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a b s t r a c t

This paper proposes a multi-objective index-based approach for optimally determining the size and
location of multi-distributed generation (multi-DG) units in distribution systems with different load
models. It is shown that the load models can significantly affect the optimal location and sizing of DG
resources in distribution systems. The proposed multi-objective function to be optimized includes a
short circuit level parameter to represent the protective device requirements. The proposed function also
considers a wide range of technical issues such as active and reactive power losses of the system, the
voltage profile, the line loading, and the Mega Volt Ampere (MVA) intake by the grid. An optimization
technique based on particle swarm optimization (PSO) is introduced. An analysis of the continuation
power flow to determine the effect of DG units on the most sensitive buses to voltage collapse is carried
out. The proposed algorithm is tested using a 38-bus radial system and an IEEE 30-bus meshed system.
The results show the effectiveness of the proposed algorithm.

© 2011 Elsevier B.V. All rights reserved.
1. Introduction

The newly introduced distributed or decentralized generation
units connected to local distribution systems are not dispatchable
by a central operator, but they can have a significant impact on the
power flow, voltage profile, stability, continuity, short circuit level,
andquality of power supply for customers and electricity suppliers.
Optimization techniques should be employed for deregulation
of the power industry, allowing for the best allocation of the
distributed generation (DG) units [1].

There are many approaches for deciding the optimum sizing
and siting of DG units in distribution systems. In [2–4], the
optimum locations of DG in the distribution network were
determined. These works aimed to study several factors related
to the network and the DG unit itself such as the overall
system efficiency, system reliability, voltage profile, load variation,
network losses, and the DG loss adjustment factors. In [5],
the optimal sizing of a small isolated power system that
contains renewable and/or conventional energy technologies was
determined to minimize the system’s energy cost.

In [6–12], the authors succeeded in merging both the DG
location and size in one optimization problem. The main factors
included in the optimization problem were investment cost,
operation cost, network configuration, active and reactive power
costs, heat and power requirements, voltage profile, and system
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losses. Several methods have been adopted to solve such an
optimization problem. Some of them rely on conventional
optimization methods and others use artificial intelligence-based
optimization methods.

In some research, the optimum location and size of a single
DG unit is determined [6,13–17], while in others the optimum
locations and sizes of multiple DG units are determined [9,18–20].

