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The transit network design problem is one of the most significant problems faced by transit operators and
city authorities in the world. This transportation planning problem belongs to the class of difficult com-
binatorial optimization problem, whose optimal solution is difficult to discover. The paper develops a
Swarm Intelligence (SI) based model for the transit network design problem. When designing the transit
network, we try to maximize the number of satisfied passengers, to minimize the total number of trans-
fers, and to minimize the total travel time of all served passengers. Our approach to the transit network
design problem is based on the Bee Colony Optimization (BCO) metaheuristics. The BCO algorithm is a
stochastic, random-search technique that belongs to the class of population-based algorithms. This tech-
nique uses a similarity among the way in which bees in nature look for food, and the way in which opti-
mization algorithms search for an optimum of a combinatorial optimization problem. The numerical
experiments are performed on known benchmark problems. We clearly show that our approach, based
on the BCO algorithm, is competitive with other approaches in the literature, and it can generate high-
quality solutions.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Urban road networks in a lot of countries are extremely con-
gested. The consequences are high travel times, unforeseen delays,
increased travel costs, increased air pollution, noise level, and
number of traffic accidents. Transportation engineers and city
authorities have developed and implemented various Travel De-
mand Management (TDM) techniques that increase travel choices
to travelers (‘‘Park-and-Ride facilities’’, ‘‘High Occupancy Vehicle
(HOV) facilities’’, ‘‘Ride-sharing programs’’, ‘‘Telecommuting’’,
‘‘Congestion Pricing’’). Still, the raising of the modal share of public
transit in the cities is one of the major activities to be performed by
traffic planners and city authorities. This could be done by proper
design of public transit networks, expansion of existing lines and
park and ride spaces, increasing the availability of direct service
among origin–destination pairs, frequencies increase, development
of the bus systems separated from the rest of the traffic network,
transit service on nights and weekends, improving passengers’
comfort and schedule reliability, better information systems for
passengers (visual terminals and broadcasting information), etc.

Properly designed public transit network can significantly in-
crease public transport mode share. The public transit network de-
sign problem is one of the most significant problems faced by bus
operators and city authorities in the world. This transportation
planning problem belongs to the class of difficult combinatorial
optimization problem, whose optimal solution is difficult to dis-
cover. The bus network shape, as well as bus frequencies, highly
depend on both passenger demand, and on the number and type
of available buses (fleet size), and/or available budget. Poorly de-
signed bus network can cause very long passengers’ waiting times,
and/or inexactness in bus arriving times. In addition, inadequately
designed network can show high inappropriateness among the de-
signed bus routes and paths of the majority of users.

Many of the factors that should be taken into account when
designing bus network are mutually in conflict. For example, the
shorter passengers waiting times, the higher the number of buses
needed, etc. When designing the bus network, the interests of both
the operator and the passenger must be taken into account. Due to
the conflicting nature of these interests, we treat the bus network
design problem as a multicriteria decision-making problem. When
designing the transit network, we try to maximize the number of
satisfied passengers, to minimize the total number of transfers,
and to minimize the total travel time of all served passengers.

In this paper we develop the model for the bus network design
problem. Our approach is based on the Bee Colony Optimization
(BCO) metaheuristics. The BCO algorithm is a stochastic, random-
search technique that belongs to the class of population-based
algorithms. This technique uses a similarity among the way in
which bees in nature look for food, and the way in which optimi-
zation algorithms search for an optimum of a combinatorial opti-
mization problem. The numerical experiments are performed on
known benchmark problems, as well as on the problems generated
by the authors of the paper. Our approach is competitive with
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other approaches in the literature, and it can generate high-quality
solutions within negligible CPU times.

The paper is organized in the following way. Literature review is
given in Section 2. Section 3 contains statement of the problem.
Proposed solution to the problem is given in Section 4. The BCO ap-
proach to the transit network design problem is explained in de-
tails in Section 5. Experimental evaluation of the proposed
approach is given in Section 6. Recommendations for future re-
search and conclusion are given in Section 7.
2. Literature review

Various models for transit network design have been developed
in the literature.

