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Abstract—Address shuffling is a type of moving target defense
that prevents an attacker from reliably contacting a system
by periodically remapping network addresses. Although limited
testing has demonstrated it to be effective, little research has been
conducted to examine the theoretical limits of address shuffling.
As a result, it is difficult to understand how effective shuffling
is and under what circumstances it is a viable moving target
defense.

This paper introduces probabilistic models that can provide
insight into the performance of address shuffling. These models
quantify the probability of attacker success in terms of network
size, quantity of addresses scanned, quantity of vulnerable
systems, and the frequency of shuffling. Theoretical analysis
shows that shuffling is an acceptable defense if there is a small
population of vulnerable systems within a large network address
space, however shuffling has a cost for legitimate users. These
results will also be shown empirically using simulation and actual
traffic traces.

I. INTRODUCTION

An important phase of many cyber attacks is system re-
connaissance, where the attacker seeks to gather information
about the potential victim. Discovering the victim’s IP address,
operating system, and network services, is important since it
can be used to determine an appropriate exploit mechanism.
It has been reported that an attacker can be expected to spend
upwards of 45 percent of their time performing reconnais-
sance [1]. Therefore given the amount of resources and the
value associated with the information gathered, mitigating
the reconnaissance attack phase can be an effective defense
strategy.

Moving Target (MT) defenses are a type of diversity defense
that constantly alters the attack surface of a target. In the time it
takes the attacker to perform reconnaissance the MT defense
will have changed the targeted system in such a way as to
render the attacker’s knowledge ineffective or stale. As a result
the attacker will act on false information that can result in
expending more resources and increasing the risk of detection.

While there are several different types of MT defenses [2],
this paper investigates the performance of network address
shuffling. Network address shuffling is a MT defense that
dynamically alters an organization’s network by remapping
the usually static association between addresses and systems.
Even though networks naturally experience address churn [3],
the periods between address reassignments are ample enough
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to permit attackers to gather intelligence over a period of time
and then exploit the information at a later date. Address shuf-
fling methodically shortens the intervening periods, rendering
intelligence stale more quickly.

Several different network address shuffling implementations
exist [2]-[5]; however, the performance evaluation has largely
been empirical. As a result, the findings of these studies
are typically limited to very specific scenarios (e.g. certain
network address space size). Theoretical models can provide
a better understanding of the performance of shuffling under
various conditions. For example theoretical models have been
used to investigate the performance of Address Space Layout
Randomization (ASLR) [6]. Using ASLR as a MT defense,
computer memory is dynamically remapped to prevent an
attacker from reliably discovering the exact layout of a targeted
program in memory. ASLR does have similarities to network
address shuffling (dynamically moving a targeted item around
a fixed space), therefore some of the findings in this paper will
be consistent with [6]. For example randomly moving targets
around a space has little benefit if the amount of computer
memory or network address space is small.

This paper develops theoretical models to describe the
defense benefits of network address shuffling under various
conditions. Urn models are developed to examine attacker
success under static addresses and perfect shuffling. A network
is not permuted with static addresses. The optimal strategy
of the attacker is to explore the entire address space, never
contacting the same host twice. On the other hand, perfect
shuffling results in the network addresses being updated after
each and every connection. Connecting to the same address
results in different hosts being contacted. Even if an attacker
sequentially probes the entire address space, it is unlikely that
all hosts would be discovered. Models provide the necessary
tools to demonstrate the effects that network size, quantity
of vulnerable systems, quantity of addresses scanned, and the
frequency of shuffling have on the probability attacker success.

Contribution of this paper. This paper introduces a set of
probabilistic models to investigate the performance of address
shuffling in defending networks. The models quantify the
attacker success in terms of network size, number of addresses
explored, and number of vulnerable systems. Using simulation
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and actual network traces, the relationship between shuffling
frequency and connection loss is also investigated. Results
will show that shuffling provides limited protection against
attackers seeking just one high-value system. These results
are also verified via real network traces replayed as empirical
verification. This work is novel as related work performs
a strategic analysis of defending honeypots with network
shuffling.

Organization. This paper is organized as follows. In Section II
we discuss the motivation for network address shuffling and
describe current implementations of the method. In Section III
we develop probabilistic models for network shuffling; this
is then used in Section IV to analyze network defenses that
incorporate shuffling. Section V summarizes the performance
of address shuffling as a MT defense and introduces some
potential future work.

