
Abstract. Business Activity Management (BAM) is becoming one of the
most critical areas to transform a business into an adaptive enterprise. To
manage business activities and the related resources is a very complex task.
BAM systems need to address potentially large number of business rules and
unpredictable changes of business situations. Using BAM policies to drive
BAM scenarios makes such challenging tasks practical and feasible. In this
paper, we present a policy framework for Web-Service based BAM systems.
We will cover the conceptual foundation, policy specification, policy
architecture, and a case study for the framework and related components.
Comparison with other similar works will be given at the end of this
paper.

1 Introduction

Monitoring and controlling business activities requires dynamic instrumen-
tation, adaptive infrastructure and sophisticated orchestration among
subjects and objects. A new breed of applications called Business Activity
Management (BAM) has emerged recently for enabling enterprises to
manage their business solutions. BAM automates end-to-end workflows
of all tasks related to monitoring and controlling business activities. BAM is
set to lift the management technologies to the levels of both business
processes and organizations. BAM will enhance visibility of business
activities within an enterprise, enable early detection of business anomalies,
and provide intelligent response to resolve business situations or exceptions.
In many cases, a BAM system encompasses a set of applications, business
processes, and standards that will redefine monitoring and management
paradigm within process-centric industry, e.g., manufacturing and logistics.
However, to manage business activities and the related resources is a very

complex task mainly because of potentially large number of operational rules
and unpredictable changes of business situations. Furthermore, constantly
changing business environment implies volatile requirements of monitoring
and controlling business processes. Although Business Process Integration

ISeB (2004) 2:59–87

DOI 10.1007/s10257-003-0028-9

A policy framework for Web-Service based
Business Activity Management (BAM)

Jun-Jang (JJ) Jeng, Henry Chang, Jen-Yao Chung

IBM T.J. Watson Research Center, Yorktown Heights, NY 10598, USA

(e-mail: {jjjeng,hychang,jychung}@us.ibm.com)

Information
Systems

and
e-Business

Management
� Springer-Verlag 2004

(BPI) technologies are becoming popular in various industries, it has been a
real laggard in any kind of BAM technologies. To monitor and control
business processes (activities) tends to be labour-intensive and error-prone
routine processes with minimal degree of automation. Frequently, a BAM
system needs to interact with multiple business processes and systems. For
example, there could be many points within business process where human
intervention is required. Moreover, the flow and format from one business
process to another happens in non-standard proprietary format. The issue of
inter-operability is multiplied when a BAM client is attempting to commu-
nicate with external business processes and trading partners.
Traditional management paradigms such as Network Management and

Application Management do not completely address all the above issues
because most of such systems are focused on specific domains with
predictable requirements from the customers. For example, the concept of
‘‘performance’’ is likely well-versed for network management systems, but
it may have different semantics for different business processes and
organizations. Most of conventional management systems operate in a
homogeneous environment but BAM systems do not. On the contrary,
interoperability is a major concern for developers when they are developing
BAM systems. Generally speaking, the traits of interoperability and
seamless integration are prerequisites of a useful BAM system. We need
to eliminate much of the discrepancy among managed processes and data
for the purpose of streamlining end-to-end business activity management
both within an enterprise and across enterprises.
A key to the success of BAM systems is to make BAM itself as an adaptive

system. In its current state of implementation within pretty much every
institution, BAM systems are still limited in scope. Most of them are targeted
on only a portion of BAM requirements, e.g., reporting. To provide new
BAM functionality, the developers need to go through full development
lifecycle. We argue that the primary reason for this state of affairs is the lack
of an industry-wide policy initiative. BAM policies can be used to
parameterize BAM operations and mandate each institution to build their
BAM systems in a standard manner.
We take two approaches to develop an interoperable and adaptive BAM

system: Web Services and BAM Policies. While this paper is aimed for
describing the policy framework for BAM systems, Web Services are the
cornerstone of the architecture of policy-driven BAM systems. Without the
capabilities of interoperability and the de facto integration standards
supported by Web Services, it is difficult to deploy and enforce monitoring
and control policies into BAM systems, underlying components, and
managed resources in a uniform fashion. Hence, in our framework, Web
Services are the preconditions of making policy-driven BAM systems
possible.
The rest of this paper is organized as follows. Section 2 presents the target

domain on manufacturing processes in supply chain domain and shows the
BAM management stack based on the target domain. Section 3 describes the
Web Service based BAM framework that is used as the foundation of
building BAM policy framework. In Sect. 4, we describe basic policy models
for the BAM Policy Framework including the policy lifecycle model, policy
meta-models and policy grammar. A reference implementation with a case

60 J.-J. Jeng et al.

study will be illustrated in Sect. 5. We include related work in Sect. 6. And
Sect. 7 presents our conclusion and further work.

2 Problem statement

Firstly, this section describes the target domain where we developed our
BAM platform and solutions. Secondly, we present the conceptual founda-
tion upon which the BAM policy framework is built.

2.1 Problem domain

The problem domain we have been focusing upon is the area of supply chain
management (SCM) for microelectronic manufacturing (Fordyne 2001). An
SCM process consists of four steps: demand creation/forecasting, production
planning,manufacturing execution, and available to promise. Furthermore, the
decisions in the semiconductor industry typically fall into one of four decision
tiers: strategic, tactical, operational, and response (dispatch). The categories are
based on the planning horizon, the apparent width of the opportunity window,
and the level of precision required in the supporting information.
The decision tier of strategic scheduling is driven by the time frame required

for business plan, resource acquisition, and new product introduction. The
timeframes concerned here are from three months to seven years into the
future. The tier of tactical scheduling deals with problems the enterprise
encounters in the nextweek to sixmonths. Issues considered aremade of yields,
cycle times, and binning percentages, delivery dates estimated for firm orders,
available ‘‘outs’’ by time buckets estimated for bulk products, and daily going
rates for schedule driven product are set. The tier of operational scheduling
deals with the execution and achievement of a weekly plan such as the
shipments aremade, serviceability levels to bemeasured, recovery actions to be
taken.
The tier of real-time response system addresses the problems of the next hour

to a few weeks by responding to conditions as they emerge in real time and
accommodate variances from availability assumed by systems in the plan
creation and commitment phases. BAM systems are built to realize the
capabilities of ‘‘sense and respond’’ (Lin et al. 2002) in order to satisfy the
requirements addressed in the above tiers by providing awareness among
various elements such as humans and business artefacts, etc. A BAM system
dispatches scheduling decisions regarding either monitoring or controlling
policies of actual manufacturing flows; and instructs the operators about the
next steps of achieving manufacturing commitments.