Lampkin and Saalmans (1967) proposed the first heuristic algo-
rithm to design transit route network. In the first step, the pro-
posed algorithm produces an initial skeleton route. In the next
steps, the other nodes are inserting one by one into the skeleton
route. The case study of a small town in the North of England is
also presented in the paper. Silman, Barzily, and Passy (1974) pro-
posed a two-staged approach for transit network design. They first
generated a set of route-candidates through several iterations. The
authors determined the optimal vehicle frequencies in the second
stage. Silman et al. (1974) tried to minimize passengers travel time,
while simultaneously taking care about the total number of pas-
sengers who cannot find seats. Byrne (1975) considered the case
when the region served by the public transit is a segment of a circle
and may be defined in polar coordinates. He proposed the model of
a transit system that is built in polar coordinates with radial transit
lines. Mandl (1979) proposed heuristic algorithm to find the set of
the best transit routes. He reported the gained experiences in the
case of some real world problems. Newell (1979) performed theo-
retical analysis of the bus route network design problem. He dis-
cussed various aspects of the problem and concluded that ‘‘in
essence, our conclusion is that it would require a large computer
and a vast amount of data to determine even a nearly optimal route
geometry’’. Ceder and Wilson (1986) described the bus network
design problem, analyzed previous concepts and proposed a two-
level methodological approach for solving bus network design
problem. Baaj and Mahmassani (1995) proposed route generation
algorithm (RGA) for the design of transit networks. The proposed
approach combined expert’s knowledge and search techniques
using Artificial Intelligence tools. Ceder and Israeli (1998) defined
objective function that takes into account both passenger and
operator interests. The proposed model for the transit network de-
sign problem combines mathematical programming, and decision-
making techniques. When solving the bus route network design
problem, Pattnaik, Mohan, and Tom (1998) proposed two step pro-
cedure. They generated the set of the route candidates in the first
step. In the second step, the authors decided about the final set
of routes by using the genetic algorithms. Bielli, Caramia, and Car-
otenuto (2002) applied genetic algorithm approach when consid-
ering bus network optimization problem. They tested their
approach in the case of city of Parma, Italy. Chakroborty (2003)
also proposed procedures for solving the urban transit network de-
sign problem based on the Genetic Algorithm. Lee and Vuchic
(2005) considered the transit network design problem in the case
of variable transit demand, under a given fixed total demand.
The authors offered iterative approach that takes care about the
relationship between variable transit trip demand and transit net-
work design. The proposed approach is tested on the relatively
small transit network. Guan, Yang, and Wirasinghe (2003) pro-
posed the model for simultaneous optimization of transit line con-
figuration and passenger line assignment. The proposed model is
solved by branch and bound method. Fan and Machemehl (2006)
used the simulated annealing techniques to solve the optimal
bus transit route network design problem. The proposed concept
is tested in the case of three experimental networks. Zhao and Zeng
(2006) combined genetic algorithm and simulated annealing while
searching for the optimal route structures and headways. The
authors tried to minimize transfers and total user cost, and to max-
imize service coverage. Zhao and Zeng (2007) developed the model
for route network design, vehicle headways, and timetable assign-
ment. The proposed approach combines simulated annealing, and
tabu search. Desaulniers and Hickman (2007) reviewed the state-
of-the-art models and approaches in solving complex public transit
problems. Fan and Machemehl (2008) considered the design of
public transportation networks in the case of variable demand.
The authors developed multi-objective model. The solution meth-
odology is based on Tabu search method. Guihaire and Hao (2008)
classified 69 various approaches dealing with the transit network
design and frequencies setting. They also indicated trends for fu-
ture research. When solving route design and bus assignment
problem, Pacheco, Alvarez, Casado, and Gonzalez-Velarde (2009)
developed an algorithm based on local search strategy, as well as
an algorithm based on a tabu search strategy. The authors showed
the robustness of their approach with respect to variations in de-
mand. The case study of the city of Burgos, Spain is presented in
the paper. Mauttone and Urquhart (2009) developed Pair Insertion
Algorithm (PIA) that can be used to generate initial solutions for a
local improvement or evolutionary algorithm. The algorithm is in-
spired by the route generation algorithm (RGA) of Baaj and Mah-
massani (1995). Kepaptsoglou and Karlaftis (2009) presented and
reviewed research results in the area of transit route network de-
sign problem. Design objectives, operating environment parame-
ters and solution approach are especially analyzed in the paper.
Fan and Mumford (2010) proposed a model of the urban transit
routing problem that evaluates candidate route sets. The proposed
approach uses hill-climbing and simulated annealing techniques.
Bagloee and Ceder (2011) studied the design a transit network
for the actual-size road networks. The proposed algorithm was
tested on the network of the city of Winnipeg, Canada, as well as
on the transit network of Mandl benchmark. The review paper of
Derrible and Kenneday (2011) is devoted to the applications of
the graph theory in transit network design. Szeto and Wu (2011)
studied the bus network design problem in the case of Tin Shui
Wai, a suburban residential area in Hong Kong. The authors pro-
posed the model that simultaneously performs the route design
and bus frequency setting. The proposed solution method repre-
sents the combination of the genetic algorithm, and a neighbor-
hood search heuristic. Miandoabchi, Farahani, Dullaert, and Szeto
(2012) studied the design of urban road and public transit net-
works, The proposed multicriteria model decides about construc-
tion of new roads, adding lanes to the existing roads, lane
allocation in two way streets, and the orientation of the one way
streets. At the same time, the model proposes new routes of a given
bus routes. Schoebel (2012) made the review of the various bus,
railway, tram, and underground line planning models. Blum and
Mathew (2012) studied the transit route network redesign prob-
lem. The proposed approach was tested in the case of city of Mum-
bai, India.

One can conclude that the majority of authors tried to minimize
total travel time, or generalized cost. Simultaneously, greater part
of papers introduced simplified assumption about fixed demand
for transit services. More realistic assumption is the assumption
that passenger flows depend on the transit network design, and
that should be determined as a solution of an equilibrium problem.
The decision variables are transit network route configuration and/
or bus frequencies. Papers in the open literature also dealt with
both type of passengers’ assignment among possible transit routes:
single path assignment and multiple path assignment. Due to the



Fig. 2. Public transit network.
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problem hardness and computational complexity, the majority of
papers offer heuristic, or metaheuristic approach.

3. Statement of the problem

Let us consider the road network shown in the Fig. 1. We denote
this network by G = (N,A), where N is the set of nodes, and A set of
links (street segments). Nodes represent potential bus stops (inter-
sections, zone centroids). Any path used by transit passengers is
defined by a sequence of nodes, and links. We study the transit net-
work design problem in the case of connected undirected street
networks. Connected street network assumes that any two nodes
in the network are connected by at least one path.

Within transit network design problem we search for the best
possible set of routes R. In other words, we make the decision
about the links from the set A to be included in the set of routes
R, as well as the decision how to bring together chosen links into
the fixed transit routes. In addition to this, authors in some cases
also determine frequency of transit service on each of the defined
routes.

The main indicator that we use to describe the level of transit
service is the total travel time spent by the users of transit service.
We express the quality of the solution generated in minutes. We
calculate the total travel time of all passengers T in the network
in the following way:

T ¼ TT þw1TTRþw2TU ð1Þ

where

TT – total in-vehicle time of all served passengers,
TTR – the total number of transfers in the network,
TU – the total number of unsatisfied passengers (we assume
that the passenger is unsatisfied when she/he has to make more
than two transfers during the trip),
w1 – time penalty for one transfer,
w2 – time penalty for one unsatisfied passenger.

When measuring the quality of the solution generated, we take
into account the total number of transfers, since transfers keep
back passengers to use transit. Obviously, the total number of
transfers may be decreased by optimizing the configuration of
the transit network. In the same way, we use penalty for every
unsatisfied passenger.

One potential solution of the transit network design problem is
shown in Fig. 2.

