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Abstract 

A simple extension of an incrementally nonlinear, so-called hypoplastic constitutive model, which was originally proposed for cohesionless 
sand, is presented with respect to cohesive powders. Motivated by the effect of capillary force, an internal state variable representing an 
intrinsic pressure is introduced. The model is then extended by adding the intrinsic pressure to the actual stress. The material parameters in 
the extended model can be identified with conventional experiments. Numerical simulations of several laboratory tests, including oedometer 
and triaxial tests, are presented. By comparing the predicted relation between tensile strength and consolidation pressure with experimental 
data on limestone powder available in the literature, it is shown that the extended model is capable of reproducing the salient behaviour of 
cohesive powders, e.g. the nonlinear stress-strain relation, dilatant volume change upon shearing and the dependence of the tensile strength 
on the consolidation pressure. 
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1. Introduction 

Bulk solids can be classified grossly into cohesive and 
cohesionless materials according to how the resistance 
against shearing is developed. Whereas the shear resistance 
of cohesionless materials, such as sand, is of frictional nature, 
the shear resistance of cohesive materials may be caused by 
different chemical and physical effects, for example van der 
Waals and capillary bounds or cementation. A substantial 
difference between cohesive and cohesionless materials on 
the macroscopic level lies in the fact that cohesive materials 
are able to sustain tensile stress up to a certain limit while 
cohesionless materials cannot. 

The description of the mechanical behaviour of bulk solids 
is important in a number of engineering fields, such as geo- 
technical or chemical engineering and the handling in silos. 
In the latter area, cohesive materials often result in unwel- 
come phenomena such as choking and arching. Traditionally, 
the results from model tests often serve as the basis for engi- 
neering design and constructive dimensioning [ 1,2]. How- 
ever, the model tests suffer from the shortcoming that the 
results cannot be related to problems with different boundary 
conditions and loading histories. 

Recently, much effort has been devoted to the research of 
constitutive models for bulk solids [3,4]. A perusal of the 
relevant literature suggests, however, that most constitutive 
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models proposed for bulk solids are based on elastoplastic 
theory. Although remarkable success has been reported in the 
literature [ 5], there seem to be some potential difficulties in 
applying elastoplastic models. Upon deviatoric loading bulk 
solids generally do not show a clear yielding point and an 
elastic domain cannot be identified. Furthermore, the defor- 
mation during unloading is not totally reversible. As a con- 
sequence, the determination of the yield surface and the 
decomposition of the deformation into elastic and plastic 
parts are rather questionable. A general overview of the basic 
differences between the various constitutive models, i.e. 
hyperelasticity, hypoelasticity, hyperplasticity or elastoplas- 
ticity and hypoplasticity can be found in the recent work by 
Wu and Niemunis [6]. 

The paper focuses on cohesive materials with limestone 
powder as the representative material and presents the so- 
called hypoplastic model as an alternative approach to the 
elastoplastic constitutive models. The hypoplastic model is 
based on nonlinear tensorial functions and is developed with- 
out recourse to the concepts in elastoplastic theory such as 
yield surface, flow rule and the decomposition of the defor- 
mation into elastic and plastic parts. The idea of using non- 
linear tensorial functions to describe the mechanical 
behaviour of cohesionless sand was pioneered by Kolymbas 
[7]. By adopting a specific function, it was shown that many 
salient features of sand could be reproduced. In a later work 
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by Wu and Kolymbas [ 8 ], the definition of hypoplasticity 
was given and the general form of the hypoplastic constitutive 
model was proposed. Based on this general constitutive 
model, various aspects of cohesionless materials have been 
investigated, such as shear banding [9 ], cyclic loading [ 10], 
rate dependence [ 11 ] and failure [ 12]. The hypoplastic 
model has been shown to capture the salient features of gran- 
ular materials. Remarkable progress has been achieved in the 
recent work by Wu and Bauer [ 13] where the critical state 
was integrated successfully into the hypoplastic model to 
account for the effect of the stress level and the initial density 
on the mechanical behaviour of sand. The proposed consti- 
tutive model covers a broad spectrum of density and is appli- 
cable to both initial and fully developed plastic deformations. 

Motivated by the formal similarity between the behaviour 
of loose sand and normally consolidated cohesive powders 
and between dense sand and overconsolidated cohesive pow- 
ders, the present investigation continues and enlarges the line 
of work by Wu and Bauer [ 13] to account for cohesion and 
the effect of strain history. 