2.2 An example scenario

An example of typical use case for continuous demand-driven build plan and
inventory optimization in the domain of microelectronic manufacturing can
be described as follows. End-of-quarter revenue targets (per module family)
are released/updated after the meetings among business line managers and
executives. A business line manager (BLM) has a pre-determined set of

A policy framework for Web-Service based Business Activity Management (BAM) 61

module families for which he has financial responsibility and, therefore,
whose actual revenue (accumulated so far) and revenue outlook (for
remaining weeks in the current quarter) he is interested in tracking against
the revenue target of the current quarter. Whether the progression of the
accrued revenue is normal or below target is determined by the system using
a wineglass model (Wu et al. 2002).

2.2.1 Main course of the scenario

• On the ith day of the current week, a BLM selects a set of saleable part
numbers to view the future weekly actual sales and planned demand
quantities through BAM monitoring portal.

• Detection of Situation and Alert:
� BAM issues an alert showing the current sales quantities of some

selected saleable part numbers in the nth week are out of their bands
� BAM recommends adjusting the planned demand quantities and safety

stock requirements for the nth week.
• Recommendation:
� BAM invokes demand planning module and inventory planning module

to provide recommended demand quantities and safety stock require-
ments for the nth week.

� BAM disaggregates the weekly demand quantities into daily demand
quantities.

� BAM recommends altering daily build plan in order to optimally match
new daily demand statements, thus high serviceability, and minimize
manufacturing and inventory costs.

� BAM invokes MRP explosion and implosion module to generate
optimal daily build plan, including common wafer start quantity and
manufacturing release quantity in each part number level within the
BOM chart associated with the selected saleable part numbers.

• Prediction and Risk Assessment:
� BAM predicts the to-be manufacturing cost, inventory cost, and service

level associated with the selected saleable part numbers based on new
demand statements and new build plan.

� BAM predicts the as-is manufacturing cost, inventory cost, and service
level associated with the selected saleable part numbers based on new
demand statements and old build plan.

� BAM concludes the financial and serviceability benefits of applying
newly recommended demand statements, safe stock requirements, and
build plan.

• Decision Making by BLM:
� The BLM summarizes the financial and service benefits and reports to

the strategic management team (BLE’s and GM’s) for their approvals.
� Upon the approval, the BLM releases the new build plan to sites for

manufacturing execution. The BLM releases the new demand state-
ments to procurement team to alter buy plan.

Enterprise business activities usually have the following common character-
istics:

62 J.-J. Jeng et al.

• Individualism: Multiple organizations are often involved in the business
process. Each organization attempts to maximize its own profit within the
overall activity. The individuality makes the enterprise goals extremely
diverse and volatile.

• Physical separation: Organizations are physically distributed. This distri-
bution may be across one site, across a country, or even across continents.
This situation is even more apparent for virtual organizations which form
allegiances for short periods of time and then disband when it is no longer
profitable to stay together. Thus, the layer of virtualization becomes very
critical in terms of making decision making processes seamless across
multiple distributed organizations.

• Distributed management: Within organizations, there is a decentralized
ownership of the tasks, information and resources involved in the business
process. Hence, the style of centralized control does not fit the modern
management requirement.

• Autonomy: Different groups within organizations are relatively autono-
mous-they control how their resources are consumed, by whom, at what
cost, and in what time frame. They also have their own information systems,
with their own idiosyncratic representations, for managing their resources.

• Concurrency among business activities: There is a high degree of natural
concurrency - many interrelated tasks are running at any given point of the
business process.

• Visibility of business activities: There is a requirement to monitor and
manage the overall business process. Although the control and resources
of the constituent sub-parts are decentralized, there is often a need to place
constraints on the entire process (e.g. total turn-around time, financial
performance, etc.).

• High adaptability: Business processes are highly dynamic and unpredictable
and it is difficult to give a complete pre-defined description of all the business
activities that need to be performed and how they should be ordered.

2.3 Decomposition of BAM Space

BAM is aimed for providing an adaptive management platform for
monitoring, controlling and managing business process focused solutions.
The BAM space can be modelled into two dimensions: (1) degree of
responsiveness; and (2) levels of abstraction. The former categorizes the
BAM systems based on the responsiveness and the extent of deliberation
for their response to business situations and specifications. The latter
classifies the BAM systems into different levels of abstraction. The first
dimension on the degree of responsiveness encompasses: reactive manage-
ment, deliberative management and reflective management. The second
dimension on the levels of abstraction encompasses three levels: execution,
operation and strategy. Figure 1 illustrates the BAM space as described.

2.4 Decomposition based on degree of responsiveness

Along the axis of degree of responsiveness, we can have the following
classification:

A policy framework for Web-Service based Business Activity Management (BAM) 63

• BAM Reactive management layer responds to the management events
quickly and directly through scripted business process models. Most of
BAM scenarios can be addressed by modelling them into this layer. The
implementation of this layer can be many folds. Usually, the timeliness is a
critical concern for those scenarios implemented in this layer. A notable
example of the reactive management is to detect the situation when a
business process is shutting down by unforced errors such as electrical
outage. In such case, an alarm needs to be sent to concerned parties
immediately.

• BAM Deliberate management layer performs management tasks that
require more reasoning and more complicated computation. It is not
uncommon that an adaptive infrastructure needs to provide decision
support capability so more intelligent management actions can be derived
towards managed resources. An example of such managerial task is the
business processes with the ability of sense-and-respond (Lin et al. 2002).

• BAM Reflective management layer enables adaptive infrastructure to
maintain information about itself and use this information to remain
extensible and adaptable (Buchmann et al. 1996; Gamma et al. 1995).
Reflexive management layer performs meta-management directives unto
the lower management layers and managed entities.