We denote by dij the number of trips per time unit between
node i and node j. We also denote by D the origin–destination ma-
trix (O–D matrix):

D ¼ fdijji; j 2 ½1;2; . . . ; jNj�g ð2Þ

We denote by trij the in-vehicle travel time between the node i
and the node j. By TR we denote the travel time matrix:
Fig. 1. Road network.
TR ¼ ftrijji; j 2 ½1;2; . . . jNj�g ð3Þ

We assume in this paper that the network by G = (N,A), the O–D
matrix D, and the travel time matrix TR are given. We also assume
that passengers choose the route based on the shortest travel time
principle. Many researchers decomposed the transit network design
problem into the following two stages: (1) generation of the set of
transit routes; (2) determination of the frequency of service for each
generated route. We do the same in this paper, and we focus exclu-
sively on the generation of the set of transit routes.

The transit network design problem that we study in this paper
could be defined in the following way: For a given set of n nodes,
known origin–destination matrix D that describes demand among
these nodes, and known travel time matrix TR, generate set of tran-
sit routes on a network in such a way to minimize the total travel
time of all passengers T.
4. Proposed solution to the problem

The transit network design problem is one of the essential prob-
lems in the area of public transit. It has been shown that the net-
work design problem is NP-hard problem (Magnanti & Wong,
1984). Due to its hardness and significance it has constantly been
a test for researchers who approached it from various perspectives.
As we indicated in the literature review, several heuristics and ap-
proaches based on meta-heuristics have been developed by differ-
ent authors. The approach to the transit network design problem,
that we propose, is based on the Bee Colony Optimization (BCO).
The BCO represents one of the Swarm Intelligence techniques.
Swarm Intelligence (Beni, 1988; Beni & Wang, 1989; Beni & Hack-
wood, 1992; Bonabeau, Dorigo, & Theraulaz, 1997) is the part of
Artificial Intelligence based on study of actions of individuals in
different decentralized systems. These decentralized systems are
composed of physical individuals (robots, for example) or artificial
ones that communicate among themselves, cooperate, collaborate,
exchange information and knowledge and perform some tasks in
their environment (Teodorović, 2008).

The Bee Colony Optimization (BCO) metaheuristic has been
introduced by Lučić and Teodorović (2001, 2002, 2003a, 2003b).
The BCO has been successfully applied to various engineering
and management problems (Teodorović & Dell’Orco, 2005, 2008;
Šelmić, Teodorović, & Vukadinović, 2010; Davidović, Ramljak,
Šelmić, & Teodorović, 2011, 2012; Teodorović, Šelmić, &
Mijatović-Teodorović, 2012; Todorović & Petrović, 2013). Nikolić
and Teodorović (2013) recently performed empirical study of the
BCO algorithm. The authors applied BCO to optimize numerous
numerical test functions. They compared the obtained results
with the results in the literature, and showed that the BCO is
competitive with other methods.

The BCO is motivated by bees’ behavior in the nature. The arti-
ficial bees utilize the principles used by honey bees for the period



Fig. 3. Bus line whose terminals are located in the nodes i and j.
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of nectar collection process. The basic idea behind the BCO is to
create the colony of artificial bees able to effectively solve difficult
combinatorial optimization problems. Artificial bees explore
through the search space, looking for the feasible solutions. Every
artificial bee generates one solution to the problem. In order to dis-
cover good solutions, artificial bees collaborate and exchange
information. By the use of collective knowledge and sharing infor-
mation among themselves, artificial bees concentrate on more
promising areas, and step by step reject solutions from the less
promising ones. Artificial bees together generate and/or improve
their solutions.

The algorithm consists of two alternating phases: forward pass
and backward pass. In each forward pass, every artificial bee ex-
plores the search space. It applies a predefined number of moves,
which construct and/or improve the solution, yielding to a new
solution. Having obtained new solutions, the bees go again to the
nest and start the second phase, the so-called backward pass. In
the backward pass, all artificial bees share information about their
solutions. In other words, bees make known the quality of the solu-
tion, i.e. the objective function value. Through the backward pass,
every bee decides with a certain probability whether to abandon
the created solution and become uncommitted follower, or dance
and thus recruit the nestmates before returning to the created
solution (bees with higher objective function value have greater
chance to continue its own exploration). Every follower, choose a
new solution from recruiters (Fig. 7) by the roulette wheel (better
solutions have higher probability of being chosen for exploration).
The two phases of the search algorithm, forward and backward
pass, are performed iteratively, until a stopping condition is met.
The possible stopping conditions could be, for example, the maxi-
mum total number of forward/backward passes, the maximum to-
tal number of forward/backward passes without the improvement
of the objective function, etc.

The BCO algorithm could be of constructive or improving type.
Constructive approach starts from scratch (Lučić & Teodorović,
2001, 2002, 2003a, 2003b; Teodorović, 2003, 2008, 2009; Šelmić
et al., 2010; Davidović, Šelmić, & Teodorović, 2009, 2011, 2012;
Dimitrijević, Teodorović, Simić, & Šelmić, 2011). Within this ap-
proach the analyst constructs a solution step by step. Quite the
opposite, the improving approach begins from a complete solution.
The complete solution (possible a feasible one) is typically gener-
ated randomly or by some heuristics. By perturbing that solution,
we try to improve it (Davidović et al., 2011; Todorović & Petrović,
2013; Nikolić & Teodorović, 2013).

In this paper we apply the improvement version of the BCO
algorithm. The BCO algorithm parameters whose values need to
be set prior the algorithm execution are as follows:

B – the number of bees involved in the search,
IT – the number of iteration,
NP – the number of forward and backward passes in a single
iteration,
NC – the number of changes in one forward pass,
S – the best known solution.

The following is the pseudo code of the BCO algorithm:
procedure BCOi(in B,IT,NP,NC, out S)

for i = 1 to B do
Determine the initial solution for the bee i.

Evaluate the solution of the bee i.
S  the best solution of the bees.

for j = 1 to IT do
for i = 1 to B do

the bee i  Set the initial solution.
Fig. 4. Solution modification by type 1 bee.
for k = 1 to NP do

for i = 1 to B do
for r = 1 to NC do

Evaluate possible changes in the solution of the bee i.