In [4], a mixed integer linear program was formulated to
solve the optimization problem. The objective was to optimally
determine the DG plant mix on a network section. However, that
required dealing with the power system approximately as a linear
system, which is not the real case. In [5], a tabu search (TS)-based
methodwasproposed to find the optimal solution of their problem,
but the TS is known to be time-consuming algorithm in addition
to its ability to be trapped in a local minimum. In [6–8], a particle
swarm optimization (PSO) algorithmwas introduced to determine
the optimum size and location of a single DG unit to minimize the
real power losses of the system. The problem was formulated as
one of constrainedmixed integer nonlinear programming,with the
location being discrete and the size being continuous. However,
the real power loss of the system was the only aspect considered
in this work, while trying to optimally find the size of only one
DG unit to be placed. In [9], different scenarios were suggested
for optimum distribution planning. One of these scenarios was
to place multiple DG units at certain locations pre-determined
by the Electric Utility Distribution Companies (DISCOs) aiming to
improve their profiles and minimize the investment risk. In [10],
a genetic algorithm (GA)-based technique together with optimal
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power flow (OPF) calculationswas used to determine the optimum
size and location of DG units installed to the system in order to
minimize the cost of active and reactive power generation. Just
as the case of using a TS, the GA is a time-consuming method,
although it can reach global or near-global solutions. In [11], the
primal–dual interior-point optimization procedure was employed
to identify the optimal location and size of DG units introduced
to the system. The optimization procedure was formulated using
only voltage profile indices, and then the effect of introducing DG
units on the line losses was studied. In [12], a sensitivity analysis
of power losses in terms of DG size, location, and operating point
was performed to find the optimal size and location of DG units.
In [13], an optimization technique based on a GA was used. The
objective was to minimize a multi-objective performance index
function. The indices were reflecting the effect of DG insertion on
the real and reactive power losses of the system, the voltage profile,
and the distribution line loading. Different loadmodels were taken
into consideration. In [15], an analytical method to determine the
optimum location–size pair of a DG unit was proposed in order
to minimize only the line losses of the power system. In [16], an
exhaustive search algorithm was used to optimally locate and size
a single DG unit in a meshed system, taking into consideration
the system losses and short circuit level. In [17], the placement
of a single DG unit with certain size was considered. The impact
of placing such a unit at each node of the system was studied.
The system indices representing the system losses, voltage profile,
line loading capacity, and short circuit level were taken into
consideration. As for placing multiple DG units, many research
papers have been presented. In [18], a GA-based algorithm was
used to determine the optimum size and location of multiple DG
units to minimize the system losses and the power supplied by the
main grid, taking into account the limits of the voltage at each node
of the system. Power–voltage (P–V ) curves have been traditionally
used as graphical tools for studying the voltage stability in electric
power systems. The overall impact of a DG unit on voltage stability
is positive. This is due to the improved voltage profiles as well
as decreased reactive power losses. In [19], DG units were placed
at the most sensitive buses to voltage collapse. The units had the
same capacity and were placed one by one. In [20,21], a GA-based
algorithmwas presented to locatemultiple DG units tominimize a
cost function including the system losses and service interruption
costs. In [22], an adaptive-weight PSO (APSO) algorithm was used
to place multiple DG units, but the objective was to minimize only
the real power loss of the system. In [23], a combination of PSO
and genetic algorithms was used to find the optimal location of
a fixed number of DG units with specific total capacity such that
the real power loss of the system is minimized and the operational
constraints of the system are satisfied. In [24], three types ofmulti-
DGunitwere optimally placed, also tominimize the real power loss
of the system using PSO.

All the mentioned research placed DG units with unity power
factor. In [25], PSO was used to place multiple DG units with non-
unity power factor, but the objective was tominimize only the real
power loss of the system.

In this paper, all factors, indices, and objective functions are
gathered to form a multi-objective optimization problem. The
objective function is formed by combining indices showing the
effect of DG presence on the real and reactive power losses,
voltage profile, and MVA capacity of conductors, in addition to
the short circuit level of the system. The multiple DG units
are assumed to have unspecified power factor. The placement
procedure is carried out taking into consideration different load
models. The optimization problem is solved using the particle
swarm optimization (PSO) technique, which is capable of finding
a global or near-global optimum solution in addition to having
a very short simulation time, in the range of a few seconds,
Table 1
Load types and exponent values.

Load type α β

Constant 0 0
Industrial load 0.18 6
Residential load 0.92 4.04
Commercial load 1.51 3.4

compared with other artificial intelligence techniques such as the
genetic algorithm (GA), tabu search (TS), or simulated annealing
(SA), which require longer simulation times, in the range of
several minutes. Although the GA, for example, is very efficient in
finding a global or near-global optimal solution of the problem,
it requires a very long run time, which may be several minutes
or even several hours, depending on the size of the system under
study [26]. PSO, first introduced by Kennedy and Eberhart, is one
of the modern heuristic algorithms. It was developed through
simulation of a simplified social system, and it has been found to be
robust in solving continuous nonlinear optimization problems [27,
28]. The PSO technique can generate a high-quality solution and
stable convergence characteristic within a shorter calculation time
than other stochastic methods [29]. PSO has been motivated
by the behavior of organisms, such as fish schooling and bird
flocking. Generally, PSO is characterized as a simple concept,
easy to implement, and computationally efficient. Unlike the
other heuristic techniques, PSO has a flexible and well-balanced
mechanism to enhance the global and local exploration abilities.