A meta-management directive is a higher sphere of control such as adapting
the management commitments, modifying measurement and analysis
algorithms in the deliberative management layer, or changing the alarm
rules in the reactive management layers. As such, an adaptive infrastructure
can have detailed knowledge of the managed resources, current status of
managed business processes and business systems, the ultimate capacity in

Fig. 1. BAM space

64 J.-J. Jeng et al.

the inventory, performance expectation, and all connections to other systems
to manage itself. Therefore, through reflective management mechanism,
adaptive infrastructure achieves the goals of both 2nd order management and
autonomic computing.

2.5 Decomposition based on levels of abstraction

We have adopted layered approach to modelling BAM solutions. There are
four levels of abstraction to classifying BAM models as follows.

• The Strategy model defines the business goals and objectives in the form of
balanced scorecards representing a quantification of goals, and measurable
objectives. A balanced scorecard expressing each perspective as a
combination of objectives initiatives, measure and target will indicate
how well this model is performing.

• The Operational model, typically developed by operation executives in
collaboration with strategy executives, describes the process in business
terms, commitments, and metrics which get mapped to the scorecard for
comparison with their strategic targets. The metrics also known as Key
Performance Indicators (KPI) The KPIs are directly linked to the
measures that indicate progress on Balanced Scorecard goals in the
Strategic model.

• An operational model would be transformed into an Execution model
which defines how the business operation is executed in terms of specific
applications, data sources, people and partners. It does not assume a
particular implementation, allowing iterative performance improvement
while assuring consistency with the business objectives.

• Finally, some development may be required to connect the platform-
independent execution artifacts to a specific platform’s Implementation
model such as the WAS J2EE or MS .NET platform, and develop specific
APIs using Web Services, for example.

Figure 2 shows the approach of model-driven BAM where the BAM models
at different levels of abstraction are authored and deployed to corresponding
M&M (monitoring & management) runtime infrastructures. Business solu-
tions emit business and IT events to M&M runtime for further analysis based
upon pre-defined BAM models. Monitored data is propagated in a bottom-
up fashion and the management directives are rendered in the other way.
Hence, the lower-level decisions and actions are governed by those in the
upper levels. Note that the end users of BAM systems are usually different
from the policy makers. Same observation can be applied to the participants
at different levels of abstraction.
With these mappings, transformations, and connections in place, raw

events, transactions, and environmental data can be captured and aggregated
into business metrics. Business commitments can be used to compare
business metrics and desired objectives. The software components running in
a manufacturing execution system can be depicted as three kinds of agents:
execution agents, operational agents and strategic agents. Execution agents
are those interacting directly with the manufacturing systems, e.g., inventory
agents or data agents. Operational agents include planning agents, MRP

A policy framework for Web-Service based Business Activity Management (BAM) 65

agents, alert and situation agents that generate business exceptions. Strategic
agents are those agents that make recommendation and provide risk
assessment. If two agents are performing semantically related tasks, they
need to be aware of each other. In other words, they have to be ‘‘closer’’ to
each other cognitively.
In this paper, the governance of interaction among agents is enabled by

BAM Policy Framework that is presented in following sections. BAM
systems, as a whole, can be viewed as an ecosystem composing of various
artefacts such as business entities, business processes, and business
participants, with distance functions connecting them to provide just-in-
time information and cues for decision making. Figure 3 depicts the
management food chain for BAM agents and the degree of the values
added by those agents. The systems at the bottom are mostly legacy
systems such as workflow management systems, inventory management
systems, scheduling systems, and databases. The next level up in the food
chain is the execution agents that interact directly with the E-Commerce
systems and information sources. The execution agents consume the

Fig. 2. Policy-driven business activity management

Fig. 3. BAM food chain

66 J.-J. Jeng et al.

information generated by the lowest level E-Commerce systems, and
render control on those systems on behalf the agents at the higher level of
the food chain. The examples of execution agents include information
agents and broker agents.
The operational agents detect the situations produced by the execution

agents, conduct the analytics activities, and respond to the situations by
rendering management actions back to the execution management layer. The
examples of such agents include analytics and planning agents. The highest
level of the management food chain is the layer of strategic agents that detect
the situations from operational agents, conduct strategic analysis (automat-
ically or cooperatively with decision makers), and respond to the situations
based on existing enterprise goals and policies. The examples of such agents
include decision assistant agents, risk analysis agents and so on.

3 Web-Service based BAM

A BAM system is composed of BAM Web Services. Each BAM Web
Service (noted as WS-BAM) serves as a BAM agents collaborating with
one another to fulfill the BAM requirements imposed by clients. A BAM-
WS must make its choices among potential reasoning tasks to dynamically
fulfill local and global objectives. For example, different manufacturing
domains may require different optimization algorithms for performing
customer demand forecasting analysis. Hence, a BAM-WS should be able
to understand the business context where it is running and select the best
analytic algorithm for such purpose.
A BAM-WS must adapt its control mode to dynamic goal-based

constraints on its actions and uncertainty about its environments. The
execution environment in an enterprise is usually diverse. Various kinds of
devices, hardware, software, storages, and networks are likely to coexist in
the same enterprise. When a BAM-WS is about to render control to its
environment, e.g. changing build plan for certain manufacturing line, it must
be able to detect the control mode based on the target objects to be updated
or modified. Moreover, A BAM-WS must adapt its meta-control strategy to
its dynamic configuration of demands, opportunities, and resources for
behavior.
BAM reference model describes the requirement space of developing

BAM-WS components in the domain of business activity management. A
BAM-WS is a structure that is stable, coherent, and comprises several BAM-
WS components as substructures. A BAM-WS is also used as a modeling
construct describing the full range of business entities operating within all
operating environments. It is similar to the concept of virtual business units
described in IBM BizADS methodology (Gamma et al. 1995).
BAM-WS components are organizational units that contain the following

characteristics:

– Autonomy: the capability of business units to create and control the
execute its own decisions and policies;

– Collaboration: the process whereby a set of business units develop
mutually acceptable plans through negotiation and execute them

A policy framework for Web-Service based Business Activity Management (BAM) 67

– Optimization: the capability of business units to collect and arrange
themselves in order to achieve a business goal; and

– Re-configurability: the ability of a function of a business unit to be simply
changed in an efficient and cost-effective fashion.