II. NETWORK ATTACKS AND SHUFFLING TECHNIQUES

As mentioned in Section I, intelligence gathered during
reconnaissance is extremely valuable to the attacker since
it is used to prepare and develop subsequent attack plans.
Network reconnaissance actions include the enumeration of
the address space to discover key targets, such as databases
and email servers. Tools such as Nmap (http://nmap.org/),
a network scanner, and Shodan (http://www.shodan.com/), a
computer services search engine, are commonly used to scan
and enumerate a target network. Degrading the performance of
these network reconnaissance tools using a MT defense within
the organization’s boundaries has been shown to be practical.
The additional uncertainty causes the attacker to either expend
additional efforts in casing and attack preparations or assume
greater risk in the subsequent attack.

A. Reconnaissance Defenses and Shuffling Techniques

A common reconnaissance defense relies on network fire-
walls to prevent the attacker from discovering devices—or
more specifically services. Although this approach is some-
what useful, the identity of devices that require a constant
and public external presence (i.e., web and email servers) are
not protected. Therefore, a more dynamic defense can provide
improved security.

Dynamic network reconfiguration is an attempt to create
unpredictable change, thereby creating a MT defense. After
the attacker has performed reconnaissance, reconfiguration is
employed to devalue the knowledge. As one might expect,
the temporal aspect of dynamic network reconfiguration plays
a critical role. Examples of dynamic reconfiguration includes
unpredictable server selection and unpredictable route selec-
tion [4], [7]; however, this paper focuses on network address
shuffling.

Network address shuffling is a dynamic reconnaissance
defense that periodically permutes the relationships between
addresses and devices. For the Internet, addresses are a combi-
nation of IP and transport layer information (protocol and port
numbers) and either or both types of information can be used
for shuffling; however without loss of generality this paper will

only consider IP addresses. IP address shuffling replaces the
address of protected devices within a network with a pseudo-
random IP address chosen from the address space available to
the administrator.

Two important components of any method are how ad-
dresses are mapped and how legitimate hosts stay in contact
after a shuffle event. For example, Network Address Space
Randomization (NASR) shuffles addresses using Dynamic
Host Configuration Protocol (DHCP) to reassign addresses
and relies upon Domain Name Service (DNS) to reestablish
connectivity after a shuffle event [3]. Using this approach,
timers are used to notify devices when their current address
leases have expired. Once addresses have been reassigned,
DNS entries are updated with the new information and appli-
cations that know the hostname of a device can query for the
updated address. Of course this approach provides no defense
for attackers that also know the hostname of their targets, such
as a hit-list worm [3].

Dynamic Network Address Translation (DYNAT) [1] and
Applications that Participate in their Own Defense (APOD) [4]
are similar shuffling approaches that rely upon a form of Net-
work Address Translation (NAT) for reassigning addresses. In
these techniques, the NATed addresses provided to the external
network to connect to internal devices can be periodically
remapped. Hosts that are legitimately communicating are able
to maintain connection by knowing the key associated with
the algorithm that performs the shuffling. This approach does
not rely on DNS and therefore is immune to threats that
incorporate target lists, but it does require communicating
hosts to share a priori knowledge about the shuffling algorithm
and parameters. A further drawback of this approach is that
existing threats already present in the internal network are
minimally impacted.

Although different in implementation, limited testing has
demonstrated that address shuffling methods are effective re-
connaissance defenses. The defense performance (probability
of attacker successfully finding a target) is a function of several
parameters, including the size of the address pool, number
of devices in the network to protect, the number of devices
required to be successfully found by the attacker, and the
shuffle frequency. In many cases these parameters have been
studied empirically; this paper provides probabilistic models
to study the effectiveness of shuffling.

III. MODELS FOR NETWORK SHUFFLING DEFENSES

Consider the scenario in which an attacker targets a network
defended by an administrator. As we described in the previous
section, the attacker seeks to perform reconnaissance on the
network while the administrator wants to keep hidden the
identity (IP addresses) of vulnerable computers. As such, it is
possible to model the system to determine if and when address
shuffling is advantageous. Assume the following is true with
regards to the attackers capabilities, the administrator defenses,
and the network.

e There are n total addresses available to the administrator

(address space) and v < n vulnerable computers.
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o A shuffle event randomly and uniformly remaps all n
addresses in the network.

o The attacker is aware of the address space (n addresses)
and will serially attempt & connections (probes).

o The goal of the attacker is to contact at least one of the
v vulnerable computers in k attempts.

Two statistics are of interest 1) attacker success probability
and 2) expected number of probes required to find a vulnerable
computer. While it may be possible to model this system in
several different fashions, this paper uses urn-based models to
determine these important performance statistics. Note, a more
detailed model description can be found in [8].