The proposed algorithm was applied to two test systems, a
radial 38-bus system [13] and amesh IEEE 30-bus system [30]. The
algorithm is built using MATLAB script functions. A continuation
power flow is carried out to determine the effect of DG units on the
voltage stability limits using the Power System Analysis Toolbox
(PSAT) [31].

2. Load models and impact indices

The optimal allocation and sizing of DG units under different
voltage-dependent load model scenarios are to be investigated.
Practical voltage-dependent load models, i.e., residential, indus-
trial, and commercial, have been adopted for investigations. The
load models can be mathematically expressed as [13]

Pi = PoiV α
i (1)

Qi = QoiV
β

i , (2)

where Pi and Qi are real and reactive power at bus i, Poi and Qoi are
the active and reactive operating points at bus i, Vi is the voltage
at bus i, and α and β are real and reactive power exponents. In the
constant power model conventionally used in power flow studies,
α = β = 0 is assumed. The values of the real and reactive
exponents used in the present work for industrial, residential, and
commercial loads are given in Table 1 [13,14].

In practical situations, loads aremixtures of different load types,
depending on the nature of the area being supplied. Therefore, a
load class mix of residential, industrial, and commercial loads is to
be investigated too, inwhich every bus of the systemhas a different
type of load connected to it.

There are various technical issues that need to be addressed
when considering the presence of distributed generators in
distribution systems. Ochoa et al. [17] computed several indices
in order to describe the impacts on a distribution system due to
the presence of distributed generation during maximum power
generation. The studies are presented for each of these load
models. MVAsys is the total MVA intake by the DISCO, and it is
defined as

MVAsys = [(Pintake + PDG)2 + (Qintake)
2
]
1/2, (3)
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where Pintake and Qintake are the real and reactive power intakes
from the grid and PDG is the power generated by the DG units.

In this work, several indices will be computed in order to
describe the effect of loadmodels due to the presence of DG. These
indices are defined as follows.
(1) Real and reactive power loss indices (ILP and ILQ): The real and

reactive power loss indices are defined as
ILP = [PLDG]/[PL] (4)
ILQ = [QLDG]/[QL], (5)
where PLDG and QLDG are the real and reactive power losses
of the distribution system after the inclusion of DG. PL and
QL are the real and reactive system losses without DG in the
distribution system.

(2) Voltage profile index (IVD): One of the advantages of proper
location and size of the DG is the improvement in voltage
profile. This index penalizes a size–location pair which gives
higher voltage deviations from the nominal value (Vnom). In
this way, the closer the index is to zero better is the network
performance. The IVD can be defined as

IVD =
n

max
i=2


|V nom| − |V i|

|V nom|


, (6)

where n is the number of buses.
Normally, the voltage limit (Vmin ≤ Vi ≤ Vmax) at a particular
bus is taken as a technical constraint, and thus the value of the
IVD is normally small and within the permissible limits.

(3) MVA capacity index (IC): As a consequence of supplying
power near to loads, the MVA flows may diminish in some
sections of the network, thus releasing more capacity, but
in other sections they may also increase to levels beyond
the distribution line limits (if the line limits are not taken
as constraints). The index (IC) gives important information
about the level of MVA flow/currents through the network
regarding the maximum capacity of conductors. This gives
information about the need for system line upgrades. Values
higher than unity (calculated MVA flow values higher than
the MVA capacity) of the index given the amount of capacity
violation in term of line flow, whereas lower values indicate
the capacity available.

IC =
NOL
max
i=1


|Si|

|CSi|


, (7)

where NOL is the number of lines, Si is the MVA flow in line i,
and CSi is the MVA capacity of line i.
The benefit of placing DG in a system in the context of line
capacity released is measured by finding the difference in IC
between the system with and without DG. The avoidance of
flow near to the flow limits is an important criterion, as it
indicates that howearlier the system needs to beupgraded and
thus adding to the cost. Normally, the constraint (Si ≤ Si,max)
at a particular line is taken as a strict constraint.

(4) Short circuit level index (ISC): This index is related to protection
and sensitivity issues, since it evaluates the short circuit
current at each bus with and without DG [16,17].

