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Abstract

Non-local viscoelastic beam models are used to analyse the dynamics of beams with different boundary conditions using
the finite element method. Unlike local damping models the internal force of the non-local model is obtained as weighted
average of state variables over a spatial domain via convolution integrals with spatial kernel functions that depend on a
distance measure. In the finite element analysis, the interpolating shape functions of the element displacement field are
identical to those of standard two-node beam elements. However, for non-local damping, nodes remote from the element
do have an effect on the energy expressions, and hence on the damping matrix. The expressions of these direct and cross
damping matrices may be obtained explicitly for some common spatial kernel functions and Euler-Bernoulli beam theory.
Alternatively numerical integration may be applied to obtain solutions. Examples are given where the eigenvalues are com-
pared to the exact solution for a pinned—pinned beam to demonstrate the convergence of the finite element method. The
results for beams with other boundary conditions are used to demonstrate the versatility of the finite element technique.
© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

The finite element method, coupled with model updating techniques, enables the mass and the stiffness
properties of complex engineering structures to be accurately modelled, and their dynamics analysed. The
design of a structure also requires the determination of the dynamic response, and this also depends on the
energy dissipation properties or damping. The modelling capability of damping properties, and the analysis
procedures for the resulting models, are not as advanced as those based on just the mass and stiffness prop-
erties. There are several reasons for this, including: (a) in contrast to the inertia and stiffness forces, the state
variables relevant to the determination of damping forces are often not clear, (b) the spatial location of the
damping sources are generally uncertain, although often structural joints are more responsible for the energy
dissipation than the (solid) material, (¢) the functional form of the damping model is difficult to establish
experimentally, and (d) even if one manages to address the previous issues, the parameters that should be used

* Corresponding author.
E-mail addresses: m.i.friswell@bristol.ac.uk (M.I. Friswell), s.adhikari@bristol.ac.uk (S. Adhikari), leiyjl108@yahoo.com.cn (Y. Lei).

0020-7683/$ - see front matter © 2007 Elsevier Ltd. All rights reserved.
doi:10.1016/j.ijs0lstr.2007.04.023


mailto:m.i.friswell@bristol.ac.uk
mailto:s.adhikari@bristol.ac.uk
mailto:leiyj108@yahoo.com.cn

M.1 Friswell et al. | International Journal of Solids and Structures 44 (2007) 7564-7576 7565

in a chosen model are difficult to estimate. Thus the modelling of damping from first principles is very difficult,
if not impossible, for complex engineering structures. For many years, engineers have bypassed these problems
by using the viscous damping model, and a vast literature is available for this approach. In the viscous damp-
ing model, the instantaneous generalized velocities are assumed to be the only relevant state variables that
determine the damping force, and for lightly damped structures this approach works reasonably well. Viscous
damping is by no means the only damping model within the scope of linear analysis. Any causal model that
makes the energy dissipation functional non-negative is a possible candidate for a damping model. Non-vis-
cous damping models in general have more parameters and therefore are more likely to have a better match
with experimental measurements. Adhikari (2002) and Wagner and Adhikari (2003) gave more background
and references on non-viscous damping models in which the damping forces are assumed to depend on veloc-
ity time histories as well as the instantaneous velocities.

The damping model may also be non-local, where the damping force at any point on the beam depends on
the velocity of the beam over a region (Flugge, 1975; Lei et al., 2006). Such models are a generalization of
viscous damping, and examples include structures with viscoelastic damping layer treatments, structures sup-
ported on viscoelastic foundations, long adhesive joints in composite structures and surface damping treat-
ments for vibration suppression using fluids (Ghoneim, 1997). Russell (1992) proposed a non-local
damping model for the vibration analysis of a composite beam with an internal damping torque, and Ahmadi
(1975) suggested a model of non-local viscoelasticity. Banks and Inman (1991) considered four different damp-
ing models for composite beams, namely viscous air damping, Kelvin—Voigt damping, time hysteresis damp-
ing and spatial hysteresis damping. The spatial hysteresis damping model may be treated as a non-local
damping model and its non-local parameters estimated. The spatial hysteresis model, combined with viscous
air damping, gave the best quantitative agreement with experimental time histories. Adhikari and Woodhouse
(2001a,b) used a non-viscous damping model in the context of damping identification from measured transfer
functions. Lin and Russell (2001) investigated the convergence of the bending moment of an elastic beam with
spatial hysteresis damping.