Taking into account evaluated values choose one

change.

for i = 1 to B do
Evaluate solution of the bee i.

for i = 1 to B do
Make a decision whether the bee i is loyal.

for i = 1 to B do
if the bee i is not loyal then

Chose one of the loyal bees that will be followed by

the bee i.

if the best solution generated by the bees is better than

the solution S then

S  the best bee’s solution.
5. The BCO approach to the transit network design problem

In this paper, we propose the BCO heuristic algorithm tailored
for the transit network design problem. We propose the BCO algo-
rithm that is based on the improvement concept. In other words,
we first generate the initial feasible solution (the initial transit net-
work). Then, artificial bees investigate solution space in the neigh-
borhood of the current solution, and try to improve the solution.
The modification of solution is performed through NP forward
passes with in the single iteration. We assume that at the begin-
ning of a network design, all artificial bees are in the hive. The hive
is an artificial location, it is not connected either to bus lines.

5.1. Generating the initial solution

Let us consider bus line l whose terminals are located in the
nodes i and j respectively (Fig. 3). Bus line l contains all nodes that
belong to the shortest path between i and j. Let us denote with Nl

the set of nodes connected by the line l.



Fig. 5. Solution modification by type 2 bee.

Fig. 7. Comparison of the generated solu

Fig. 6. Evaluation of the generated solutions.

Fig. 8. Recruiting of unco

Fig. 9. Mandl’s road network.
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This bus line could be used by the passengers that enjoy direct
service, as well as by passengers that have to make the most two
transfers during their trip. The total number of passengers dsij that
enjoy the direct service along this bus line l equals:
dsij ¼
X

m2Nl

X

n2Nl

dmn ð4Þ

We denote by DS the corresponding matrix that contains infor-
mation about the number of passengers that enjoy the direct
service:
DS ¼ fdsijji; j 2 ½1;2; . . . ; jNj�g ð5Þ

We propose a simple greedy algorithm to generate the initial
solution. In this algorithm we try to connect, by the direct service,
pairs of nodes that have high dsij values. In this way, we will in-
crease the number of passengers that enjoy the direct service.
The algorithm is composed of the following steps:
tions (Nikolić & Teodorović, 2013).

mmitted followers.



Table 1
The initial solution.

Situation Number of routes Route description

1 4 0 1 2 5 7 9 10
4 3 5 7 9 12
8 14 6 9 13
0 1 2 5 14 6

2 6 0 1 2 5 7 9 10
4 3 5 7 9 12
8 14 6 9 13
0 1 2 5 14 6
9 10 11
0 1 3 11

3 7 0 1 2 5 7 9 10
4 3 5 7 9 12
8 14 6 9 13
0 1 2 5 14 6
9 10 11
0 1 3 11
11 10 12 13

4 8 0 1 2 5 7 9 10
4 3 5 7 9 12
8 14 6 9 13
0 1 2 5 14 6
9 10 11
0 1 3 11
11 10 12 13
0 1 4
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Step 1: Prescribe the total number of bus lines NBL in the network.
Denote the set of bus lines by Y. Set Y = /. Let m = 1.

Step 2: Find the pair of nodes that has the highest dsij value. Let
this pair is the pair of nodes (a,b). The nodes a and b are
the terminals of the new bus line. Find the shortest path
between these two nodes. The nodes that belong to the
shortest path represents stations in the bus lines. Add line
l in set Y.

Step 3: Update the matrix DS, without taking into account passen-
ger travel demands that is already satisfied.

Step 4: If m = NBL, stop; otherwise, set m = m + 1 and return to
Step 2.
Table 2
Comparison between the initial solution obtained by the Greedy algorithm and the soluti

Number of routes Parameters Mandl (1979) Baaj and Mahmassani
(1991)

Kidwai

4 d0 69.94 N 72.95
d1 29.93 N 26.92
d2 0.13 N 0.13
dun 0 N 0
ATT 12.9 N 12.72

6 d0 N 78.61 77.92
d1 N 21.39 19.68
d2 N 0 2.4
dun N 0 0
ATT N 11.86 11.87

7 d0 N 80.99 93.91
d1 N 19.01 6.09
d2 N 0 0
dun N 0 0
ATT N 12.5 10.69

8 d0 N 79.96 84.73
d1 N 20.04 15.27
d2 N 0 0
dun N 0 0
ATT N 11.86 11.22
5.2. Solution modification

The major step in our algorithm is modification of the solution
through NP forward passes within the single iteration.

In all our previous applications of the BCO algorithm, we used a
set of homogeneous artificial bees. In this paper, for the first time,
we operate with heterogeneous bees. We solve the transit network
design problem by using two sets of artificial bees. The first set
consists of bees type 1. The second set contains bees type 2. The
type 1 artificial bees differ from the type 2 artificial bees only in
the way in which they modify the solutions. When making deci-
sions about the loyalty, as well as decisions to join some of the
recruiters both bees of type1, and bees of type 2 behave in the
same way.

5.2.1. Solution modification by type 1 bees
Let us note the given set of bus lines (Fig. 4). Type 1 bee chooses

one line from the set of bus lines. Bee makes a decision which line
to take according to probability. Probability of taking line l can be
calculated as:

pl ¼
1

dsijP
q2L

1
dsrs

ð6Þ

where:

i and j are the terminals of the line l,
L is the set of bus lines,
r and s are the terminals of the line q,
dsij – the total number of passengers that can travel without any
transfer by using the line l that connects terminal i and terminal
j.

Let us assume, for example, that type1 bee chose line whose ter-
minals are i and j. In the next step, type 1 bee chooses one among
two terminals. Let us assume that the type1 bee chose terminal i.
Type 1 bee destroys selected bus line. New bus line will be created
between terminal i and new terminal k, which could be chosen
with the probability:

Pk ¼
dsikP
r2Ndsir

ð7Þ
ons obtained by the previous approaches.