ISC =
Iwithout DG
SC − Iwith DG

SC

Iwithout DG
SC

, (8)

where Iwithout DG
SC is the short circuit current before installing the

DG and Iwith DG
SC is the short circuit current after installing the

DG.

3. Particle swarm optimization

In this paper, a PSO technique is used to find the best solution
of themulti-objective problem of placing and sizing ofmultiple DG
units.
PSO is an optimization technique, and it is an evolutionary
computation technique [32–34]. The method has been developed
through a simulation of simplified social models. The features of
the method are as follows.

(1) The method is based on research on swarms such as fish
schooling and bird flocking.

(2) It is based on a simple concept. It works in two steps, which
are calculating the particle velocity and updating its position.
Therefore, the computation time is short, and it requires little
memory.

According to the research results for bird flocking, birds find food
by flocking (not individually). This led to the assumption that
information is owned jointly in flocking. According to observations
of the behavior of human groups, the behavior pattern of each
individual is based on several behavior patterns authorized by the
groups, such as customs and the experiences by each individual
(agent). The assumptions are basic concepts of PSO.

PSO is basically developed through simulation of bird flocking
in two-dimensional space. The position of each individual (agent)
is represented by the XY axis position and the velocity is expressed
by vx (the velocity along theX axis) and vy (the velocity along the Y
axis). Modification of the agent position is realized by the position
and velocity information.

An optimization technique based on the above concept can be
described as follows: bird flocking optimizes a certain objective
function. Each agent i knows its best value so far (pbesti) and its
XY position (Si). Moreover, each agent knows the best value so far
in the group (gbest) among pbests. Each agent tries to modify its
position using the following information:

• the current position vector Si = [Sxi, Syi],
• the current velocity vector vi = [vxi, vyi],
• the distance between the current position and pbest, intro-

duced as (pbesti − Si), and
• the distance between the current position and gbest, introduced

as (gbest − Si).

This modification can be represented by the concept of velocity.
The velocity of each agent can be modified by the following
equation:

vk+1
i = wvk

i + c1rand × (pbesti − ski ) + c2rand × (gbest − ski ),(9)

where

vk
i is the velocity of agent i at iteration k,

w is the adaptive inertia weight linearly adapted to decrease
from wmax = 0.9 to wmin = 0.04, such that
w = wmax − [(wmax − wmin)/number of iterations]∗ current
iteration number,
cj are the accelerating coefficients within the range [0,4], which
are conventionally set to a fixed value of 2,
rand is random number between 0 and 1,
ski is the current position of agent i at iteration k,
pbesti is the pbest of agent i, and
gbest is the gbest of the group.

Using the above equation, a certain velocity, which gradually gets
close to pbest and gbest, can be calculated. The current position
(searching point in the solution space) can be modified by the
following equation:

sk+1
i = ski + vk+1

i . (10)

Fig. 1 shows a concept of modification of a searching point by
PSO and Fig. 2 shows a searching concept with agents in a two-
dimensional solution space. This concept can be then extended to
an N-dimensional solution space.
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Fig. 1. Concept of modification of a searching point by PSO.

Fig. 2. Searching concept with agents in a solution space by PSO.

PSO in its simplest form has been applied in many fields con-
cerning optimization, and many research studies have attempted
to improve the simple PSO performance by improving its vari-
ants. In [35–37], adaptive control strategies were developed for
the inertia weight and acceleration coefficients for faster conver-
gence speed. In [38], a comprehensive learning particle swarm
optimizer (CLPSO), which applied a learning strategy using all
other particles’ historical best information, was used to update a
particle’s velocity. The CLPSO showed an improved performance
compared tomanyother PSOvariants. In [39–41], a dynamicmulti-
swarm particle swarm optimizer (DMS-PSO) was introduced. In
DMS-PSO, small neighborhoods were used to enable the parti-
cles to have more diverse exemplars to learn from to achieve
better results on multi-modal problems. In [42,43], the fully in-
formed particle swarm optimization algorithm (FIPS) was pro-
posed. The velocity update rule used in FIPS considered all the
neighbors of a particle to update its velocity instead of just the
best one. In general, all the improvements to PSO aimed to achieve
faster convergence speed while solving the problem of prema-
ture convergence especially in a multi-peak, high-dimensional
function.

