analyze the changes of the Wigner

function of PASCS as we change the complex squeez-

ing parameters f and g and the photon-added number

m. The complex squeezing parameters f and g are

not independent of each other and can be adjusted to

achieve different degrees of squeezing. Using Eq. (26),

we depict the WFs of PASCS in Fig. 5 for several dif-

ferent values of complex squeezing parameters f and

g with m = 0 and z = (1 + i)/
√
2. From Figs. 5(a)

and 1(b), we can see that the WF withm = 0 is Gaus-

sian in phase space and has one positive peak which

is squeezed along the q direction and expanded along

the p direction as |g| increases. Figures 5(c)–5(f) dis-

play that the peak will rotate clockwise when either

ϕg or ϕf decreases.

In addition, the Wigner functions are depicted

in Fig. 6 for different values of m with |g| = 0.1,

ϕg = ϕf = 0, and z = (1 + i)/
√
2. It is easy to

see that the WF is non-Gaussian in phase space when

m ̸= 0 . As evidence of the nonclassicality of the

state, some negative regions of the WF are clearly seen

in Figs. 6(a)–6(c), and they are gradually enlarged

but their numerical fluctuations become inconspicu-

ous gradually with the increasing number of photon

addition.
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Fig. 5. (colour online) Wigner-function distributions of the PASCS for different f and g. (a) |g| = 0.1,

ϕf = ϕg = 0; (b) |g| = 0.2, ϕf = ϕg = 0; (c) |g| = 0.2, ϕg = π/4, ϕf = 0; (d) |g| = 0.2, ϕg = π/2, ϕf = 0; (e)

|g| = 0.2, ϕg = 0, ϕf = π/4; (f) |g| = 0.2, ϕg = 0, ϕf = π/2.
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Fig. 6. (colour online) Wigner-function distributions of

the PASCS for different values of m: (a) 1; (b) 3; (c) 5.

7. Production of the PASCS

We finally consider how the PASCS can be pro-

duced in optical processes. The whole process may be

divided into two steps, and the first one is to produce

the |z⟩g state. In order to achieve this aim, we propose

a scheme that an optical parametric down-conversion

process coexists with a process of generating a coher-

ent state. For instance, one may consider a composite

system consisting of a gain medium and a parametric

optical parametric oscillator in the same optical cav-

ity. Then, the laser mode (through a nonlinear crys-

tal) will generate a second harmonic field (ω → 2ω),

which will, in turn, generate (through another nonlin-

ear crystal) a sub-harmonic mode (ω → 2ω). If the

variables for the second harmonic mode can be adi-

abatically eliminated, the system Harmiltonian will

have the form that may produce the |z⟩g state given

by Eq. (5). The parameter f depends on the las-

ing gain and the parameter g is determined by the

pumping-field strength and the second-order suscep-

tibility of the down-conversion process. By carefully

adjusting all the experimental parameters, the con-

dition |f |2 + |g|2 = 1 will be satisfied and the light

representing |z⟩g is produced. The second step is the

process of m-photon excitation on this light, letting

this beam inject into a cavity including an atom with

two levels, the interaction between them is described

by the effective Harmiltonian

Heff = ~
(
ga†ms− + g∗s†am

)
, (29)

where g is the coupling factor between m photons and

the atom, s− is the operator which represents the ab-

sorption of the atom. To lower the order of the cou-

pling constant, the wave function of the system at time

t is

|ψ (t)⟩ = |ψR⟩ |G⟩ − it(ga†ms−

+ s†g∗am) |ψR⟩ |G⟩ , (30)

where |ψR⟩ (|G⟩) is the initial state of the field (atom).

Suppose that at time t, the atom is measured to be

in the absorption state, then the state of the field is

reduced to

ρfield ∝ a†m |ψ (t)⟩ ⟨ψ (t)| am, (31)

which is apart from a normalization constant. Thus,

if the initial state of the radiation field is |z⟩g, Eq. (31)
becomes

ρfield ∝ a†m |z⟩gg ⟨z| a
m. (32)

Thus, the photon-added squeezed coherent state of the

field we need is obtained.

8. Conclusion

In summary, we introduce a new type of photon-

added squeezed coherent state, which is obtained by

repeatedly exerting the photon creation operator on a

new type of squeezed coherent state. We first derive

the normalization factor of PASCS, which is related

to single-variable Hermite polynomials. Based on the

technique of integration within an ordered product

of operators, we investigate its statistical properties

such as Mandel’s Q parameter, photon-number distri-

bution, and the Wigner function, whose changes with

the phase difference are analyzed graphically. Fur-

thermore, the nonclassicality is discussed in terms of

intense oscillations of the PND and the negativity of

the Wigner function after deriving the explicit expres-

sions of the PND andWF, and the results demonstrate

explicitly the nonclassical properties of the PASCS.
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