Adhikari et al. (in press) presented a closed form solution for a beam with non-local damping using a trans-
fer function method for the distributed parameter system (Yang and Tan, 1992). However, solutions were only
possible for special cases of the spatial kernel function, and the influence of different kernel functions on the
dynamic characteristics were not investigated. Lei et al. (2006) analysed systems with several kernel functions
that describe possible models of the non-local effect of material damping using the Galerkin method. Recently
the authors presented a finite element method for beams resting on non-local foundations (Friswell et al., in
press). The purpose of this paper is to extend the method to beams with internal non-local damping.

2. The non-local beam model

Suppose that a beam of length L has non-local internal damping between x; and x», as shown in Fig. 1. The
equation of motion for this beam may be expressed as the following integro-partial-differential equation,

o o*wi(x, 1) *w(x, 1)
@(EI(X)T) +PA(x)T+QN(XJ) = f(x,1), (1)
where f{x, t) is excitation force, EI(x) is the bending stiffness, pA(x) is the mass per unit length of the beam and
w is the transverse displacement of the beam. The beam is initially assumed to be at rest and standard bound-
ary conditions are applied at the two ends. The internal damping model is an extension of that given by Sor-
rentino et al. (2003). Thus the damping force Qn(x, 1) is given by

Fig. 1. A beam with partial non-local internal damping.
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0? Lot Pw(é,t
Oy(x,8) = e (/0 [x Cx, &t — r)%drdf) (2)

where the spatial integrations are over the region of non-local internal damping, whose extent is denoted by x;
and x, in Fig. 1. C(x, &, 1) is the damping kernel and the dot denotes differentiation with respect to time. The
boundary conditions for Eq. (1) are identical to an undamped beam for a clamped boundary. However, other
boundary conditions, where the force and/or moment are zero, require the inclusion of the non-local effects in
the force and/or moment. Since the thrust of this paper is finite element analysis, these issues are not consid-
ered further.

Eq. (1) is an integro-differential equation, and obtaining closed form solutions is difficult. Adhikari et al. (in
press) presented a closed-form solution for beams with non-local damping in the foundation by the transfer
function method. This approach is extended to internal local damping in Appendix A. Lei et al. (2006) pre-
sented approximate solutions using a Galerkin method for uniform beams with typical kernel functions. To
treat more complicated problems with variable foundation stiffness, non-uniform section properties or with
intermediate supports, a finite element method is developed.

2.1. The origin of non-local effects

Thus far the spatial kernel function has been specified, and no indication for its origin has been given. One
would expect that the function decays monotonically, so that the effect of remote displacements on the force at
a point reduces with distance. Exponential and Gaussian functions have this property and hence are often
used as kernel functions (Eringen, 1987), and will be considered further in Section 2.2. Physically the origin
of the non-local effects appears to be related to effects that the one dimensional beam equation is unable to
capture. For foundation models extra degrees of freedom have been incorporated into models to allow for
these effects, for example the model proposed by Kerr (1965). Two dimensional models of the foundation have
been used to obtain parameters for the Kerr model (Avramidis and Morfidis, 2006). Friswell and Adhikari
(2007) estimated non-local kernel functions directly from a two dimensional finite element model of a foun-
dation, and kernel functions were fitted based on the sum of two exponential terms.