A BAM-WS can be constructed based on the requirements of a set of
business activity management. Developers can use and develop simple
notations (e.g. UML) for capturing functional and non-functional require-
ments for WS-BAM components. A BAM-WS component potentially
provides seven BAM perspectives: Context, Intent, Value, Capability,
Process, Constraint, and Resource.

• The context perspective describes the environmental information for the
existence and behaviour of a BAM-WS. The business context is largely
about the relationships among BAM-WS components. Being aware of
business contexts is essential for driving effective development of BAM-
WS component. The business context is largely about the relationships
with other BAM-WS components. Relationships govern value exchange
among BAM-WS components.

• The intent perspective describes the goal of a BAM-WS and relates the goal
to the other entities such as its capabilities, business values, and the goals
of other WS-BAM components. The intent of a BAM-WS should have
states corresponding to its context, capabilities, and values: a) Qualified
intents that specified capabilities and values for meeting the intents; b)
Fulfilled intents that have been satisfied; c) Violated intents that have
failed meet the original conditions. A violated intent can be fulfilled if the
context and internal values are changed towards satisfied states.

• The value perspective is the report and value-exchange view of the
concerned business activities. This uses the monitoring view heavily to
sample and analyze the operational performance of target business
activities. This view helps a BAM-WS determines if it has achieved its
goals or otherwise.

• The capability perspective specifies and links what a BAM-WS can do,
from the strategy level to operation, to execution level, and to the resource
level. These kinds of capabilities exist: a) the capabilities belonging to
BAM-WS itself; b) the capabilities belong to its ‘‘child’’ BAM-WS
components; and c) the capabilities that are not realized yet. The last
group of capabilities can be concretized through Web-Service development
process or collaboration with other BAM-WS components.

• The processes perspective describes how BAM-WS components cooperate
with one another and harness passive resources in order to execute
capabilities and to desired outcomes. Events trigger the commencement of
processes. Interactions connect process steps. The process perspective of a
BAM-WS is closely related to its capability perspective, where the latter
defines ‘‘what’’ a process can perform upon and the former specifies ‘‘how’’
the capability can be realized by the BAM-WS. For some BAM-WS
process perspective, five types of supporting logical processes have been
identified: sensing, detection, analysis, decision, and actuation. They will be
described shortly.

• The constraint perspective regulates the logical relationships among values,
capabilities, intents, and contexts. Constraints impose a set of configurable

68 J.-J. Jeng et al.

commitments and rules upon designated BAM-WS components. Con-
straints specify pre- and post conditions of invoking BAM-WS components
in the BAM processes. Constraints also define structural relationship
among BAM-WS components in terms of both types and instances.

• The resource perspective specifies the resources governed by certain BAM-
WS. Managed resources may belong to different business units. A BAM-
WS may be created to perform a complex business process simulation, or
for several members of a group to come together to handle an emergency
like a shutdown of target business solutions. A BAM-WS can represent a
business unit to manage its associated resources. Resource sharing is
possible among BAM-WS components, hence, the policies such as security
and authorization need to be considered and well-defined.

Figure 4 shows the aforementioned seven perspectives of the reference model
for BAM-WS components. The perspectives value, capability, intent, and
constraint constitute the state of the BAM-WS. Similarly, the perspectives
context and resource constitute the state of the BAM system itself that is
‘‘perceived’’ by the BAM-WS. The BAM-WS has five concurrent supporting
logical processes for corresponding processes that are defined by its process
perspective: sensing, detection, analysis, detection and actuation. Each
logical process is realized by a Web service.

• Sensing Web service monitors and collects desired data (based upon the
intents) from the BAM environment. The output from the sensing process
is in the form of metrics or key performance indicators (Supply Chain
Operations Reference Model, 2001), which provide a virtualization layer
for the other logical processes: detection, analysis and detection.

• In general, the BAM-WS that has sensed events trigger Detection Web
service, which, based upon perspective of intent and constraint, detects
business anomalies and exceptions by evaluating the data and key
performance indicators that are generated from target business solutions.

• Both business situations and intents can trigger the AnalysisWeb service in
order to explore the options of resolving detected business situations. The

Fig. 4. The BAM-WS model

A policy framework for Web-Service based Business Activity Management (BAM) 69

analysis Web service helps determine the root causes of the identified
situations or exceptions. Key for the determination of causal factors is the
ability to identify reliable relationships and interactions among variables
that impact the business performance.

• Analysis Web service also generates alternative resolutions to resolve
current business situation and help decision-making BAM-WS compo-
nents to select the best solution. Decision Web service determines the
‘‘optimal’’ action that will be rendered to target business solutions. Such
decision making Web service may be involved very complicated business
intelligence modules that are carried with other BAM-WS components.

• Actuation Web service renders appropriate business actions based on the
decision that has been made. This response may simply either change the
state of the business activities or notify other BAM-WS components which
are interested in the outcome of the very decision making.

Note that the Sensing and Actuation Web services should be context-aware,
i.e., understanding the semantics of target business solutions. Such awareness
is accomplished through the environment models described by the context
and resource perspectives. Each BAM-WS represents either a management
agent or a managed resource (such as business processes or organizations).
Figure 5 shows the interaction among BAM Web services. Five supporting

web services are bound with BAM-WS abc. The data is propagated from
data source to the Sensing Web service, and a message is sent to BAM-WS
abc. This data will be sent to the Situation Web service by BAM-WS abc for
the sake of detecting business situations and exceptions. If some situation is
detected, then the controlling BAM-WS will send a message containing the
situation data to the Analysis Web service to request a set of recommended
resolutions in order to resolve the situation. In this example, the BAM-WS
abc attempts to get an ultimate decision from its bound Decision Web service
which, however, is unable to make such decision. Instead, it sends a request

Fig. 5. Interactions between BAM Web services

70 J.-J. Jeng et al.

of decision making to a Mediator Web service to understand who is able to
make such decision. From the repository of BAM Web services, the
Mediator Web service discovers the most suitable BAM-WS which has the
capability of making desired decision. In the steps 10-13, the decision making
process is ‘‘outsourced’’ to another BAM-WS xyz. Finally, a decision is
received by BAM-WS abc and then it will send a message to the bound
Actuation Web service to render actions to the target resources.