In Section 2 the framework of the hypoplastic constitutive 
model is briefly recapitulated. In Section 3, the constitutive 
model is extended by introducing an internal state variable, 
which depends on the stress level and the void ratio. The 
identification of the material parameters in the model is dis- 
cussed in Section 4. Finally, the capability of the constitutive 
model is demonstrated by simulating laboratory tests on lime- 
stone powders in Section 5. 

2. Outline of the hypoplastic model 

We start with the general constitutive equation of the rate 
type and assume that the Jaumann stress rate T depends on 
the Cauchy stress Tand the stretching D: 

7"=H(T, D) (1) 

The Jaumann stress rate is defined by 

7"= J'-- [4FF+ TW (2) 

where the spin tensor Wand the stretching tensor D are related 
to the velocity v as follows: 

D=½[Vv+(Vv)r], W=½[Vv-(Vv) T] (3) 

In accordance with the notations of continuum mechanics 
[14] italic bold lower and upper case letters are used to denote 
vectors and tensors. A superposed dot implies material time 
differentiation. Following the sign convention in continuum 
mechanics tensile stress, elongative strain and their rates are 
taken as positive. The principle of material objectivity 
requires that the constitutive equation must be frame indif- 
ferent. For a detailed formulation of Eq. (1) the general 
representation theorem for an isotropic tensor-valued func- 
tion of two symmetric tensors given by Wang [ 15] can be 
used: 
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Fig. 1. Strain and stress response of  the hypoplastic model. 

7"= a~l+ a2T+ a3D+ a4"/"2 + asD: + ae( TD+ D~ 

+ aT( TD:+ D27 ") + as( 7"2D+ D ~ )  

+ 0~9( TED 2 + D2T 2) (4) 

where ai ( i=  1 ..... 9) are scalar functions of the invariants 
and joint i nvariants of the tensors T and D: 

ai=a,(tr('l'), tr(T2), tr(T3), tr(O), tr(O2), tr(O3), 

tr(TD), t r (~D) ,  tr(TD2), tr("/'2D:) ) (5) 

The advantage of Eq. (4) lies in the fact that terms with a 
higher order than two can be expressed by their irreducible 
integrity bases. The construction of coefficients a~ by the 
invariants allows an infinite multiplicity. However, the num- 
ber of material constants should not be too high to allow for 
an easy calibration of the constitutive model. 

It was shown by Wu and Kolymbas [ 8 ] that the following 
tensorial function is suitable for capturing the incremental 
nonlinear behaviour of granular materials: 

J'= L( T, D) + N( "/3 I[DII (6) 

where I1" II denotes the Euclidean norm. Eq. (6) consists of 
two parts, namely a linear tensorial function L( T, D) in D 
and a nonlinear function N(7") II DII in D. 

It should be noted that the concepts in elastoplasticity the- 
ory, such as yield surface, plastic potential and decomposition 
into elastic and plastic parts, are not used in developing Eq. 
(6). There is even no need to define loading and unloading 
explicitly, since they are specified implicitly by the equation. 
To show how loading and unloading can be accounted for, 
let us consider two cases, namely two stretchings with the 
same length II DII but in opposite directions, D and - D. The 
principle of our hypoplastic model in describing loading and 
unloading is depicted in Fig. 1. The response of Eq. (6) can 
be separated into the response of the linear part and of the 
nonlinear part. For the stretchings D and - D, we obtain two 
stress rates with the same length and in opposite directions 
from the linear part (a and - d in Fig. 1). The nonlinear part, 
however, yields the same stress rate (/~ in Fig. 1) irrespective 
of the direction of stretching. The response of the equation, 
which is composed of the sum of the contributions from the 
linear and the nonlinear parts, is d for loading D and d for 
unloading - D. In this way, the irreversible behaviour during 
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loading and unloading can be accounted for with a single 
constitutive equation. It is worth noting that the nonlinear part 
is active for both loading and unloading. 

From the positive homogeneity of first degree if O follows 
the rate independence of the hypoplastic model. The non- 
linearity in O implies the possibility of describing dissipative 
material behaviour as well. An explicit form of Eq. (6) was 
proposed by Wu [ 16] : 

J'= Cl tr( T) D+ C2 tr( TO) tr(~-TT)- T 

T2 Ta~v 2 ]1/2 + c ~ - - ~  [tr(O2)]l~+ C , - - ~  [tr(D ~) (7) 

wherein the deviatoric stress Ta,., is given by 

Taler= T -  ½ tr(T) I 

with I as the unit tensor. The determination of the dimension- 
less constants Ci and the simulation of laboratory tests have 
been described [ 16,17]. 