(1998) Charkroborty and
Dwivedi (2002)

Fan and Machemehl (2008) Greedy algorithm
(initial solution)

86.86 93.26 80.47
12 6.74 12.33
1.14 0 0.51
0 0 6.68
11.9 11.37 10.22

86.04 91.52 87.73
13.96 8.48 11.75
0 0 0.51
0 0 0
10.3 10.48 11.03

89.15 93.32 90.62
10.85 6.36 8.86
0 0.32 0.51
0 0 0
10.15 10.42 10.57

90.38 94.54 91.91
9.62 5.46 7.58
0 0 0.51
0 0 0
10.46 10.36 10.47



Table 3
The final solution obtained by the BCO algorithm.

Situation Number of routes Route description

1 4 0 1 2 5 7 9 10 11
1 4 3 5 7 9 12 10
8 14 6 9 7 5 3 11
3 1 2 5 14 6 9 13

2 6 0 1 2 5 7 9 10 12
0 1 4 3 5 7 9 10
8 14 6 9 13 12 10 11
0 1 2 5 14 6 9 10
14 7 9 10 11 3 1 0
8 14 5 2 1 4 3 11

3 7 0 1 2 5 7 9 13 12
0 1 4 3 5 7 9 10
8 14 6 9 13 12 10 11
0 1 2 5 14 6 9 10
5 7 9 10 11 3 1 0
8 14 7 5 2 1 3 4
6 14 7 5 3 11 10 12

4 8 0 1 2 5 7 9 10 12
2 1 4 3 5 7 14 6
8 14 6 9 10 11 3 5
0 1 2 5 14 6 9 13
8 14 5 2 1 3 11
0 1 3 11 10 12 13 9
1 4 3 5 7 9 10 12
0 1 4 3 11 10 12 13
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Let us assume that type 1 bee chose node k for the new termi-
nal. Bee discovers the shortest path between the nodes i and k. This
shortest path represents the new bus line (dashed line).
5.2.2. Solution modification by type 2 bees
Let us note the given set of bus lines (Fig. 5). Type 2 bee chooses

one bus line in the same manner as the type 1 bee. After that, bee
chooses in a random manner one, among two terminals, of this bus
line. Let us assume, for example, that type 2 bee chose terminal j. In
the next step, bee decides to destroy this terminal with the proba-
bility equals to P (The analyst prescribes P value). The new bus line
generated in this way contains all old bus stops, except the de-
Table 4
The comparison between the final solution generated by the BCO approach and the previo

Number
of routes

Parameters Mandl
(1979)

Baaj and
Mahmassani (1991)

4 d0 69.94 N
d1 29.93 N
d2 0.13 N
dun 0 N
ATT 12.9 N

6 d0 N 78.61
d1 N 21.39
d2 N 0
dun N 0
ATT N 11.86

7 d0 N 80.99
d1 N 19.01
d2 N 0
dun N 0
ATT N 12.5

8 d0 N 79.96
d1 N 20.04
d2 N 0
dun N 0
ATT N 11.86
stroyed terminal. In this way, the old bus line was shortened. In
the opposite case, if terminal survives (the terminals survives with
the probability equal to (1 � P)), the old bus line will be expanded.
The new bus line will contain one more bus stop. The new bus stop
to be added to the bus line is chosen in a random manner from the
nodes adjacent to the chosen terminal. In the case shown in Fig. 5,
the node k was chosen to be included in the bus line, and the old
bus line was expanded.
5.3. Bee’s partial solutions comparison mechanism

Type 1 and type 2 bees return to the hive after modifying the
solutions. All modified solutions are then evaluated by all bees
(Fig. 6).

Let us denote by Tb (b = 1,2, . . . ,B) the total travel time of all pas-
sengers in the transit network generated by the bth bee. We denote
by Ob normalized value of the total travel time Tb, i.e.:

Ob ¼
Tmax � Tb

Tmax � Tmin
; b ¼ 1;2; . . . ;B ð8Þ

where Tmin and Tmax are respectively the smallest and the largest to-
tal travel time in all transit networks generated by all bees. The
probability that bth bee (at the beginning of the new forward pass)
is loyal to the previously generated solution is calculated in this pa-
per in the following way:

pb ¼ e�ðOb�OminÞ; b ¼ 1;2; . . . ;B ð9Þ

By using relation (9) and a random number generator, every
type 1 and every type 2 artificial bee decides to become uncommit-
ted follower, or to continue exploration from the generated solu-
tion (Fig. 7).

The superior the generated solution (higher Ob value), the high-
er the probability that the bee will be loyal to that solution.
5.4. Recruiting Process

In the case when at the beginning of a new stage bee does not
want to start from the previously generated solution, the bee will
go to the dancing area and will follow another bee (Fig. 8).
us approaches.

Kidwai
(1998)

Charkroborty and
Dwivedi (2002)

Fan and
Machemehl
(2008)

BCO algorithm

72.95 86.86 93.26 92.1
26.92 12 6.74 7.19
0.13 1.14 0 0.71
0 0 0 0
12.72 11.9 11.37 10.51

77.92 86.04 91.52 95.63
19.68 13.96 8.48 4.37
2.4 0 0 0
0 0 0 0
11.87 10.3 10.48 10.23

93.91 89.15 93.32 98.52
6.09 10.85 6.36 1.48
0 0 0.32 0
0 0 0 0
10.69 10.15 10.42 10.15

84.73 90.38 94.54 98.97
15.27 9.62 5.46 1.03
0 0 0 0
0 0 0 0
11.22 10.46 10.36 10.09



Table 5
Second example: bus lines generated by the Greedy algorithm (initial solution).