A. Urn-Based Models

A simple urn model consists of a vessel containing a set
of marbles of different colors. The player randomly draws
a marble from the urn and records its color. Although con-
ceptually simple, urn models have been successfully used
to model outcomes of various complex systems in physics,
communication theory, and computer science [9].

For address shuffling, consider an urn containing v green
and n — v blue marbles for a total of n marbles. The green
marbles represent vulnerable systems, while the blue marbles
represent non-vulnerable systems. A non-vulnerable system
could be a non-vulnerable computer (for example, a system
that is patched or is not providing the exploitable service) or
simply an address that is not associated with a device. This
population of marbles represents the network address space of
the administrator.

The player (attacker) draws, one at a time, k£ marbles from
the urn. If the attacker draws at least one green marble (again,
green represents vulnerable systems) then the set of draws is
considered a success. Altering what happens between draws
can be used to represent different defense strategies. Let us
first consider the extremes of shuffling: static addressing (no
shuffling) and perfect shuffling (shuffle after each probe).

B. Modeling Static Addresses

Assume the addresses assigned to computers in the network
are fixed. Given this situation, the attacker’s strategy for
finding a vulnerable system is to sequentially iterate through
the address space. If £ > n then the attacker is assured to
find all v vulnerable computers. However, if k& < n then an
urn model can be used to determine the likelihood of attacker
success.

Consider the urn model where a drawn marble is never
replaced. The attacker success probability then is determined
via a hypergeometric distribution which determines the “num-
ber of successes in a sequence of k draws from a finite
population without replacement” [9]. If X is a random
variable representing the number of green marbles drawn
(vulnerable computers contacted) given k draws then

G
(n

Pr(Xy =x) = @)

As applied to computer networks, the no replacement require-
ment models the knowledge gained per probe since once an
IP address has been probed there is no need to contact it
again. The probability that at least one vulnerable system is
discovered is then

()

(%)
The number of probes needed to find a vulnerable computer
can be modeled as a negative hypergeometric distribution,
which describes the number of draws, without replacement,
required to obtain a specific population of marbles [9]. For
static addresses, if Y is a random variable representing the
number of probes then the expected number of probes is

n+1
v+1°
C. Modeling Perfect Address Shuffling

Address shuffling remaps network addresses to the devices
connected to a network. As previously stated, assume shuffling
remaps all n addresses in the network, therefore at the end
of a shuffling event the attacker loses any reconnaissance
knowledge gained.

As described in [3], the frequency of shuffling events will
impact the success rate of the attacker. One extreme case is
perfect shuffling, where the administrator shuffles after every
reconnaissance attempt. The attacker gains limited knowledge
from one reconnaissance attempt to the next. If the attacker
is allowed k = n attempts, it is unlikely that all systems are
contacted and the resulting probability of success rate is less
than one.

Consider a model in which drawn marbles are returned to
the urn. Given this requirement the attacker success probability
is determined via a binomial distribution which determines
the “number of successes in a sequence of k draws from a
finite population with replacement.” If X}, is a random variable
representing the number of green marbles given k attempts
then

Pr(X,>0)=1—-Pr(X,=0)=1— 2

ElY] =

3

Prcxe =) = (1) -t @

where p = - which is the probability of drawing a green

marble (vulnerable computer), and k£ > x. Therefore, the
probability of attacker success given k probes is

Pr(X,>0)=1-Pr(X,=0)=1-(1-p)". 5

The expected number of probes needed to find a vulnerable
computer can be modeled by a geometric distribution, which
describes the number of draws with replacement required be-
fore a marble of a given color is drawn [9]. Assuming a perfect
shuffling defense, if Y is a random variable representing the
number of probes then it is easy to show the expected number
of probes is

(6)

The next section will use these models to analyze the effec-
tiveness of network address shuffling.
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IV. ANALYSIS OF SHUFFLING DEFENSES

The previous section developed performance equations
for static addresses and perfect shuffling, the two extreme
cases for network address shuffling. These performance
equations are dependent on several variables, such as the
number of probes, number of vulnerable computers, and
shuffling frequency. This section will analyze the impact of
these variables on the benefit and cost of static addressing
and perfect shuffling under certain conditions. Although not
exhaustive, the examples will provide guidance in the use of
shuffling. In addition, the benefit and cost of shuffling less
frequently will be studied empirically.

A. Network Address Space (one vulnerable computer)

Assume there is only one vulnerable computer in the net-
work and the attacker is able to probe the entire network space
(number of probe attempts equals the number of addresses in
the space). In this case, static addresses provide no defense
since the attacker can simply iterate through the address space
until the vulnerable computer is discovered. In contrast if
perfect shuffling is used then the success probability of the
attacker will depend on network size.