It should be noted that the limit state of a granular material 
is also included in the hypoplastic constitutive equation. A 
material element is said to be in a limit state if the stiffness 

o 

vanishes for particular Tand D satisfying T= 0. For Eq. (6), 
the limit state leads to a conical surface with its apex in the 
origin of the principal stress space [ 12]. 

3. The extended hypoplastic model 

In Eq. (6),  the history dependence is assumed to be rep- 
resented by the instantaneous stress alone. While this assump- 
tion has been shown to be reasonable for simple loading 
programmes, e.g. monotonic loading, it is certainly oversim- 
plified for more complex loading programmes. Moreover, 
Eq. (7) is homogeneous in stress. In the principal stress 
space, the limit surface is a cone with its apex at the origin. 
Therefore, equations such as Eq. ( 1 ) allow no tensile stress. 
The above shortcomings can be removed by extending the 
constitutive equation with an internal state variable S: 

T=H(T,  S, D) (8) 

S is assumed to be a symmetric tensor of second order. The 
objective rate Sis  assumed to be determined by the following 
general form: 

S=M(T, S, D) (9) 

The dependence of S on the loading history may be 
obtained by integration of Eq. (9).  It is worth noting that 
different chemical or physical causes for cohesion give rise 
to a different material behaviour. In the present paper the 
evolution equation for S is focused on granular materials like 
limestone powder where cohesion is assumed to depend on 
the average distance between the grains. The effects of 
cementation and the change of water content are not taken 
into account. From experiments we know that cohesion 
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Fig. 2. Limestone powder (a) before and (b) after consolidation. 

depends primarily on the strain history. An initially loose 
powder will become denser with increasing consolidation 
pressure. After full unloading the swelling is smaller and the 
memory on the overconsolidation stress is evident by a lower 
void ratio. During reloading the compressive strength 
increases with the overconsolidation stress. The microscope 
picture in Fig. 2 shows the variation of the distance between 
the limestone particles before and after the consolidation. 
Inspired by the experimental results that for a given stress 
level the shear resistance depends on the compaction of the 
material, the evolution equation for £} is assumed to be a 
function of the volumetric strain rate tr(D) and S itself: 

S= -k~S tr( D) (10) 

where kl is a positive material parameter. 
Motivated by the kinematic hardening concept of Ziegler 

[ 18] the following stress transformation can be used: 

T*= T+ S (11) 

We incorporate the internal state variable S in Eq. (6) by 
replacing the stress tensor Twith a transformed stress tensor 
T*: 

"]'= L( T*, D) + N(T*)  II DII (12) 
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Fig. 3. Limit surfaces in the principal stress space. 

The meaning of the transformed stress can be illustrated 
by comparison of Eqs. (6) and (12) in the limit state (Fig. 
3). Considering an isotropic internal state variable $ = cl, the 
meaning of the stress transformation T+  $ can be shown by 
shifting the apex of the limit surface alon_ng the space diagonal 
Tm = T2 = T3 back with a distance of c~/3 from the origin. 

If the internal state variable $changes with the deformation 
process, which is evident for the present case using Eq. (10), 
the limit surface depends on the strain history. Starting from 
an initial So the absolute value of S will increase during 

e 

contraction, where $ is proportional to $ and the volumetric 
strain rate. For dilatation the value of $ decreases and 
approaches zero asymptotically. If the compressibility of the 
grains is negligibly small, the strain rate in Eq. (10) can be 
expressed by the void ratio e and its rate ~: 

S= - k , S  j - -  (13) 
l + e  

It should be noted that the influence of an inherent anisotropic 
cohesion can be described by the same hypoplastic constitu- 
tive model with an anisotropic initial tensor So. The eigen- 
direction of $ is independent of volume change and the 
memory of the initial direction will not be swept out. Stress- 
induced anisotropic phenomena are not included in Eq. (13). 
To take into account the dependence of $ on T an extension 
of Eq. (10) is conceivable. However, it is obvious that a 
refined reproduction of the material behaviour usually 
requires a larger number of material constants and experi- 
mental data for the calibration. The experimental investiga- 
tion of the anisotropic behaviour is rather extensive and does 
not belong to the standard laboratory tests. For simplicity we 
neglect anisotropic effects and consider in the following an 
initial isotropic tensor So. With respect to a void ratio e = eo 
and an intrinsic isotropic stress Co: 