2.2. Typical kernel functions

In this paper we assume that the damping kernel function C(x, &, ) is separable in space and time. Thus the
kernel function takes the form

Cx,t—1)=Col[H(x —x1) — H(x —x2)] X [H(E —x1) — H(E — x2)]e(x — &)g(t — 7). (3)

The terms involving the Heaviside step function, H(), are required to ensure that the kernel function is zero
if either x or ¢ are outside the region of non-local damping. This model represents non-local viscoelastic damp-
ing. Viscous damping is a special case where g(¢ — t) = (¢ — 1), and local damping has c¢(x — &) = d(x — ).

The function g() is the relaxation kernel function of the non-viscous element and is often approximated as
(Friswell et al., in press)

)= Sieiin @)

=1 G

where g; and t; are positive constants representing the damping coefficients and relaxation times, respectively.
Alternatively fractional derivative or GHM models could be used (Bagley and Torvik, 1985; Kim and Kim,
2004; Golla and Hughes, 1985; McTavish and Hughes, 1993; Friswell et al., 1997).

Common choices for the spatial kernel function are the exponential decay,

z LT
cle— &) = Fend, )

and the Gaussian (error) function,
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(v — &) = e P2, (6)

V2n

although other models are also possible (Lei et al., 2006). If &« — oo then one obtains the standard local model.

3. The finite element model

Generally the approach adopted when developing models using finite element analysis is to approximate the
deformation within an element using nodal values of displacement and rotation. The kinetic and strain energy
for each element is then computed and the contributions of each element are summed to obtain a global model
of the structure. The damping matrix is obtained in a similar way using the dissipation function. One key
aspect of finite element analysis is that the contributions from each element only depend on the displacements
and rotations at the nodes associated with that element. Clearly for non-local damping this will not be the
case, although the form of the exponential kernel function given by Eq. (5) does lead to a considerable sim-
plification. Only Euler—Bernoulli beam theory is considered in this paper, although the formulation given is
easily extended to Timoshenko beam theory.

A standard beam element is modelled using two nodes (at the ends of the beam element), and two degrees
of freedom per node (translation and rotation). The deformation within the eth element, w.(n,?), is approxi-
mated using the standard cubic shape functions (Friswell et al., in press), n.(#), for n € [0,4,.], as

we(11, 1) = (1)q, (), (7)

where the vector q,(¢) = [we1(£) W, (£) wea (1) Y, (£)]" contains the nodal displacements (see Fig. 2).

The mass and stiffness matrices for Euler—Bernoulli beams are obtained in the usual way from the kinetic
and strain energy. For non-local damping the global damping matrix is obtained using the dissipation func-
tion. The dissipation function will be obtained for a local viscous damping model initially. This will then be
extended to a non-local viscous damping model and the corresponding damping matrix derived. Finally the
viscoelastic material model will be included in the resulting equations of motion. The dissipation function
for uniform local viscous damping, using the model of Sorrentino et al. (2003), is

1 [t o OHw(x,
F() = /0 w(x,t)axz<Coa(xz)>dx

L a2 2.
B 1/ c 0 w(x, ) aw(x,t)dx.
0

2 0T 2 ox?

(®)

Eq. (8) requires integration by parts, and the extra terms generated are zero because of the beam boundary
conditions. The kernel function for local damping is a Dirac delta function, d(x — &), and thus Eq. (8) may be
written as

R L OMW(E 1) OPW(x, £)
Fl)=5 /0 /0 Coofe - ) 250 TR aear )
Awel(t) We(T], t) we2(t)
\Vel(t) \ T \VeZ(t)
I |
n i
< 7 >

Fig. 2. The degrees of freedom of a beam finite element.
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This motivates the extension to the non-local viscous damping case, where the dissipation function becomes

RN O"w(E, 1) wlx,t) |,
Fl)=5 /0 /0 Coelr - ) 5 S azar (10)

If the region of the beam with non-local damping is split into M elements then the dissipation function of
Eq. (10) may be written as
1 M
F(t) = 5 Zqi(t)TCijqj(t)v (11)

ij=1

where the element damping matrices are given by
4 4 R . R
C,;= Co/ / clx; +%—x — 5)n;/(é)n}’T(5c)d§d)%. (12)
0 0

The primes denote spatial differentiation and % and ¢ are local co-ordinates within the ith and jth element,
for example x = x; + x, where x; is the location of the ith node. The local nodal coordinates for the ith element
are denoted q;.