Figure 1 shows the success probability as the network size
increases where the attacker is permitted to probe the entire
network space. As seen in the graph, the attacker is likely to
find the vulnerable computer when the network size is small;
however, the success rate drops as the network size increases
and converges to e~! &~ 0.63 which is the limit of (5) when
k =n,

1 n
Pr(O<Xn§n)_1—<1—n> . 7
In this case perfect shuffling reduces the probability of attacker
success by 37% as compared to using static addresses.

B. Percentage of Address Space Probed

Another important parameter that impacts attacker success
is the number of probes (scans) allowed. Again assume only
one vulnerable computer exists in the network. In this case the
probability of success given static addresses increases linearly
as number of probes increases, since the probability that &
probes will find the vulnerable computer is k/n. For example,
if half of the network can be probed then the probability
of success would be 0.5. For perfect shuffling, the success
probability defined by (5) becomes

k

Pr(O<Xn§k:)_1—<1—%> . (®)
As we increase the number of allowed probes, k&, the success
probability slowly increases. As described in the preceding
subsection, the maximum success probability is approximately
0.63 when the entire network can be probed. This is also
shown in Fig. 2, which depicts the success probability for
the attacker as the number of probes increases, given a single
vulnerable computer in a class-C network (255 addresses).
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Fig. 1. The attacker success probability for finding the vulnerable computer
as the network size increases. The attacker can make n probes, which is the
number of addresses in the network. Note, the the x-axis is in log scale.
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Fig. 2. The attacker success probability for finding the vulnerable computer
as the number of network probes increases. Only one vulnerable computer
exists in the class-C network space.

Comparing perfect shuffling to static addressing, perfect shuf-
fling provides an improved defense.

C. Number of Vulnerable Computers

The number of vulnerable computers is another key param-
eter for the success of the attacker. The previous examples
assumed only one vulnerable computer exists in the network.
Now consider the scenario that the attacker must discover one
vulnerable computer in a network containing multiple targets.
Clearly as the number of vulnerable computers increases the
likelihood of finding one will increase. Assuming the attacker
performs k = n probes, then static addresses provides no
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Attacker Success using Perfect Shuffling as Number Vulnerable Increases
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Fig. 3. The attacker success probability for contacting one vulnerable
computer as the total number of vulnerable computers increases. The attacker
performs k = n probes, where n is the number of addresses in the network.

defense. If perfect shuffling is used then the success probability
given by (5) reduces to

Pr(0<Xngk)=1—(1—3)". ©)

n
Therefore the success probability approaches one as the num-
ber of vulnerable computers increases. Again, the goal is to
locate at least one vulnerable computer out of v. This is shown
in Fig. 3, which depicts the attacker success probability for a
class-C network where the attacker performs n probes (number
of addresses in the network). Therefore perfect shuffling is
only beneficial if there is a relatively small number, less than
1% in this example, of vulnerable computers in the network.

D. Expected Number of Probes

The expected number of probes required for attacker success
given static addresses and perfect shuffling were defined by
equations (3) and (6) respectively. Note a defense that requires
more probes by the attacker is considered better.

Comparing these equations, perfect shuffling always re-
quires more probes; however, this advantage decreases as the
percentage of systems that are vulnerable increases. A similar
finding was described in Section IV-C, where perfect shuffling
provided little advantage if the attack was permitted to probe
the entire network space (number of probes equals the number
of addresses in the space) and a significant percentage of
computers where vulnerable.

E. Address Shuffle Frequency

Section III derived probabilistic models to estimate the
performance of static addressing and perfect address shuffling.
However, as previously mentioned, the models do not consider
the performance of shuffling less frequently, for example,
shuffling after every g probes. In this case the cost of shuffling

with regards to lost legitimate connections must also be
considered. For example, many shuffling techniques will cause
active connections to immediately drop after a shuffle event.

In the case of NASR, a connection can only be restored after
the new DNS entries have been distributed [3]. Therefore one
shuffling cost to consider is the probability that a legitimate
connection will be dropped. Studying this shuffling cost,
referred to as the drop probability, is problematic since it relies
on assumptions about network connection arrival patterns.
Here, as in [3], the performance and cost of shuffling are
studied empirically in this section.