80 = Co/ (14) 

the components Si ( i =  1, 2, 3) in Eq. (13) can be evaluated 
by analytical integration: 

Si=c(1 + e) -k, (15) 

The value ofc  in Eq. (15) carries the dimension of stress and 
can be estimated either by the parameters Co, eo, k~: 

C=Co(1 +Co) k' (16) 

or as the internal state variable for a vanishing void ratio 
e = 0. A detailed calibration will be outlined in Section 4. 
Eqs. (15) and (16) show that for the special constitutive 
assumptions of Eqs. (13) and (14), the value of $ can be 
represented by the current void ratio. It is worth noting that 
other causes of cohesion need different representations of the 
evolution equation for $, e.g. the change of the water content 
and the effect of cementation cannot be related to the void 
ratio alone. 

To incorporate strain softening as a material behaviour 
depending on the density and the stress level, we get the 
following extended constitutive equation: 

7"= Is[ L( T*, D) +I~N(T*) II DII] (17) 

tr( ( T+ 8)  D) 
+ c2 ( T+ S) 

tr( T+ S) 

( T+ S)2 ( T+  S)~v 2 
N(T*) =C3 +(74 

tr( T+ S) tr( T+ S) 

The stiffness factor/s and density factor/e stand for the effect 
of pyknotropy and barotropy. 

There is experimental evidence that the stress response of 
a material for the same stress state and the same deformation 
direction is also influenced by the current void ratio. The 
deformation resistance of a material will increase with 
increasing density. If we neglect the anisotropic effect, the 
behaviour can be described only by scalar multiplication of 
the basic hypoplastic equation with a stiffness factor Is as a 
function of the void ratio. The stiffness factor Is in Eq. (17) 
is assumed to be 

Is=(~-~ p' (18) 

Hereinpl > 1 and the reference void ratio elo are constants. A 
decrease of the void ratio e means an increase of the stiffness 
factor Is and consequently an increase in the stress rate, i.e. 
for the same stress state and stretching the stress rate derived 
from Eq. (17) is higher for a lower void ratio. 

An increase in the peak friction angle with the density can 
be taken into account by a scalar multiplication of the nonlin- 
ear part of the constitutive equation with le. The density ffictor 
I, in Eq. (17) is defined by 

l~=(e--ed) m (19) 
kec -- e d  

where e is the current void ratio, ec the critical void ratio, ed 
the maximum void ratio and P2 a constitutive constant. The 

with 

L(T*,  D)---Cl tr(T+ S)D 
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void ratio e changes during the deformation according to the 
following equation: 

~= (1 + e )  tr(D) (20) 

Comparison of the current void ratio with the critical void 
ratio allows differentiating between normal consolidation and 
overconsolidation: 

normal consolidation e > e¢ 
overconsolidation e < e¢ 

Within the density factor in Eq. (19) the concept of the 
critical state [ 19] is included in the extended hypoplasticity 
model. A critical state is defined by stationary stress and a 
stationary void ratio under continuing shear deformation, 
namely as a limit state with T =  0 and d = 0. For stationary 
flow there is no change of volume and hence S = 0. For e = ec 
we obtain Ic = 1 and consequently Eq. (17) in the limit state 
is related to the critical one. This fact will be taken into 
account by the calibration of the constitutive constants Ci 
(i = 1 ..... 4) as outlined in Section 4. The friction angle in a 
critical state will be denoted as ~Oc. A lower void ratio e < e~ 
leads to Ic < 1, which means that the influence of the nonlinear 
part of the constitutive equation decreases and for ~'= 0 a 
higher peak friction angle ~o > ~c will be obtained. 

For the maximum void ratio e = ed the value of the density 
factor It  is zero and the stress rate is only a function of the 
linear part of Eq. (17): 

7"= I~ L ( T*, D) 

In this case the constitutive equation becomes hypoelastic 
according to the definition given by Truesdell [14]. This 
means, for instance, that cyclic loading starting from e = ed 
does not result in further densification. 