In general each element damping matrix in Eq. (12) must be determined independently. The problem sim-
plifies significantly if the beam is modelled using elements of equal length, so that n;=mn, ¢, = ¢, Vi, and the
internal damping is uniform. Because the kernel function only involves x; — x; the matrices C; are equal
for a fixed j — i. Thus if the non-local damping covers M elements, only M of the element matrices C; have
to be calculated. For general kernel functions the matrices must be calculated by numerical integration. How-
ever, the integrations may be performed explicitly for uniform damped beams with exponential or Gaussian
(error function) kernels, as shown in Section 3.2 and 3.3.

3.1. Equations of motion and their solution

In general the degrees of freedom at all nodes will be coupled within a region where the structure has non-
local damping behaviour. This means the global damping matrix will be full. The assembly process is straight-
forward and analogous to the approach used for the mass and stiffness matrices (Friswell et al., in press). The
equation of motion for the free response of a beam with non-local viscous damping is of the form

Mq + Cq+Kq =0, (13)

where M, K and C are the global mass, stiffness and damping matrices with respect to the generalized co-ordi-
nates of the beam model. Taking the Laplace transform gives

[s°M + sC + K]q(s) = 0. (14)
A non-viscous material may be analysed by incorporating a relaxation kernel function into Eq. (14) as
[s*M + sG(s)C + K]q(s) = 0. (15)

Eq. (15) assumes that the time response of the viscoelastic foundation arises from a single material, leading
to a single G(s) term. If different materials are present then a damping term will appear for each different relax-
ation kernel, G(s).

The eigenvalues are obtained by solving

det [s*M + sG(s)C + K| = 0. (16)

The corresponding mode shapes are obtained by substituting the eigenvalues into Eq. (15) and computing the null
space of the matrix. Friswell et al. (in press) gave alternative solution strategies when G(s) is a rational polynomial.
The ecigenvalues obtained from the model will occur in complex conjugate pairs. In general the beam will

not be classically or proportionally damped, and hence the eigenvectors will also be complex. The natural fre-
quencies, w;, and damping ratios, {;, may be obtained from the corresponding eigenvalues, 4;, as follows

w; =14 and (= —real(4;)/w;. (17)
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In the examples the damping ratio will be used as a measure of modal damping.
3.2. Exponential kernel

Further simplification is possible for the exponential kernel. For a uniform beam and elements of equal
length only two element matrices have to be calculated. The direct damping matrix is

_COOC/ / —afie c\n// En'T(; )dfdx (18)

If j > i then

C,; =eUC, (19)
where the cross damping matrix is
-5 / / O (T (@) ds. (20)
2 Jo Jo
Similarly if j <,
C, = e CT, (21)

Thus only two element damping matrices need to be computed and then the complete global damping
matrix is easily derived. These matrices may be obtained explicitly by integrating Eqgs. (18) and (20), and
the resulting matrices are given in Appendix B.

3.3. Gaussian kernel

For a uniform beam, the error function (or Gaussian) kernel function given in Eq. (6) gives the direct
damping matrix as

C, = Cﬁ/ / Py (BT (3)dE . (22)

This integral may be determined in closed form and is given in Appendix C.
For a uniform beam and elements of equal length, the cross damping matrix, C; depends on the value of
| = i|. Thus if j>i and d =j — i then

Coa / / —o2 (3—E4dF) /2 y: n'T
C; = dédx. 23
)= ' (n" () 23)
Note also that

and hence the cross damping matrices for j <i are obtained immediately. The resulting closed form expres-
sions are quite complex and are not given here. However these matrices are easily obtained using symbolic
software.