4. Multi-objective-based problem formulation

The multi-objective index for the performance calculation of
distribution systems for DG size and location planning with load
models considers all previous mentioned indices by giving a
weight to each index.

The PSO-based multi-objective function (MOF) is given by

MOF = (σ1.ILP + σ2.ILQ + σ3.IC + σ4.IVD + σ5.ISC)
+MVAsys(pu), (11)

where MVAsys(pu) is the total intake from the grid expressed per
unit, and
5−

p=1

σp = 1 ∧ σp ∈ [0, 1].
Table 2
Index weights.

Indices σp

ILP 0.3
ILQ 0.2
IC 0.25
IVD 0.1
ISC 0.15

These weights are indicated to give the corresponding importance
to each impact index for the penetration of DG with load models,
and they depend on the required analysis (e.g., planning, operation,
etc.).

The weighted normalized indices used as the components of
the objective function are due to the fact that the indices get
their weights by translating their impacts in terms of cost. It is
desirable if the total cost is decreased. Table 2 shows the values for
the weights used in present work, considering normal operation
analysis, and they are selected guided by the weights in [13,17].
However, these values may vary according to engineer concerns.
For this analysis, active losses have the higher weight (0.3) since
they are important in many applications of DG. The current
capacity index (IC) has the second highest weight (0.25) since it
gives important information about the level of currents through
the network regarding the maximum capacity of conductors
in distribution systems. Protection and selectivity impact (ISC)
received aweighting of 0.15 since it evaluates important reliability
problems that DG presents in distribution networks. The behavior
of the voltage profile (IVD) received aweight of 0.1 due to its power
quality impact.

The multi-objective function (11) is minimized subject to var-
ious operational constraints to satisfy the electrical requirements
for a distribution network. These constraints are the following.

(1) Power-conservation limits: The algebraic sum of all incoming
and outgoing power including line losses over the whole
distribution network and power generated from the DG unit
should be equal to zero.

PSS(i, V ) =

n−
i=2

PD(i, V ) +

NOL−
j=1

Ploss(j, V ) − PDG, (12)

where NOL= number of lines and PD = power demand (MW).
(2) Distribution line capacity limits: The power flow through any

distribution line must not exceed the thermal capacity of the
line:

Si ≤ Si,max. (13)

(3) Voltage limits: The voltage limits depend on the voltage
regulation limits provided by the DISCO:

Vmin ≤ Vi ≤ Vmax. (14)

The implementation of PSO starts by random generation of
an initial population of possible solutions. For each solution,
size–location pairs of the DG units introduced to the system
are chosen within technical limits of locations and sizes of the
DG units. Each solution must satisfy the operational constraints
represented by Eqs. (12)–(14). If one of these constraints is
violated, such a solution is rejected. After generating a population
of solutions satisfying the pre-specified constraints, the objective
function of each solution (individual) is evaluated.

Once the population cycle is initialized, the position of each
individual in the solution space is modified using the PSO
parameters, e.g., pbest, gbest, and the agent velocity, to generate
the new population. If the DG size and/or location exceed the
limit, they are adjusted back within the specified limits (the
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Fig. 3. The multi-objective function optimally minimized under different load
models.

boundaries). The operational constraints are then checked. If any
of them is violated the new solution is rejected and another one is
generated and checked until a solution that satisfies the specified
limits is found. The algorithm stops when the maximum number
of generations is reached. According to PSO theory, the optimal
solution is the best solution ever found throughout the generations
(gbest).

To validate the proposed method, it is applied to the 38-bus
system of [13] under the same load conditions and using the same
objective function (IMO) and same values of index weights used
in [13] to optimally place one DG unit in the system.