4 Policy-driven BAM

This section describes the general policy models incorporated in this
framework. Three major components in the framework will be presented:
policy lifecycle, policy meta-model and policy grammar.

4.1 Policy lifecycle

One way of achieving adaptive BAM infrastructure is through the develop-
ment of BAM policies and using such policies to configure BAM systems. A
policy is defined as a management directive specified by system administra-
tors, which manages certain aspects of the desired outcome of interactions
among users, applications and services in a distributed system (Verma 2000).
A BAM policy aims to govern and constrain the behaviour of BAM systems.
It usually provides policy rules for how the BAM system should behave in
response to business situations. As an example, a policy of supply chain
inventory may impose limits on the range of inventory levels for the
manufacturing process based upon the revenue target of the enterprise.
Relevant policies can be devised and applied to different aspects of BAM
solutions. Examples include role-based authorization to manage target
business solutions and resources, the scope of managed business solutions
and resources, and service-level agreements. This paper is focused on the
policy framework by presenting the policy foundation, the policy meta-
models, the policy specification, and the policy architecture.

Fig. 6. Policy lifecycle

A policy framework for Web-Service based Business Activity Management (BAM) 71

Every BAM policy has its own lifecycle. The lifecycle of a policy consists of
six basic life-stages as shown in Fig. 6. They are: policy definition, policy
activation, policy passivation, policy deployment and configuration, policy
enforcement and policy termination.

• Policy Definition is the phase that a policy is created, browsed and
validated. Corresponding definitional tools such as editor, browsers and
policy verifiers can be used by business analysts to input the different
policies that are to be effective in the BAM system.

• The stage of Policy Deployment & Configuration configures and deploys a
policy into target system and configures the system correspondingly. A set
of automated deployment & configuration utilities will usually simplify the
tasks performed in this phase.

• Policy Enforcement is the stage when a policy is being enforced to govern
and constrain the behaviour of target systems. Monitoring and reporting
tools enable policy makers to understand how the status of policy
enforcement and whether the policy has been defined reasonably.

• Policy Activation is the phase when a policy is loaded into target system
and waiting for further execution. In this phase, policies are active in the
memory but have not been committed to any business activities yet.

• Policy Passivation is the phase when a policy is put to persistent storage
without any active activity. For BAM, a policy repository is usually
required as the placeholder for passivated policies.

• Policy Termination is the phase when a policy ceases to exist in the system.

Potentially, a policy can be bound to BAM systems at two points of its
lifecycle: (1) policy deployment & configuration: this type of binding is called
early binding between policy and mechanism since it is realized at the build
time; and (2) policy enforcement: this type of binding is, on the other hand,
called late binding between policy and mechanism since this binding is
realized at the run time when policy is being executed.
A deployed (configured) policy can be un-deployed (un-configured) and

rolled back to the policy activation phase. By the same token, an enforced
policy can be de-enforced and transits back to the policy activation phase. As
mentioned above, a business analyst can use monitoring tools to monitor the
status of policy enforcement in the policy target. If she thinks the policy does
not meet her business goals, she may stop the execution and transition the
policy into the policy definition phase in order to modify that problematic
policy.
With policy lifecycle in mind, we developed a high-level logical architecture

as the framework of defining policy components and services that will be
presented in later parts of this paper. The policy logical architecture is built
upon the policy frameworks defined by both IETF (IETF Policy Framework
Working Group) and DMTF (Distributed Management Task Force Policy
Working Group). The logical architecture consists of seven basic elements as
shown in Fig. 7. The basic elements are: the policy management tools, the
policy repository, the policy enforcement points, the policy decision point,
the policy execution instances, the policy decision points and BAM model
repository.
The policy management tool is used by business analysts to feed policies

into BAM systems. The locations that can apply and execute BAM policies

72 J.-J. Jeng et al.

are named as the policy enforcement points. The preferred way for the
management tool and policy targets to communicate is through a policy
repository. Instead of communicating directly with the repository, a policy
enforcement point can also use an intermediary known as the policy decision
point. The policy repository is used to persist the policies generated by
management tools. The policy decision point is responsible for interpreting
the policies stored in the repository and communicating them to the policy
enforcement point. .
The major difference between BAM Policy Framework and traditional

policy framework such as IETF is the concept of virtualization, where
decision and execution points can be decomposed into two levels of
abstraction: the logical level and the physical level. Both policy enforcement
and decision points belong to the logical policy level, which represents the
fact that they are actually the virtualized services of underlying physical
decision points and physical enforcement points. To make policies to be
enforced into policy targets, the instances of policy decision and policy
enforcement at the physical levels must be deployed and made to be available
in advance. The BAM Model Repository is used to manage the models of
target systems in the persistent storage.
Each decision and enforcement instance in policy target may be operating

in one or more roles within the system, the role defining the set of policies
that would need to be implemented for a particular service. As an example, in
a supply chain management system, all inventory related modules have the
role of ‘‘Execution’’ while all demand planning modules have the role of
‘‘Operation’’, and they retrieve their respective policies depending on their
roles. The specification of policy rules within the policy repository is the key
to obtaining inter-operability.
An information model for the rules to be specified has been defined. The

underlying premise in the information model is that each policy should be
considered as an expression of the form event-condition-action pattern. Here,

Fig. 7. Logical architecture

A policy framework for Web-Service based Business Activity Management (BAM) 73

the event part describes the business events emitted from the target system,
the conditional part describes a specific situation that can be encountered by
a system, and the action part specifies the action that is to be performed by
the system when situation is raised. The information model defines the
structure of the policies that are to be stored in the policy repository.
The important classes and their attributes from the common information

model are shown in Fig. 8. For any discipline to which policies can be
applied, the information model can be refined to define a discipline-specific
information model. This information model will be transformed into detailed
policy specification components in next section. The discipline-specific
information model would typically subclass Constraint and Action.
A very simple application of the model the aforementioned supply chain

management system can be obtained by defining the following conceptual
entities:

1. Constraints that contains the policy-specific domain attributes such as
inventory levels, customer serviceability and satisfaction, and demand
forecast accuracy;

2. Actions in that some of them are specified for re-calculating build plan of
the target products, and the other for re-adjusting inventory policies;

3. Business Events that serve as the triggers of policy evaluation and
enforcement.

A business event is domain-dependent and needs to be examined and
elaborated by the experts of target domains. The Context defines the working
memory for the execution of policy rules. Similarly, the definition of the
context related model is really dependent on the models of target business
solutions. Scopes are used to form a set of managed resources in target
business solutions where the concerned BAM policy is applicable. Before
evaluating or enforcing a policy rules, the Scope definitions needs to be
checked because Scope can be dynamically changed. Considering the supply
chain example presented in Sect. 1, an example for the information model
can be modelled and described as follows:

• Business Context: microelectronic manufacturing processes, applications,
data storages and customers.