There is experimental evidence that the critical void ratio 
decreases with an increasing stress level. The dependence of 
e¢ on the transformed stress level T* can be described by 

e¢ = eco exp{ - [ t r (T*/po)  ]P'} (21) 

where eco is the critical void ratio for the reference pressure 
Po. It is assumed that the lower bound of the void ratio, ed 
decreases with t r (T*)  in a similar manner as ec: 

ed = edO exp{ - [tr( T*/po) ]p3} (22) 

4. Identification of material parameters 

The extended hypoplastic model, Eq. (17) includes 12 
parameters: the four parameters CI, C2, Ca, C4 of the basic 
version, k~, c for the internal state in Eq. (15), p~, elo and edo 
for the dependence of the stiffness on the current void ratio 
and the three constants P2, P3, e~o for the influence of pyk- 
notropy and barotropy on limit states, i.e. on peak strengths 
and stationary flow states. 

The following calibration procedure is based on experi- 
mental data of triaxial tests with different consolidation 

stresses. For a homogeneous deformation the direction of the 
principal strain and stress rates are coaxial and the Jaumann 
stress rate "/'is equal to the material time derivation T In the 
coordinate system (TI, T2, T3), due to axial symmetry of the 
triaxial test, we have D2 = D3 and T2 =/'3. For this boundary 
condition Eq. (17) leads to two independent differential 
equations: 

TI = CI (T* + 2T*)DI + C2 T*DI + 2T'D3 T* 
T* + 2T~ 

4 T~,)2 ]J (DI 2 d- 2D3 2) 1/2 
+[c:t2+ ~ c,(r*- r*+2rt 

T'~D1 + 2T*D3 
J'a=C~(T*+2T~)D3+C2 T~+2T~ T~ 

1 T.)2" ]J (D12 -I- 2D3 2) 1/2 
-1- [C3T~ '2 q- ~ C4(T* - T~ + ETa' 

(23) 

(24) 
with 

T* = Ti+S1, i =  1, 3 (25) 

For triaxial compression the axial strain rate is assumed to be 
D1 = - 1. It should be noted that the absolute value of DI is 
immaterial, as the constitutive equation is rate independent. 

First we consider a stationary flow state (Tic, T3¢, e¢) 
defined by 7"= 0 and t r ( D ) = 0 .  The density factor in this 
state is I t = 1 and the value of the stiffness factor Is has no 
influence on the constitutive equation. It is worth noting that 
the stress ratio TI¢/T3¢ for stationary flow is influenced by $1 
and not constant in contrast to a cohesionless granular mate- 
rial. From Eqs. (23) and (24) we obtain the following rela- 
tion: 

Tic + Sic 
= constant (26) 

T3c + Sic 

With respect to Eq. (15) the internal variable in Eq. (26) 
can be expressed by the void ratio e = e¢: 

T~¢ + c( l + e¢) -kl 
T3¢ + c ( 1 + e¢) -kl = constant (27) 

Inserting the values for T~c, T3¢ and the corresponding void 
ratio e¢ from triaxial compression tests with different consol- 
idation pressures in Eq. (27), we obtain a set of equations 
for the approximation of the parameters c and kl. 

The decrease of the void ratio with the consolidation pres- 
sure referring to a stationary flow state can be described by 
Eq. (21 ) where the parameters e¢o and P3 can be fitted to the 
data of critical states, i.e. to the relation between e¢ and 
tr(T*) =Tl¢+2T3¢+3c(l+e~) -k~. It is assumed in Eq. 
(22) that the changing of the lowest void ratio ed with 7"* is 
affine to the critical void ratio e¢. The value eao is defined as 
the maximum density of the granular structure under T* = 0 

Xu Guofang
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and can be approximated by a simple shaking test with small 
amplitudes. 

The calibration of the four constants C1, C2, C3, C4 can be 
carried out using the following quantities from the triaxial 
compression test with an initial void ratio e = elo: 

(i) in the isotropic consolidation state: 

the tangential stiffness J ' l /DI = Eo 

with respect to Is = 1 and So~ = c( 1 + elo) -kl 

the stress state T1 = T 3  = To 

03 
the ratio of the strain rates ~ = ~'o 

(ii) and in the stationary flow state: 

TIc + Sl~ 
the stress ratio ~ = a¢ 

T3c -{- SIc 

with respect to Sic = c( 1 + e¢) -k, 

D3 
the ratio of the strain rates ~ = 0.5 

The constitutive equation yields the following four linear 
equations in a matrix form: 

1 (1 "]- 2 p02) 1/2 
3 "~ (1-21'o) 3 0 

9Vo 2Vo- 1 ( l +21- 'o2)  1/2 0 

3 2 4 ~ (a¢- 1) - (ac+2) 2 ac(l -a~) V2ac z "~ 

~ (at+2) 2 1-ac ~ (a~- 1) 

e- 

Eo 
Cl 

To+Sol 

C2 0 

.q 

x C3 = 0 

C~ 0 

The solution to this equation system leads to the parameters 
Ci ( i =  1, 2, 3 ,4) .  