The results of applying the proposed PSO to the system under
different load conditions and the results given in [13] through
applying the GA are given in Table 3. It must be noted that the
run time of the PSO algorithm ranged from 10 to 20 s, which is
relatively a very short time.

As shown in Table 3, for all loadmodels, all the indices aremuch
reduced when using PSO for the problem solution compared with
their values when using the GA in [13], except the IC index. From
the values of the IC index, it can be concluded that the line loading
with the resulting size–location pairs was higher than that of [13]
but stillwithin rated limits. However, the overall objective function
(IMO) was reduced as well.

From the previous results, it can be concluded that the proposed
PSO method is an efficient method to deal with the problem
introduced in this work.

5. Simulation results and analysis

The proposed algorithm is tested using both a 38-bus radial test
system [13] and an IEEE 30-bus mesh test system [30]. The base
values used are 100 MVA and 23 kV. A DG size is considered in a
range of 0–0.63 pu. In this study, it is considered that the DG is
operated at an unspecified power factor, unlike the situation that
has commonly been used in literature.

The first bus is considered as the feeder of electric power
from the generation/transmission network. The remaining buses
of the distribution system except the voltage-controlled buses are
considered for the placement of a DG of given size from the range
Fig. 4. The voltage profile under different load models.
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Fig. 5. The line loading under different load models.
Table 3
Impact indices for penetration of a DG unit in the 38-bus system with load models using PSO and GA.

Impact index Const. load Ind. load Res. load Com. load Mixed load
PSO GA PSO GA PSO GA PSO GA PSO GA

ILP 0.45 0.7104 0.5025 0.8819 0.4852 0.8822 0.4783 0.8846 0.4824 0.8839
ILQ 0.4572 0.7048 0.511 0.8958 0.4928 0.8941 0.4853 0.8957 0.4898 0.8977
IC 0.9944 0.8739 0.765 0.8795 0.9856 0.8812 0.9931 0.8825 0.9745 0.8821
IVD 0.059 0.0689 0.0594 0.0739 0.0575 0.0738 0.0574 0.0732 0.0575 0.0737
Min IMO 0.5289 0.6539 0.5281 0.7629 0.5278 0.7631 0.5277 0.7645 0.5285 0.7647
Optimal size–location pair 0.63–30 0.62–14 0.63–30 0.63–25 0.63–30 0.63–25 0.63–30 0.63–25 0.63–30 0.63–25
Fig. 6. The short circuit level difference of the system under different load models.

considered. The real and reactive loads were modeled as being
voltage dependent.
5.1. Case 1: 38-bus radial system

The proposed PSO-based algorithm was applied to the 38-bus
test system to determine the optimal size and location of DG units
such that the multi-objective function given in (11) is minimized.
The system line data and load data are given in [13]. For this
test system, three DG units were optimally sized and placed. The
proposed systemwas applied to different loadmodels. The size and
location of each DG unit under different load models are given in
Table 4.

The multi-objective function optimally minimized under dif-
ferent load models is shown in Fig. 3. After many trials it was
found that, for this optimization problem and this system, the
best parameters to be used for PSO in all cases were a popula-
tion size of 15 and a maximum iteration number of 25. As shown
in Fig. 3, the objective function reached a near-global minimum
and stayed there till the end of the iterations. The minimum ob-
jective function was attained with a computation time of about
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Table 4
Size and location of DG units in the 38-bus radial system.

Load type DG1 DG2 DG3
Size Location Size Location Size Location
P (pu) Q (pu) P (pu) Q (pu) P (pu) Q (pu)

Constant 0.6299 0.6289 30 0.2585 0.507 13 0.1957 −0.1853 11
Industrial 0.3038 1.0659 30 0.3802 −0.2334 10 0.3845 0.1522 16
Residential 0.0647 0.6281 31 0.5107 −0.0663 32 0.4076 0.4022 13
Commercial 0.2892 −0.2916 35 0.2862 1.0677 29 0.4575 0.2103 15
Mixed 0.4758 −0.8928 29 0.1307 0.7862 12 0.4582 1.1254 30
Fig. 7. The P–V curves at the weakest buses of the system.