4. Examples

4.1. A pinned-pinned beam

A pinned-pinned beam will be used as an example to demonstrate the use of the finite element methods for
a partial non-local viscoelastically damped beam. The results will also be compared to the exact results from
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the transfer matrix method of Adhikari et al. (in press) and revised in Appendix A for internal damping. The
dimensions of the beam are (see Fig. 1) L = 200 mm, x; = 50 mm, and x, = 150 mm. The Young’s modulus is
E =70 G N/m?, the density is p = 2700 kg/m>, and the cross-section is 5 x 5 mm. Only one term is used in the
relaxation kernel function given by Eq. (4), and the constants are defined as T = t; and g; = g... Unless stated
otherwise, C; = 0.01 N sm? and g, = I.

Table 1 shows the discretisation errors in the first four eigenvalues predicted by the finite element model,
with o =1 m~ ! and 7 =0. The results follow the usual trend, where the lower eigenvalues converge most
quickly. Note that the effect of the damping is less on the even (asymmetric) modes, because the damping
is located in the middle part of the beam where the curvature is less in the even modes. Table 2 shows the
eigenvalues for various values of o and 7, and clearly the properties of the non-local viscoelastic damping have
a significant effect on the eigenvalues.

Table 3 shows the first four eigenvalues for the Gaussian kernel with various values of  and 7, and these
results should be compared to Table 2 for the exponential kernel. The Gaussian kernel model reduces the
damping in all four modes, although the effect is more significant in the even (asymmetric) modes.

Fig. 3 shows the effect of varying the length of the part of the beam where the non-local effects occur. An
exponential spatial damping kernel with o = 1 m ™' is assumed and only the viscous time kernel (z = 0) is con-
sidered. The length of the non-local effect is defined as x, — x1, and the non-local region is in the centre of the
beam, so that (x; + x,)/2 = L/2. The number of elements in the undamped regions of the beam is 4, and the
number in the damped region is 8, giving a total of 16 elements. Modes 1 and 2 show increasing damping ratio
with the length of the damping region. However modes 3 and 4 show a more complicated behaviour, due to
the more complicated mode shapes.

Returning to the example with x; = 50 mm, and x, = 150 mm, the effect of the time constant of the visco-
elastic kernel, 7, is now demonstrated. The finite element model with 8 elements and an exponential kernel with
«=1m""is used. Fig. 4 shows the effect of 7 on the damping ratio, and highlights that the damping ratio
changes significantly only when the time constant of the viscoelastic is close to or higher than the time constant
of the mode of interest. As T — 0 the viscoelastic model approaches the viscous model, and hence the damping

Table 1
The eigenvalues for the pinned—pinned beam with viscous damping and an exponential spatial kernel

FE (4 elements)

FE (8 elements)

Exact

—178.49 + 1813.3]
—35.100 + 7282.4j
—1773.1 + 16870j
—571.00 + 32201

—178.33 + 1812.8;
—35.108 + 7255.6j
—1678.2 + 16578;j
—428.78 +29128j

—178.34 + 1812.8;
~35.146 + 7253.7
—1669.7 + 16556]
—424.45 + 29013]

Table 2

The eigenvalues for the pinned—pinned beam obtained from the finite element method with 8 elements for the exponential kernel
1=0,0=1m" 1=0.001s, a=1m" 1=0.00ls, o =10m"’ 1=0,0=10m"
—178.33 + 1812.8; —37.926 + 1887.9j —165.23 4 2320.9j —1976.1 +2963.2j
—35.108 £ 7255.6j —0.65189 + 7260.1j —35.457 4+ 7556.1j —1674.6 + 8825.9j
—1678.2 £ 16578;j —6.0185 4 16442j —55.309 + 17354 —16321 + 14570j
—428.78 4 29128 —0.50395 + 29143j —34.340 + 30197j —43969 + 27909j
Table 3