The tangential stiffness at the beginning of a triaxial com- 
pression is proportional to the pressure level and refers to Eo 
and the void ratio in accordance with the data used for the 
calibration. From experimental evidence, it can be seen that 
different stiffnesses for the same initial triaxial compression 
level are caused by different densities depending on the defor- 
mation history. For higher consolidation pressures e will 
decrease and the initial tangential stiffness will increase. The 
influence of the void ratio is included in the extended model 

by the stiffness factor (e lo /e)  p'. The  value e~o refers to the 
triaxial test for the calibration of the constants Ci. The differ- 
ent tangential stiffnesses for various overconsolidation ratios 
can be approximated by the following relation: 

J'l/D1 =Eo (%°) m (28) 

Following the triaxial compression test the stiffness will 
decrease with increasing axial load and approaches zero if 
the shear resistance is fully mobilized. The peak strength is 
higher for a denser material under lower pressure. Strain 
softening can be observed after the peak and the void ratio 
will increase asymptotically to the critical value. For a strain- 
controlled test the shear resistance after the peak will decrease 
while the void ratio increases asymptotically to the critical 
value. The limit state for a normally consolidated material is 
reached for large axial deformation while a peak cannot be 
observed. It should be noted that the limit state at the peak 
defined by ~'= 0 does not fulfil the condition of tr(D) = 0 for 
the critical state. For cohesionless granular materials Wu and 
Bauer [ 13] showed that the influence of barotropy and pyk- 
notropy on the peak strength and strain softening can be 
described by a density factor I~. A similar adaptation of the 
density factor defined in Eq. (19) can be found for cohesive 
powders. With the known relation for ec and ed the parameter 
P2 can be optimized by numerical simulations of the peak 
strength for different overconsolidated states. The numerical 
experiments show that the parameter p2 lies in a small range 
between 0.02 <P2 < 0.25. 

It should be noted that the homogeneity of the specimen is 
usually limited for large deformations by strain localizations. 
Therefore the assumption of stationary flow is only pragmatic 
for numerical reasons, e.g. to limit the dilatancy for large 
shearing. A further remark should be made concerning local- 
ized deformations in the form of shear bands at large strain- 
ing. Shear band formation is often accompanied by 
pronounced strain softening. As soon as shear bands appear, 
the experimental results cannot be evaluated. Nevertheless, 
there is experimental evidence that moderate strain softening 
can still be observed without shear bands. After shear bands 
occur, the stress-strain behaviour generally depends on the 
thickness of the shear bands. One possible way to describe 
this behaviour is to extend the constitutive model to include 
a so-called internal length [20]. Since our model does not 
possess an internal length, its application is limited to the 
regime prior to shear band formation. 

5. Numerical simulations 

The performance of the model will be illustrated by sim- 
ulating normally consolidated and overconsolidated triaxial 
tests with different consolidation stresses. The determination 
of material parameters is based on the experimental data from 
triaxial tests with limestone powder. With the calibration 
procedure described in the above section the set of parameter 
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Table 1 
Constants for the numerical experiments 

Cl C2 C3 C, 
- 12.34 - 108.12 - 109.27 107.77 

em eoa eao kt 
1.1 2.45 0.4 22.9 

c (kPa) Pl P2 P3 
- 0.0001 2.05 O. 18 0.049 
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Fig. 4. Numerical and experimental triaxial compression test. Experimental 
data from limestone powder with a consolidation stress To = 95 kPa [ 10]. 
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Fig. 5. Triaxial compression test with different normal consolidation pres- 
sure. 

values given in Table 1 is obtained where the reference pres- 
sure in Eqs. (21) and (22) ispo = 100 kPa. It should be noted 
that the preparation of tests on powders is very difficult. Some 
hints about sample preparation are given by Harder [ 21 ] and 
Bauer [ 17 ]. The critical state with vanishing volume change 
was not reached in experiments. Therefore the present cali- 
bration is rather qualitative in order to show the essential 
features of the proposed constitutive model. 