20 s on an INTEL Core 2 Duo CPU, 2.1 GHz with 1.97 GB RAM.
All the evaluations were carried out with self-developed codes in
MATLAB.

The value of the MOF and the impact of optimal placement and
sizing of DG units on the active and reactive power losses of the
system and the totalMVA intake from the grid are given in Table 5.

It is shown that the optimal placement of DGunits in the system
caused a reduction in both power losses and MVA intake from the
grid. The reduction in real power loss was in the range 54–67%.
The reduction in reactive power loss was in the range 58–67%. The
reduction in the total MVA intake was about 30%.

The effect of inserting DG units in the system on the voltage
profile, line flow, and the short circuit level is shown in Figs. 4–6,
respectively.

Fig. 4 shows the improvement in voltage profile under different
load models. As shown in Fig. 4, the voltage at all buses before
inserting DG units in the system is higher than 0.95 pu, except at
buses 18 and 37, in the case of the constant load model. Due to the
insertion of DG units, the voltage profile significantly improved for
all load models studied. As shown in Fig. 4(a), the voltage at bus 18
during the constant load was raised to 0.99 pu.
Fig. 8. The multi-objective function optimally minimized under different load
models.

Fig. 5 shows the line loading of the systemwith andwithout DG.
It is clear that for most of the lines the loading decreased, while for
some lines it remained the same or increased, but still within line
loading limits.

As a result of the placement of DG units in the system, the
short circuit level at most of the system buses was increased.
Fig. 6 shows the difference between the short circuit level at
each bus of the system with and without DG as a percentage
of the value of the short circuit level before the placement
of DG units in the system. As shown in Fig. 6, the maximum
increase is very low: a maximum difference of 3.92% occurred
in the case of the industrial load model and it happened at
bus 37.

Running the continuation power flow using the PSAT for the
system with and without DG units and recording the P–V curve at
theweakest buses of the system, bus 18 and bus 37, showed a great
improvement in the maximum loading and hence in the voltage
stability margin for both buses. Fig. 7 shows how the maximum
loading and in consequence the voltage stabilitymargin at buses 18
and 37 in the case of the constant load model have been improved
by moving the breakdown point far to the right (higher loading
parameter λ).

5.2. Case 2: IEEE 30-bus mesh system

The proposed PSO-based algorithm was applied to the IEEE
30-bus test system to determine the optimal size and location of
distributed generation units such that themulti-objective function
given in (11) is minimized. The system line data and bus data are
given in [30]. For this test system, two DG units were optimally
sized and placed. The proposed system was applied to different
load models. The size and location of each DG unit under different
load models are given in Table 6.

The multi-objective function optimally minimized under dif-
ferent load models is shown in Fig. 8. After many trials it was
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Table 5
System power losses and MVA intake for different load models in the 38-bus radial system, and the value of the MOF.

Load model PL PLDG QL QLDG MVASYS MVASYS-DG Value of MOF

Const. 16.516 5.3986 11.006 3.5976 438.57 300.2462 3.252718
Ind. 14.627 5.8781 9.713 3.9236 425.35 304.4423 3.297935
Res. 15.113 5.6135 10.046 3.6998 428.67 311.0265 3.305198
Com. 15.294 6.3262 10.169 4.2428 429.93 308.0879 3.335645
Mixed 15.207 6.9399 10.109 4.7914 429.47 305.5652 3.310678
Fig. 9. The voltage profile under different load models.
Table 6
Size and location of DG units in the 30-bus meshed system.