The eigenvalues for the pinned—pinned beam obtained from the finite element method with 8 elements for the Gaussian kernel
1=0,0=1m" 1=0.001s, c=1m" 1=0.00ls, 0 =10m"' 1=0,0=10m"'
—146.52 + 1813.1j —31.706 + 1874.8; —167.40 4 2344.6j —1783.6 + 3151.5j
—0.0068 + 7255.4j —0.0001 + 7255.4j —0.1234 4 7256.3j —6.6838 + 7255.6j
—1322.4 +16519j —4.7750 + 16421j —36.896 + 17052j —1813.6 +21886j

—0.0074 £ 29128;j —0.0000 £ 29128j —0.0085 4 29129j —7.1143 +29130j
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Damping ratio

10°

H
<

3
b

H
3

107

3

— Mode 1
— — -~Mode 2
—— Mode 3

10

o (m™h

107

Fig. 5. The damping ratios of the pinned—pinned beam as the non-local constant o varies.

ratios converge to the viscous results. Fig. 5 shows the effect of varying the spatial constant in the exponential
kernel of the non-local damping model, «, on the damping ratios of the first four modes. The damping
amplitude constant, Cy, has been reduced to 0.00025 N s m? to ensure that the first four modes are all under-
damped for all values of «. For large o the damping model approximates the local damping, and hence the
damping ratios converge to those of the local model. The effect of o on modes 3 and 4 is much greater than



7572 M.1 Friswell et al. | International Journal of Solids and Structures 44 (2007) 7564-7576

10°

Natural frequency (rad/s)

10° 10° 10" 10° 10° 10 10

k() (N/m)

Fig. 6. The natural frequencies for the cantilever beam as the spring stiffness at the free end varies.
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Fig. 7. The damping ratios for the cantilever beam as the spring stiffness at the free end varies.

on modes 1 and 2, and the value of o where the plots change slope is related to the reciprocal of the wavelength
of the corresponding mode.

4.2. A cantilever beam

The beam of the previous section is now clamped at the end x = 0 and has a translational spring of stiffness
ko at the end x = L. The material constants, length and cross-sectional area are identical to the pinned—pinned
beam, and the non-local damping region is defined by x; = 50 mm and x, = 150 mm. The damping constants
for the exponential kernel are Cy = 0.01 N's m? and « = 10 m ! and the viscous model is assumed (t = 0). The
finite element model with 8 elements is used. Fig. 6 shows the natural frequencies as the spring stiffness changes
and highlights that odd modes in the free-end case change the most, and indeed modes 3 and 4 cross. The
mode numbering is based on the free-end modes. Fig. 7 shows the corresponding damping ratios.

5. Conclusion

Existing numerical methods to analyse structures with non-local damping, such as the Galerkin approach,
use displacement models defined over the whole structure. Usually the finite element method is preferred
because of its ability to easily model a wide range of complex structures and boundary conditions. In this
paper, a new method of analysing beams with internal non-local damping has been proposed, utilising the
advantages of the finite element method. Non-local internal damping models mean that the damping force
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at a given point depends on the time history of the velocities within a spatial domain. The finite element mod-
els for a spatial exponential kernel requires only two element matrices to obtain the global damping matrix,
one for the cross element terms and one for the direct terms. The cross matrix to model non-local effects is a
novel concept and these matrices are zero for local damping models. Numerical solutions have been obtained
for beams with a variety of boundary conditions, and the effect of different damping constants investigated. It
was demonstrated that the form of the non-local damping model has a significant impact on the dynamic char-
acteristics of structures.
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Appendix A. The exact solution for the exponential kernel

This appendix extends the transfer matrix approach of Adhikari et al. (in press) to internal damping for
uniform beams with an exponential spatial kernel. Taking the Laplace Transform of Egs. (1) and (2) gives,

o >W,
EIWY (x,5) + s*p AW (x,s) + %SG(S) el / exp(—alx — g’|)#dg’ =0, (A.1)
x|

for x € (x1,x,). Here s is the complex Laplace parameter, W(x,s) is the Laplace transform of w(x, ). The ro-
man superscripts, for example (¢)"V, denote the order of derivative with respect to the spatial variable x. Fol-
lowing the approach of Adhikari et al. (in press), this equation may be differentiated twice and the integral
eliminated to give the sixth order ordinary differential equation