Line Stations on the line

Line 1 59 48 92 52 23 2 45 40 56 74 50 6 94 68 12 26 57 21 104 18 79 101
Line 2 38 78 80 61 34 89 4 29 33 6 94 68 12 26 57 21 104 18 32 87
Line 3 58 55 51 41 36 28 45 40 56 74 50 6 94 68 12 26 57 21 104 18 73
Line 4 87 32 18 104 21 57 26 12 68 94 6 50 74 56 40 45 90 75 22 86 107
Line 5 24 37 13 44 4 29 56 40 45 28 72 3 88
Line 6 10 48 92 52 23 2 45 40 56 74 30 93 64 67 100
Line 7 54 53 13 44 4 29 33 6 94 68 12 26 57 21 104 18 79 101
Line 8 8 108 52 91 19 65 89 44 13 31 82 15
Line 9 82 5 105 95 33 6 94 68 12 26 35 102
Line 10 58 55 51 41 36 28 45 2 23 52 92 48 47 71
Line 11 0 70 26 12 68 94 6 50 74 56 40 45 2 23 108 8
Line 12 47 46 61 34 89 4 29 50 30 93 64 67
Line 13 58 55 51 41 36 28 45 40 56 29 4 89 76 60
Line 14 99 78 48 92 52 23 2 45 90 75 22 86 107
Line 15 17 9 68 94 6 50 74 56 40 45 2 23 52 92 48 25
Line 16 81 37 13 44 89 65 19 91 23 2 1 84
Line 17 87 32 18 104 21 57 26 12 68 94 6 50 74 56 40 45 28 72 3 88
Line 18 27 105 95 4 65 19 91 52 92 48 103
Line 19 15 5 105 95 29 56 40 45 90 75 22 86 107
Line 20 11 1 2 45 40 56 74 50 6 94 68 12 26 35 102
Line 21 7 49 68 94 6 50 74 56 40 45 2 23 52 92 48 103
Line 22 87 32 18 104 21 57 26 12 68 94 6 33 29 65 19 91
Line 23 10 59 46 76 44 13 31 5 27
Line 24 0 70 26 12 68 94 6 33 29 4 89 34 61 46 69
Line 25 38 10 48 92 52 23 2 45 28 72 3 88
Line 26 8 1 84 106 36 72 3 86 107
Line 27 54 53 13 44 4 29 56 40 45 90 75 22 86 107
Line 28 15 5 105 95 33 6 94 68 12 26 57 21 104 18 32 87
Line 29 16 9 68 94 6 33 29 4 89 34 61 46 71
Line 30 84 106 28 45 40 56 74 50 6 94 68 12 26 57 21 104 18 79 101
Line 31 24 37 13 44 4 29 33 6 94 68 12 26 57 21 104 18 73
Line 32 15 82 31 13 44 76 46 47 48 103
Line 33 98 64 7 12 26 57 21 104 18 79 101
Line 34 58 55 51 41 36 28 45 40 56 74 30 93 64 67 100
Line 35 62 1 2 45 40 56 74 50 6 94 68 12 26 57 21 104 18 32 87
Line 36 63 41 36 28 45 40 56 29 4 89 34 66
Line 37 60 34 61 46 47 48 92 11 62
Line 38 20 75 90 45 40 56 74 50 6 94 68 12 26 57 21 104 18 79 101
Line 39 15 5 105 95 33 50 30 93 64 67
Line 40 99 61 34 89 4 29 33 6 94 68 12 26 35 102
Line 41 39 75 90 45 2 23 52 92 48 59 69
Line 42 14 5 31 13 44 76 61 80 78 38
Line 43 100 67 64 93 30 74 56 40 45 90 75 22 86 107
Line 44 58 55 51 41 36 28 45 40 56 29 95 105 5 82
Line 45 47 46 61 34 89 4 29 33 6 94 68 12 26 57 21 104 18 79 101
Line 46 11 108 52 91 19 65 4 95 105 14
Line 47 43 9 68 94 6 33 29 4 44 13 97
Line 48 67 64 93 30 50 29 4 44 13 37 81
Line 49 77 30 94 68 12 26 57 21 104 18 79 101
Line 50 60 76 89 4 29 33 6 94 68 12 26 57 21 104 18 73
Line 51 54 53 13 44 89 65 19 91 52 108 62
Line 52 14 105 95 33 6 94 68 12 26 57 21 104 18 79 101
Line 53 54 53 13 44 4 29 56 40 45 28 36 41 51 55 58
Line 54 88 3 72 28 45 40 56 74 30 93 64 67 100
Line 55 11 1 84 106 36 41 51 55 58
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Within the dance area the bee-dancers (recruiters) ‘‘advertise’’
different solutions. We assume that the probability the recruiter
b’s solution will be chosen by any uncommitted bee equals:

pb ¼
ObPR
k¼1Ok

; b ¼ 1;2; . . . ;R ð10Þ

where:

Ok – objective function value of the kth advertised solution;
R – the number of recruiters.

By using relation (10) and a random number generator, every
uncommitted follower join one bee dancer (recruiter). Recruiters
and recruited nestmates start exploration in the next forward pass
from the solution discovered by the recruiter. All artificial bees are
free to independently search the solution space and perform solu-
tion modification.

6. Experimental evaluation

The BCO approach that we propose is compared with other ap-
proaches that proved to be the best far in the literature. Compari-
son is performed in the case of Mandl’s road network, as well as in
the case of network that contains 110 Nodes and 275 links (http://
people.brunel.ac.uk/�mastjjb/jeb/orlib/utraninfo.html).

In the proposed BCO algorithm we set B = 10, NP = 5, NC = 2. The
values are chosen based on our prior experience. These values turn
out to be both moderately small (resulting in rapid completion of
each iteration) and sufficiently large to assure efficient knowledge



Table 6
Second example: bus lines generated by the BCO algorithm (final solution).