• Scope: supply chain performance for the process for manufacturing certain
product family.

Fig. 8. Policy information model

74 J.-J. Jeng et al.

• Business Events: order changes from the customers.
• Constraint: predict the impact on the performance.
• Action: (1) run prediction module for supply chain performance; (2) if the
predicted performance is lower than the committed value, the re-planning
process will be invoked in order to obtain new build plan.

4.2 Policy meta model

As described in the supply scenarios, an agent can be of many types:
execution, operation and strategy. In general, they are called Management
Agents (MA). The central class of the BAM policy meta-model is the
virtual business unit (VBU). VBU provides a single manageable construct
to describe the capabilities and constraints of underlying managed
resources and business activities. An example of VBU can be supply
chain management process. Its committed performance becomes its
capability and its required resources are its constraints. A VBU has
its own internal state and exposes a set of views to MAs and other VBUs.
In the environment of business activity management, a management
system is a collection of MAs to be performed on VBUs that are hosted in
an environment tailored for one or more particular business organizations.
Management Enablers (MEs) constitute an abstraction layer between

MAs and VBUs. A notable usage of ME is binding an MA and its
managed VBUs by providing physical URLs and security credentials. The
introduction of MEs increases the flexibility of interactions among MAs
and VBUs, and enhances the overall productivity of the staff performing
the management tasks through MAs. The MAs and MEs cross manage-
ment disciplines, and operate on VBUs. Different levels of abstraction can
be applied to VBUs using appropriate instrumentation unto target
business solutions. For example, an inventory VBU can be instantiated
into a customized inventory system and complex warehouses that are
equipped with advanced monitoring and management capabilities. Hence,
an example of instrumentation tasks could be configuring the inventory
warehouse by specifying interested data dimensions for particular set of
MAs. Another possibility is that the VBU may be merely an interface to
an existing inventory system that has been implemented by specific
technology such as SAP.
Three key virtual entities are identified in the BAM Policy Framework:

management agents (MA), virtual business units (VBU), and management
enablers (ME). The framework is comprehensive and simple to use for both
business analysts and system developers. The benefits of policy virtualization
are twofold: i) a policy can be independently defined for any target artefact
and, ii) since a BAM system manages business activities and underlying
resources through virtual entities, new physical policies and managed
resources can be added or removed from the system without the need of
modifying the policies or manually managing the association between policy
and managed business activities/resources.
Figure 9 shows the base meta classes in BAM policy framework.
MA Policies define what activities an MA must do or refrain to do to a set

of VBUs and define the duties of the MA. MA policies are triggered by

A policy framework for Web-Service based Business Activity Management (BAM) 75

business events and are normally interpreted by an MA. The policies that
belong to this type include commitment policies, violation policies, and
delegation policies.
Commitment policies define what activities a subject MA must do to a set

of VBUs and define the duties of the subject MA. Violation policies define
what activities a subject MA must refrain to do to a set of VBUs and define
the duties of the governing MAs in a negative way. Penalty and compen-
sation activities are usually specified for violation. Delegation policies specify
which actions MAs governing certain VBUs are permitted to delegate to
other MAs. Hence, delegation policies specify authorization to delegate such
management actions.
VBU policies define the constraints and obligations that a VBU needs to

obey. At lease two type of policies fall into this category: authorization and
security policies. Authorization policies define what activities an MA is
allowed or prohibited to perform to a set of VBUs. Security policies are used
to protect target VBUs sothey can be interpreted and enforced by one or
more than one MAs.
ME policies define the policies enabling MAs access, monitor and control

target VBUs. Examples of ME policies include binding policies, security
policies, and privacy policies. Composite policies are used to group a set of
related policies within a business scope with shared declarations in order to
simplify the policy definition task for larger BAM environment. Meta-
policies are policies about policies and their relationships. Examples of meta-
policies include how policies are deployed and enforced into target VBUs for
specific BAM domain.

4.3 Policy grammar

The BAM Policy specifications are defined in grammars based on regular
expressions and implemented in an XML based markup language. The
following shows a subset of the BAM grammars, where a BAM policy can be
divided into three major parts: (1) Agent policies; (2) VBU policies; and (3)
Enabler Policies. As described, agents are the subjects of the BAM

Fig. 9. Policy base classes

76 J.-J. Jeng et al.

management scenarios and mandate the policies upon the objects of managed
resources and business solutions that are abstracted as VBUs.

bam_specification= [import_statement | domain_statement | bam_policies]* ;
bam_policies=[‘agent’, [agent_definition]* | ‘vbu’, [vbu_definition] | ‘en

abler’, [enabler_definition]]* ;
agent_definition = [‘agent’, [port_def*, intent_def+, required_capabi

lies_def*, required_action_def*]] ;