Network traces were collected from the Dartmouth Uni-
versity CRAWDAD project which contains traffic occurring
across a campus [10]. For each trace, the TCP connection
start times and durations were identified. A network simulation
program was then developed to model a class-C IP network
defended using address shuffling. The connection information
was used to model arriving connections, maintaining the
arrival times and durations, however, the simulator randomly
associated the destination of each connection with an address
within the class-C address space. The attacker is allowed to
make 255 probes, in an attempt to find one of 10 vulnerable
systems within the network. The probes occur serially, each
lasting 32 milliseconds, which is commensurate with the
model developed in the previous section.

The shuffling rate varied from never occurring (static ad-
dresses) to shuffling after every probe (perfect shuffling).
The shuffling rate will be described as a normalized value,
where zero represents no shuffling (static addresses) and one
is perfect shuffling. Therefore a shuffle rate of 0.5 indicates
that a shuffle event occurred after half of the probes were at-
tempted (again for this example, the attacker was allowed 255
probes). For each possible shuffle rate 100,000 experiments
were performed. The average connection loss, attacker success
probabilities, and expected number of vulnerable computers
contacted were recorded.

Figures 4 show the result of the experiments, where the
shuffle rate ranges from static addressing to perfect shuffling.
At zero shuffle rate (static addressing), no connections are lost;
however, the attacker has a 100 percent chance of finding a
vulnerable system. As the shuffling rate increases, the attacker
success probability drops which is predicted by the theoretical
models in the previous sections. When perfect shuffling is
employed the success probability is approximately 0.63 per-
cent, again predicted by the theoretical models. However, as
the shuffle rate increases the connection loss probability also
increases. The loss probability increases slowly until reaching
approximately 0.85 shuffle rate (corresponds to shuffling every
38 probes). For this system where the attacker must find one
of 10 vulnerable systems within the network, a lower shuffling
rate can provide a comparable defense to perfect shuffling but
with a lower loss probability.
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Connection Loss and Attacker Success as Shuffle Rate Increases
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Fig. 4. The average percentage of vulnerable computers contacted as the
normalized shuffle rate increases. A shuffle rate zero is static addressing,
while a shuffle rate of 1 is perfect shuffling (shuffle after each attacker probe).
Network contained 10 vulnerable computers in a class-C address space.

V. CONCLUSIONS

Moving Target (MT) defenses seek to render this infor-
mation useless by constantly changing the targeted system.
While there have been several studies into MT defenses, many
results are empirical in nature. This paper introduces a set of
urn-based models for theoretically measuring the performance
of network shuffling, a MT method that periodically remaps
the relations between network addresses and systems within a
network.

The performance of static addresses (no shuffling) and
perfect shuffling (shuffle after every connection) is dependent
on several variables including the network size, number of
vulnerable computers, and the amount of the address probed
by the attacker. Given these variables, the developed equations
can serve as valuable tools to determine if and when address
shuffling provides a security benefit. For the attack scenario
considered in this paper (attacker seeks to contact at least
one vulnerable computer), analysis indicates shuffling provides
some protection for networks that have very few vulner-
able systems; otherwise shuffling provides limited benefit.
In addition the expense of shuffling (impact on legitimate
connections) might be considered too high for realistic use.

The models demonstrate that the protection offered by shuf-
fling is a function, among other parameters, of address pool
size. Larger pools present more opportunities to hide systems.
However generally speaking, the models and attack scenarios
presented in this paper indicate shuffling has defense benefit
that is likely less than originally perceived. Furthermore, we
must not forget that networks exist to serve users. A network
is of limited benefit if users cannot find and reliably employ
services. When observed from the network level, shuffling
creates the appearance of a network in disarray. But at the user

level, the network is calm and motionless. The network would
also appear motionless to an attacker who has gained a user
level perspective. In practice, an attacker accomplishes this
by discovering the DNS name of a system, querying service
location databases, or compromising workstations that have
been keyed for the shuffle mechanism (via, for example, drive-
by download of malware). Once this occurs—and no doubt it
will occur as the adversaries evolve their tactics in response to
moving target defenses—the size of the pool doesn’t matter.

This work serves as an important first step in understanding
the performance of address shuffling as a dynamic defense
technique, and there are other important issues that can be
further developed and analyzed. For example, a more compre-
hensive study of the impact of the different variables associated
with shuffling can be explored along with the use of network
shuffling in combination with other defenses (e.g., honeypots,
network telescopes). This paper analyzes the extreme cases of
shuffling (zero shuffling to perfect shuffling). The development
of a theoretical model for infrequent shuffling would be bene-
ficial and is currently under consideration. Beyond infrequent
shuffling, the model can be employed to study parallel probes,
in which the attacker performs multiple probes between shuffle
events.
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