Line Stations on the line

Line 1 80 78 46 99 69 38 10 25 48 92 52 23 2 45 40 56 74 50 6 94 68 12 26 57 21 104 18 79 101
Line 2 103 25 59 47 48 10 38 78 80 61 34 89 4 29 33 6 94 68 12 26 57 21 104 18 32 87 73 79 101
Line 3 58 55 51 41 36 28 45 40 56 74 50 6 94 68 12 26 57 21 104 18 73 87 32 79 101
Line 4 79 73 32 18 104 21 57 26 12 68 94 6 50 74 56 40 45 90 75 22 86 107
Line 5 54 53 81 24 37 13 44 4 29 56 40 45 28 72 3 39 20 88 75 36 106 84 1 62 11 108 52 91 83
Line 6 99 78 38 25 10 48 92 52 23 2 45 40 56 74 30 93 64 67 100 7 68 94 85 50 29 65 89 76 60
Line 7 19 65 109 95 96 105 5 97 37 81 54 53 13 44 4 29 33 6 94 68 12 26 57 21 104 18 79 32 87
Line 8 76 61 99 78 69 59 48 8 108 52 91 19 65 89 44 13 31 82 15 5 105 96 95 109 33 74 85 6 42
Line 9 54 37 97 82 5 105 95 33 6 94 68 12 26 35 102 0 70 57 16 17 49 100 9 7 67 64 98 30 85
Line 10 58 55 51 41 36 28 45 2 23 52 92 48 47 71 80 61 76 60 34 89 65 19 91 83 108 11 62 1 84
Line 11 98 64 67 100 49 7 9 17 43 16 57 102 0 70 26 12 68 94 6 50 74 56 40 45 2 23 108 92 8
Line 12 38 10 103 48 25 59 69 80 47 46 61 34 89 4 29 50 30 93 64 67 100 49 7 17 35 70 0 102 21
Line 13 58 55 51 41 36 28 45 40 56 29 4 89 76 60 34 66 61 80 99 46 71 47 48 10 103 25 59 69 78
Line 14 59 10 103 25 38 69 47 46 99 78 48 92 52 23 2 45 90 75 22 86 107
Line 15 35 57 16 43 17 9 68 94 6 50 74 56 40 45 2 23 52 92 48 25 38 69 47 71 46 76 44 13 53
Line 16 14 27 5 15 82 97 81 54 24 37 13 44 89 65 19 91 23 2 1 84 106 36 28 90 75 41 51 55 58
Line 17 73 87 32 18 104 21 57 26 12 68 94 6 50 74 56 40 45 28 72 3 88 86 22 75 36 106 84 1 8
Line 18 15 82 5 27 105 95 4 65 19 91 52 92 83 108 11 62 8 48 78 46 61 66 34 89 44 13 31 97 81
Line 19 10 59 46 61 34 60 76 44 13 37 24 53 54 81 97 82 15 5 105 95 29 56 40 45 90 75 22 86 107
Line 20 23 83 92 11 1 2 45 40 56 74 50 6 94 68 12 26 35 102 21 70 57 16 43 17 7 64 98 30 77
Line 21 43 17 26 57 21 0 70 102 35 12 9 7 49 68 94 6 50 74 56 40 45 2 23 52 92 48 103 10 38
Line 22 73 87 32 18 104 21 57 26 12 68 94 6 33 29 65 19 91 83 92 48 59 47 46 61 66 76 44 4 95
Line 23 66 61 80 78 48 25 103 10 59 46 76 44 13 31 5 27 105 96 95 4 109 65 19 91 52 23 108 11 62
Line 24 32 73 18 104 21 102 0 70 26 12 68 94 6 33 29 4 89 34 61 46 69 38 25 59 10 48 92 11 62
Line 25 82 5 105 96 95 109 65 89 34 61 80 71 69 59 25 38 10 48 92 52 23 2 45 28 72 3 88 75 20
Line 26 71 47 59 78 38 69 80 61 66 76 89 65 19 91 83 23 52 92 11 108 8 1 84 106 36 72 3 86 107
Line 27 5 82 31 97 81 24 37 54 53 13 44 4 29 56 40 45 90 75 22 88 20 39 72 28 36 41 3 86 107
Line 28 37 81 97 24 54 53 13 31 82 15 5 105 95 33 6 94 68 12 26 57 21 104 18 32 87 73 79 101
Line 29 49 17 26 70 35 12 43 16 9 68 94 6 33 29 4 89 34 61 46 71 80 78 59 25 48 92 108 52 83
Line 30 69 78 59 48 92 11 8 1 84 106 28 45 40 56 74 50 6 94 68 12 26 57 21 104 18 79 73 87 32
Line 31 54 53 81 24 37 13 44 4 29 33 6 94 68 12 26 57 21 104 18 73 87 32 79 101
Line 32 12 68 94 42 50 6 93 98 85 74 77 56 29 95 105 14 5 15 82 31 13 44 76 46 47 48 103 25 10
Line 33 48 47 46 76 89 65 109 33 74 50 30 94 42 6 93 85 98 64 7 12 26 57 21 104 18 79 73 32 87
Line 34 58 55 51 41 36 28 45 40 56 74 30 93 64 67 100 49 7 12 17 35 102 0 21 104 18 73 32 79 101
Line 35 31 13 44 4 65 19 91 52 92 8 62 1 2 45 40 56 74 50 6 94 68 12 26 57 21 104 18 32 87
Line 36 63 41 36 28 45 40 56 29 4 89 34 66 76 44 13 53 81 97 31 82 14 27 105 95 33 50 30 98 93
Line 37 23 91 19 65 89 44 76 34 61 46 47 48 92 11 62 8 1 2 45 28 36 75 3 51 63 41 72 39 20
Line 38 23 92 8 1 84 106 28 36 72 39 20 75 90 45 40 56 74 50 6 94 68 12 26 57 21 104 18 79 101
Line 39 54 81 53 24 97 82 15 5 105 95 33 50 30 93 64 67 100 9 12 43 16 57 21 104 18 73 87 32
Line 40 36 106 84 1 8 48 10 25 38 78 69 99 61 34 89 4 29 33 6 94 68 12 26 35 17 49 100 9 7
Line 41 11 62 1 84 106 36 72 41 63 51 3 39 75 90 45 2 23 52 92 48 59 69 78 99 46 76 44 13 97
Line 42 68 49 7 64 93 85 77 74 50 33 95 105 14 5 31 13 44 76 61 80 69 99 46 59 47 48 78 38 10
Line 43 101 79 73 87 32 18 104 21 57 26 17 9 100 67 64 93 30 74 56 40 45 90 75 22 86 107
Line 44 58 55 51 41 36 28 45 40 56 29 95 105 5 82 97 31 13 44 89 65 19 91 83 92 11 8 62 1 2
Line 45 69 99 78 48 10 103 25 59 47 46 61 34 89 4 29 33 6 94 68 12 26 57 21 104 18 79 32 87 73
Line 46 58 55 51 3 39 20 75 36 28 45 2 23 83 92 8 1 62 11 108 52 91 19 65 4 95 105 14 82 15
Line 47 12 17 43 9 68 94 6 33 29 4 44 13 97 82 14 27 105 96 95 109 65 19 91 83 92 48 103 10 38
Line 48 26 17 16 9 7 67 64 93 30 50 29 4 44 13 37 81 97 5 31 82 14 105 96 95 109 33 74 6 42
Line 49 24 37 53 81 97 5 27 105 96 95 29 109 33 42 50 77 30 94 68 12 26 57 21 104 18 79 32 73 87
Line 50 38 69 71 46 80 99 61 66 34 60 76 89 4 29 33 6 94 68 12 26 57 21 104 18 73 87 32 79 101
Line 51 5 15 82 97 37 81 54 53 13 44 89 65 19 91 52 108 11 1 84 106 36 72 39 75 20 3 51 55 58
Line 52 31 13 37 54 53 24 97 82 5 14 105 95 33 6 94 68 12 26 57 21 104 18 79 101
Line 53 95 96 105 14 27 5 97 37 54 53 13 44 4 29 56 40 45 28 36 41 51 3 86 22 88 39 72 75 90
Line 54 41 75 20 39 88 3 72 28 45 40 56 74 30 93 64 67 100 7 68 94 42 33 95 96 105 14 82 97 24
Line 55 27 14 82 15 5 105 95 4 44 76 46 59 48 8 11 1 84 106 36 41 51 55 58
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exchange and discovering of a high quality final solutions. The pen-
alty for unsatisfied passenger equals: average travel time + 50 min.
The probability P that the red bee will destroy the terminal equals
0.2. The stopping criterion is the number of iteration IT = 400.