An agent policy consists of ports, the agent’s intents, and the capabilities and
management functionality that are expected from targeted virtual business
units. An agent serves as the interfaces interacting with BAM managers or
dashboards. A port consists of (1) a mandatory name attribute, which must
be unique within a BAM policy instance; (2) an optional implementation
attribute, which may reference an implementation specification for the agent,
for example, the name of a BPEL process (Business Process Execution
Language); (3) an optional description element of the agent. The intent
specification describes the purpose or motivation of an agent and how this
intent can be linked other intents, capabilities, and actions. Three kinds of
intents have been identified: role intent, target intent and policy intent. Role
intent is about how an agent sees itself as it is engaged with specific set of
VBUs. Target intent defines the scope of the VBUs which the agent intends
to interact with. Policy intent describes what the agent will govern the
interactions and operations of targeted VBUs.
The types of policy intents include commitment intents, violation intents,

and delegation intents. Both required capabilities and required actions
describes the ‘‘expectation’’ of an agent towards its target VBUs. Required
capabilities (required_capability_def) specify the expected data such as
metrics, key performance indicators (KPIs) and the schedule of sampling
data. Required actions (required_action_def) describe the expected manage-
ment functionalities that should be provided by target VBUs. Since VBUs
serve as an abstraction layer between management agents and managed
resources, they are obligated to expose necessary management data and
functions to governing management agents. To de-couple the development
processes of management agents and VBUs, it is a rational design to allow an
agent make assumption about the VBUs it expects to monitor and control.
The action definition is conventional model-based specification such as
VDM (Sheppard, 1994).

agent_definition = [‘agent’, [port_def*, intent_def+, provided_capabi-
lies_def*, provided_action_def*]] ;

port_def = [‘name’, portName, ‘implementation’, implementation_def,
‘description’, expression] ;

intent_def = [policy_intent | target_intent | role_intent]*;
policy_intent = [commitment_intent | violation_intent | delegation_intent]* ;
required_capability_def = ‘required capability’ [metric_def | kpi_def |

scheduling_def]* ;
required_action_def = [‘required action’, actionName, ‘preCondition’,
pre_condition_def, ‘body’, required_action_body_def, ‘postCondition’,
post_condition_def, ‘invariant’, invariant_def] ;
required_action_body_def = [monitoring_def | analysis_def | control_def]* ;

A policy framework for Web-Service based Business Activity Management (BAM) 77

VBU specification defines an instrumental view of the resources and business
activities that are targeted to be managed and governed. Four main parts of
a VBU specification include context definition, constraint definition,
provided capabilities, and provided management actions. Context describes
the environment where the policies are to be applied for the existence and
behavior of a virtual business unit. Note that the environment can be
physical environment such as inventory warehouse or virtual environment
such as planning engine for manufacturing processes.
The business context is largely about VBU relationships with other VBUs

and underlying resources. In some sense, the context becomes implicit
constraints of interactions among VBUs. Constraint definitions categorize
the characteristics of targeted VBUs. The constraints can be pre-defined at
build time or instantiated at run time. Examples of constraints include
inventory thresholds, revenue targets, and maximum delivery time. Con-
straints set the criteria of quality of services for governed business activities.
The available capabilities (provided_capability_def) and management func-
tions (provided_action_def) are defined similarly to those in the agent policy
specification.

vbu_definition = [‘vbu’, [context_def*, constraint_def+, provided_capabi-
lies_def*, provided_action_def*]] ; context_def = [[‘atomic’, boolean] |
[‘exception’, exception_def] |

[‘process’, process_def] | [‘schedule’, scheduling_def) | [‘signals’,
signal_def] | [’faults’, fault_handlers_def]]* ;
constraint_def = [policy_constraint | authorization_constraint | organiza-

tion_constraint]*;
policy_constraint =[invariant_constraint | optimization_constraint] ;
provided_capability_def = ‘provided capability’ [metric_def | kpi_def |

scheduling_def]* ;
provided_action_def = [‘provided action’, actionName, ‘preCondition’,
pre_condition_def, ‘body’, provided_action_body_def, ‘postCondition’,
post_condition_def, ‘invariant’, invariant_def] ;
provided_action_body_def = [monitoring_def | analysis_def | control_def]*;

The enabler policies provide the governance rules of the interactions between
VBUs and agents. The following grammar indicates two kinds of enabler
policies: (1) Agent and VBU bindings; and (2) binding constraints. The
bindings between agents and VBUs can be realized either at policy decision
points or at policy enforcement points.
enabler_definition = [‘enabler’, [agent_vbu_binding, binding_constraint]*] ;
agent_vbu_binding = [‘agent-vbu-binding’, [agentName, vbuName,

param_binding]] ;
binding_constraint = [‘binding-constraint, [applicability_constraint | dele-

gation_constraint | authorization_constrint | relationship_constraint]*] ;
Some sample questions of binding constraints are as follows.

• Applicability: Does the target VBU support all capabilities and actions
that expected by the agents?

• Delegation: Which type of agents can manage VBU X for the agent Y?
• Authorization: Can agent X monitor and manage VBU Y?
• VBU Relationship: Are all of the capabilities provided by VBU X also
provided by VBU Y?

78 J.-J. Jeng et al.

• Agent Relationship: Do agent X and agent Y cooperate or compete on
governing VBU type Z? If it is a competition relationship, any other agent
can be the arbitrator if conflicts between agent X and agent Y occur?

Therefore, the enabler policies actually govern the interactions among agents
and VBUs. The questions of applicability and relationships are difficult to
answer without the assistance of advanced technologies. Some of them can
be addressed by distributed artificial intelligence and multi-agent systems
(Ferber, 1999).

5. Reference implementation

This section describes a reference implementation based upon the policy
framework presented in the above sections. Firstly, the policy architecture
will be presented, and an example implementation for SCM manufacturing
process will be described.

5.1 Policy architecture

Figure 10 shows the policy physical architecture for BAM Policy Frame-
work. Business processes refer to any business activities that require
monitoring and control by BAM systems. In the example of the supply
chain domain, certain kind of BAM system is needed to instrument, monitor,
analyze and control the behaviour of target manufacturing management
processes (business solutions).
All of the management activities are governed by BAM policies. BAM

Model Repository stores the meta-models of managed business activities
including the information such as invocation interfaces and semantics. BAM
Runtime Registry stores the real-time values of all policy artefacts such as
constraints, bindings, and commitments. Practically, the BAM Runtime