Load type DG1 DG2
Size Location Size Location
P (pu) Q (pu) P (pu) Q (pu)

Constant 0.3121 0.0796 24 0.6300 −0.3239 7
Industrial 0.3229 0.0433 24 0.6290 −0.3018 7
Residential 0.3007 0.0498 20 0.6300 −0.3261 7
Commercial 0.3188 −0.0314 17 0.6238 −0.2925 7
Mixed 0.3360 0.03931 20 0.6295 −0.2997 7
found that, for this optimization problem and this system, the
best parameters to be used for PSO in all cases were a popula-
tion size of 25 and a maximum iteration number of 50. As shown
in Fig. 8, the objective function reached a global minimum and
stayed there till the end of iterations. The minimum objective
function was attained with a computation time of about 50 s
on an INTEL Core 2 Duo CPU, 2.1 GHz with 1.97 GB RAM. All
the evaluations were carried out with self-developed codes in
MATLAB.
The value of the MOF and the impact of optimal placement
and sizing of DG units on the active and reactive power losses of
the system and the total MVA intake from the grid are given in
Table 7.

It is shown that the optimal placement of DGunits in the system
caused a reduction in both power losses and MVA intake from the
grid. The reduction in real power loss was in the range 30–37%.
The reduction in reactive power loss was in the range 26–31%. The
reduction in the total MVA intake was about 62%.
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Table 7
System power losses and MVA intake for different load models in the 30-bus meshed system, and the value of the MOF.

Load model PL PLDG QL QLDG MVASYS MVASYS-DG Value of MOF

Const. 4.951 3.0591 30.5343 20.930 108.79 39.8475 0.587907
Ind. 4.913 3.0673 30.4856 21.017 109.25 39.9897 0.588452
Res. 4.975 3.2501 29.4368 20.815 110.78 40.3807 0.591623
Com. 5.021 3.3728 28.9620 20.659 112.09 40.4207 0.593594
Mixed 4.911 3.3730 29.2556 21.018 109.42 40.1011 0.589224
Fig. 10. The line loading under different load models.
The effect of inserting DG units in the system on the voltage
profile, line flow, and short circuit level is shown in Figs. 9–11.

Fig. 9 shows the improvement in voltage profile under different
load models. As shown in Fig. 9, the voltage at all buses before
inserting DG units in the system is higher than 0.95 pu, and the
lowest voltage is at bus 30. Due to the insertion of DG units, the
voltage profile significantly improved for all load models studied
at most of the system buses.

Fig. 10 shows the line loading of the system with and without
DG. It is clear that formost of the lines the loading decreased, while
for some lines it remained the same or increased, but still within
line loading limits.

As a result of the placement of DG units in the system, the short
circuit level at most of the system buses was increased. Fig. 11
shows the difference between the short circuit level at each bus
of the system with and without DG as a percentage of the value
of the short circuit level before the placement of DG units in the
system. As shown in Fig. 11, the maximum increase is very low: a
maximum difference of 2.3% occurred in the case of the industrial
load model, and it happened at bus 23.
Running the continuation power flow using the PSAT for the
system with and without DG units and recording the P–V curve
at the weakest bus of the system, bus 30, showed an improvement
in the maximum loading and hence in the voltage stability margin.
Fig. 12 shows how the maximum loading and in consequence the
voltage stability margin at bus 30 in the case of the constant load
model have been improved by moving the breakdown point more
to the right (higher loading parameter λ).

6. Conclusion

Multi-objective optimization analysis, including load models,
for size–location planning of distributed generation in distribution
systems has been presented. The proposed optimization algorithm
was applied to a 38-bus radial test system and an IEEE 30-bus
mesh test system. The results showed that the proposed algorithm
is capable of optimal and fast placement of DG units. The results
clarified the efficiency of this algorithm for improvement of the
voltage profile, reduction of power losses, reduction of MVA flows
and MVA intake from the grid, and also for increasing the voltage
stability margin and maximum loading.



A.M. El-Zonkoly / Swarm and Evolutionary Computation 1 (2011) 50–59 59
Fig. 11. The short circuit level difference of the systemunder different loadmodels.

Fig. 12. The P–V curves at bus 30.
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