EIWY (x,5) + s2p AW (x,5) — PEIWY (x,5) + s*p AW (x,5)] — o? sG(s) W' (x,s) = 0. (A.2)

The only difference between internal and foundation damping is the order of the derivative on the last term
in Eq. (A.2). The solution procedure now follows that of Adhikari et al. (in press), but where the definition of
@ is revised based on Eq. (A.2).

Appendix B. The damping matrices for the exponential kernel

This appendix gives the explicit expressions for the direct and cross stiffness matrices for the exponential
damping kernel. The direct damping matrix is given by Eq. (18). The integral over ¢ involving the term
|x — £| can be expressed as

14 X N R R
C;= % {/ eﬂx(i—ﬁ)n//(é)n//T(&)dé + /

2 Jico Weo Eex

l

e“(’%E)n”(&)n”T()%)d%}dX. (B.1)

Evaluating the above integral and simplifying we have

2Cy

C =

A, (B.2)

where the elements of the symmetric matrix A can be obtained in closed-form as
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Ay =72 — 1820 4+ 630 — (72 4 7204 4 180%™
Ay = 30(12 = 3620* + o30%) — 9(4 + dol + 20 )e™

Az = —An
Ay = A
Ay = (18 — 50207 + 2020%) — 20%(9 + Yol + 20707 )e ™
Ay = —Ann
2 = (18 — 4o?0* + o 0%) — P (18 + 180l + So*07)e ™
Azz = An
Ay = —Anz
Agq = Ar.

The cross damping matrix in Eq. (20) is given by

c= ( /0 Ejn”(&)dé) ( /0 Ze"‘*n/’T(fc)dfc).

Evaluating the above integral and simplifying we have

2C

C e

A

where the elements of the vectors v, and v, are

Vi =6+ 3l — (6 — 3al)e”

Voo = L[3+ 200 — (3 — al)e”]
V3 = —6 — 30l + (6 — 30l)e™
([3+al — (3 —20)e™]

Vp4
and

Vo =6 — 30l — (6 + 3al)e™
Vo = £[3 =200 — (34 al)e ]
V3 = —6+ 30l + (6 + 3al)e ™
Vus = L[3 —al — (34 2al)e™].

Appendix C. The damping matrices for the Gaussian kernel

For the Gaussian kernel the direct damping matrix can be obtained using

COO‘ / / —o?(x—&) /2 // n'T
C;= wlem dédx.
o (" (3)a

Evaluating the integral, we can express C;; as

_ Aerf(V2al)2) N V2Be 70/ ) V2D
e 3 PN 30/’

where the symmetric matrices A, B and D are given by

(B.3)
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F12 0 60 —12 6L
60 4 —60 20
A =
—12 —6¢ 12 —6f
L 60 200 6L 4
[ —48 + 120°02  60(—4 + (*a?) 48 — 120%2 60(—4 + (*0?)
B 60(—4 + o) AP(=3+0P0) —6l(—d+ Pa?) 207(—6+ o)
| 4812202 —60(—4+ P0?)  —48 412022 —60(—4 + £22)
L60(—4 4 FPo?)  20(—64 FPo?)  —60(—4+ Po?)  47(=3 + (*0)
and
24 — 180%a>  —30(—4+300%) 24+ 18070 —3U(—4+30°)
p_ |34+ 30%62) (=6 +500%) 30(—4+ 3007  20°(3 —20%2)
—24 418072  30(—4 43007 24— 18072 30(—4 +3077)
L —30(—4 43002  20°(3 —20%%)  30(—4+ 3002 —1(—6+ 50)

The cross damping matrix for the Gaussian kernel is quite complex and the expressions are not given
here.
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