Fig. 4 shows the numerical prediction of a triaxial com- 
pression test together with the experimental data for a con- 
solidation pressure of To = 95 kPa. A numerical investigation 
of consolidation pressure on the material behaviour is given 
in Fig. 5. For normally consolidated triaxial compression tests 
the strain and stress paths reach a stationary value asymptot- 
ically and the void ratio in the critical state is lower for a 
higher consolidation pressure. The influence of cohesion can 
be shown in uniaxial compressive tests (Fig. 6) and uniaxial 
tensile tests (Fig. 7) with 7"2 = T3 -- 0. The initial void ratios 
are dependent on isotropic compression and extension. A 
relation between the initial density and the maximum com- 
pressive or the tensile strengths is evident. For the same 
consolidation pressure the compressive strength is higher 
than the maximum tensile stress. The strength increases with 
overconsolidation pressure and shows softening after the 
peak with dilatation. With respect to the relation between the 
internal variable S and the void ratio, Eq. (15) ,  dilatation 
also means a reduction of $. A relation between the com- 
pressive strength and the consolidation stress is shown in Fig. 
8 together with experimental results from Schwedes and 
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Fig. 6. Uniaxial compressive strength for different consolidation pressures. 
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Fig. 8. Compression strength versus consolidation stress. 
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Fig. 9. Numerical triaxial test under cyclic loading with a confining pressure 
of  I0  kPa  and an initial consolidation pressure of  100 kPa. 

Schulze [ 22 ]. The numerical simulation shows that the non- 
linear relation is more significant for low consolidation stress 
levels and goes over to a linear relation for higher consoli- 
dation pressure. 

1 0  
0 - • 

< 

, i i 
-1_20n -10 0 10 20 

Axial  St ra in  El  [%] 

Fig. 10. Numerical experiment o f  an uniaxial cyclic loading test with an 
initial consolidation pressure o f  100 kPa.  

Finally, we will investigate the influence of  overconsoli- 
dation during cyclic loading tests with a symmetric strain 
amplitude of El = + 18%. Firstly we will consider a cyclic 
triaxial test under a constant confining pressure of  10 kPa 
after a virgin isotropic compression to 100 kPa. As shown in 
Fig. 9 the magnitude of  the deviatoric stress is higher for 
compression than for extension. With an increasing cycle 
number the maximum deviatoric stress increases. After sev- 
eral cycles a shake-down will be reached. Fig. 10 shows the 
result of  a similar cyclic test which was isotropically consol- 
idated to 100 kPa and then completely unloaded. The maxi- 
mum axial stress decreases with the number of  cycles and 
gradually approaches a limit value. Comparison of Fig. 10 
with Fig. 9 shows that the influence of the overconsolidation 
ratio on the stress-strain behaviour is significant. 

6. Conclusions 

Our objective was to present a hypoplastic model for gran- 
ular materials with cohesion. The basic hypoplastic model 
was extended by introducing an internal state variable and a 
density factor. Consequently, it has been shown that stiffness, 
contractancy and dilatancy are dependent on density and the 
stress level; that cohesion depends on the deformation history 
expressed by the void ratio; and that strain softening after the 
peak until a residual friction resistance is possible. 

7. List of  symbols 

a c 

Co 

c, 
D 
Di 

e 

stress ratio in critical state 
internal state variable with dimension of  stress for 
e = e o  
(i = 1, 2, 3, 4) constitutive constants 
stretching tensor 
( i =  1, 2, 3) principal strain rates 
void ratio 
rate of  e 
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e c 

ed 

Eo 

E~ 
! 

kl 
Po 
Pi 

s, 
T 

f 
L 
To 
Ti 
W 

void ratio in a critical state 
minimum void ratio 
initial tangential stiffness in triaxial compression cor- 
responding to void ratio elo 
( i =  1, 2, 3) principal strain 
identity tensor 
density factor 
stiffness factor 
dimensionless constitutive constant 
reference pressure 
( i = 1, 2, 3) constitutive constants for pyknotropy and 
barotropy 
objective rate of internal state variable S 
(i = 1, 2, 3) components of internal state variable S 
Cauchy stress tensor 
time derivation of Cauchy stress tensor 
Jaumann stress rate 
( i =  1, 2, 3) principal stress rates 
isotropic consolidation stress 
(i = 1, 2, 3) principal stresses 
spin tensor 

Greek letter 

Vo Poisson ratio for e = elo 
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