In the first experiment, we compare the BCO approach that we
propose with the approaches proposed by Mandl (1979), Baaj and
Mahmassani (1991), Kidwai (1998), Charkroborty and Dwivedi
(2002) and Fan and Mumford (2010). The comparison is made in
the case of Mandl’s road network (Mandl, 1979) shown in Fig. 9.

We use the following parameters for comparison:

d0 – the percentage of demand satisfied without any transfers,
d1 – the percentage of demand satisfied with one transfer,
d2 – the percentage of demand satisfied with two transfers,
dun – the percentage of demand unsatisfied,
ATT – average travel time in minutes per transit user (mpu).
This travel time includes transfer waiting times, and transfer
time that is equal to 5 min per passenger.

This set of parameters was proposed by Fan and Mumford
(2010). These authors performed comparison in four situations: 4
routes, 6 routes, 7 routes and 8 routes in each route set. We do
the same in this paper. The results of comparison are given in
Tables 1–4.

The initial solution (set of bus lines) generated by the greedy
algorithm is shown in Table 1.

The comparison between the initial solution of the BCO ap-
proach and the previous approaches is given in Table 2.
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One can see that simple greedy heuristic algorithm generated
the initial solution whose characteristics are reasonable good. Arti-
ficial bee started to improve this initial solution through the search
process. The final solution obtained by the BCO algorithm is given
in Table 3.

The comparison between the final solution generated by the
BCO approach and the previous approaches is given in Table 4.

The results obtained by the BCO approach have better values for
d0, and d1 in 3 out of 4 cases. The BCO results have better values for
ATT in 3 out of 4 cases.

The second experiment is performed for the bus network that
contains 110 nodes and 275 links. The total number of daily trips
equals 3,603,360. The task is to generate 55 bus lines. The total
number of bus stops at any bus line cannot be bigger than 29.

The initial solution generated by the Greedy algorithm is given
in Table 5.

The following are characteristics of the generated initial
solution:

The total number of trips without transfer = 1,438,572
(d0 = 39.92%).
The total number of trips with one transfer = 1,607,740
(d1 = 44.62%).
The total number of trips with two transfers = 224,480
(d2 = 6.23%).
The total number of unsatisfied passengers = 332,568
(dun = 9.23%).
The average travel time in minutes per transit user
ATT = 34.90 min.

As in the previous example, BCO algorithm significantly im-
proved the initial solution. The final solution generated by the
BCO algorithm is given in Table 6.

The following are characteristics of the generated initial
solution:

d0 = 59.65%,
d1 = 40.10%,
d2 = 0.25%,
dun = 0%,
ATT = 36.16 min.

The obtained average travel time ATT (in minutes per transit
user) is composed of the following two components:

36:16 ¼ 34:13þ 2:03

The first component represents the average travel time, while
the second component represents the average penalty per transit
user caused by transfer. In order to better estimate the quality of
the obtained final solution we calculated the average travel time
per passenger in the case when every passenger exclusively follow
the shortest path when traveling between the origin and destina-
tion. This average travel time equals 33.84 min. No one transit net-
work cannot have average travel time per transit user less than
33.84 min. This value represents lower bound of the average travel
time. The ATT value obtained by the BCO algorithm is relatively
close to the lower bound, so one can conclude that the quality of
the solution generated by the BCO algorithm is relatively high.
7. Conclusion

We developed the model for the transit network design prob-
lem. The transit network design problem is a large combinatorial
problem whose optimal solution is difficult to find, therefore a
heuristic approach must be used. The model proposed in this paper
is based on the Swarm Intelligence concepts. We tried to maximize
the number of served passengers, to minimize the total in-vehicle
time of all served passengers, and to minimize the total number of
transfers in the network. We clearly showed that the proposed BCO
algorithm is competitive with other approaches in the literature,
and that it can generate high-quality solutions within reasonable
CPU times.

The challenge for the future research is to test the offered BCO
concept simultaneously with the assumption that passenger flows
depend on the transit network design, as well as in the case of the
multiple path passengers’ assignment among possible transit
routes.

The proposed concept should be expanded in the future re-
search by including in the analysis available number of vehicles,
as well as some other operational constraints.
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