Fig. 10. Policy reference architecture

A policy framework for Web-Service based Business Activity Management (BAM) 79

Registry is implemented as an UDDI registry that is available for posting,
updating, and querying desired BAM Web Services.
The Constraint Inference Engine helps MAs and policy manager answer the

questions that need to be elaborated and reasoned such as those related to
relationships. Touch points serve as the interfaces between BAM systems and
the governed business activities and systems. In our system, they are
implemented as Web Services exposing the managed data and functions in
the formats of WSDL. Policy manager manages the lifecycles of management
policies and also provide access mechanism to the Policy Repository.
Considering the scenario in the supply chain domain described in Sect. 2,

many business activities are required to ensure the functioning of the
system. Hence, the BAM system interacts with multiple participating
parties such as business line managers who make decisions, building
superintendent who conducts do the day-to-day scheduling, production
planning team who determine intermediate target outs, manufacturing team
who make the final determination of what is built and when the products
are to be built. Moreover, a BAM system needs to interact with multiple
systems, for example, in our running scenario: (1) Central planning engine
(CPE) that helps decision makers determine how to best meet prioritized
demand without violating temporal, asset, or capacity constraints. (2) The
optimal manufacturing resource planning (OMRP) tool that assists decision
makers define detailed instructions about what manufacturing activities
must be accomplished and when they must be completed. (3) The available
to promise (ATP) tool that enables an organization to dynamically
reallocate projected supply in response to incremental changes in the
demand statement (new orders arriving, orders being filled, and order
changes or cancellations) according to business policy guidelines, identify
projected shortfalls with respect to committed orders, and provide real-time
order commits and status. (4) The demand management (DM) tool that
help decision makers coordinates demand estimates from different sources
such as orders, sales rep forecasts, customer forecasts, internal demand,
and marketing forecasts in logical step.
In general, the functioning of a manufacturing system really depends on

the coordination and management of many autonomous business activities
and resources. If a decision maker took arbitrary decisions without regard of
any consideration of the other parts of the whole manufacturing process, the
whole system will not work properly. Thus, there is a need for a set of
management policies that work as the ‘‘contract’’ among business activities
and systems by constraining their behaviour so as to guaranteeing the
interests of all the stakeholders. These management policies can be viewed as
exogenous commitments that a decision maker makes with respect to both
the stakeholders; or as endogenous commitments that are exploited to enable
and enforce the behaviours of managed business processes and systems,
named as the E-Commerce systems in Sect. 2. Hence, a policy-based
management is the natural choice of implementing such BAM systems. The
policy types in the manufacturing systems can be of many forms, for
example, the pre-defined demand boundaries, the inventory level thresholds,
system performance, and so on. Abstractly, management commitments
define the constraints that would follow certain courses of actions, or to hold
certain agreed and trusted situations manifested by the entities in VBUs. As

80 J.-J. Jeng et al.

mentioned, a commitment policy concerns either acting in a certain way, or it
can be a commitment to hold a certain expectation.
Commitments can be about the past or the future, where the former are

called retrospective commitments and the latter are called prospective
commitments. BAM can be a standalone application or be composed of
many MAs. In the latter case, each agent may hold its own commitment. A
response will be formed in a VBU policy via bindings of required actions (in
agent policy) and provided actions (in VBUs). Notably, a response can be
executed when the bound constraints are either met or violated depending
which way has been defined in the expectation. VBU is implemented as BAM
Web Services in this framework.
Some meta-actions can be defined to perform actions on commitment

policies themselves. One type of meta-actions is to commit a commitment to
an agent. This is usually a future commitment, but it can be used for the
establishment of a past commitment as well. Another type of meta-action is
to put an expectation relationship between agents. For instance, an ATP
agent expects an inventory agent to have inventory level less than certain
quantified value. If the expectation is violated, some actions will be taken
based upon corresponding bound response that is defined in the ATP agent.
A commitment can be applied to several agents, i.e., those agents share the
same commitment. We can thus define the locus of control for the
commitment C by defining a set of agents committing to C and the resources
that are governed by C. It is assumed that an agent will always communicate
its commitments truthfully with the other agents in response to queries and
actions.
Each MA may have one or more than one commitment policies. MAs

commit to one another through the agent-agent bindings. Resource models
the entities in VBU’s context definitions. The diagram shows some
examples of resources such as sales status, balanced score card, order
status, demand status, and inventory. In fact, a resource can represent even
higher level concept such as manufacturing processes/activities or partic-
ipating parties. Triggers initiate the process of evaluating whether expec-
tation holds or not. A trigger consists of one or more than one situations
that are nothing but logical expressions that can be evaluated by the
inference engine embedded in BAM systems. Since MAs can commit to one
another, the ‘‘commit-to’’ relationships form a network of commitments
with BAM-WSs as nodes and commitment as the edges connecting nodes.
For example, the Sales BAM-WS is committed to send an alert to the
Demand BAM-WS when the current sales quantities of some selected
saleable part numbers in the nth week are out of their bands. Note that
both MA and ME are implemented as BAM Web Services in the BAM
Policy framework.
The Demand BAM-WS is committed to the Portal BAM-WS to provide

a list of recommendation on adjusting the planned demand quantities and
safety stock requirements for the nth week. However, the Demand BAM-
WS cannot work by itself. The Demand Planning BAM-WS and the
Inventory Planning BAM-WS commit themselves to the Demand BAM-
WS such that they can provide the Demand BAM-WS recommended
demand quantities and safety stock requirements for the nth week.
Network of Commitments (NoC) is a generalized notion of Chains of

A policy framework for Web-Service based Business Activity Management (BAM) 81

Commitment (Ervin, 2002). NoC is used to define the triggering points,
the control and data flows, the monitoring policies, the situation detection
policies, and the actuation policies. Since an agent can commit and un-
commit commitments dynamically, the applications built on BAM become
extremely configurable and can be adaptive to the enterprise needs, e.g.,
Balanced Score Card, by simply modifying the definitions of NoC through
the configuration tools. From the points of view of any stakeholder of the
microelectronic manufacturing process, commitments themselves provide a
means to define the quality of services from the system itself because the
whole system is more visible, controllable and configurable. Figure 11
depicts an application of the BAM Policy Framework for the use case
scenario described previously where agents are implemented as Web
Services indicated as BAM-WS.
Sales BAM-WS detects the ‘‘out-of-band’’ situation and notifies the

committed BAM-WS, i.e., Demand BAM-WS that will consequently notifies
Recommendation BAM-WS and Risk Assessment BAM-WS in sequence to
obtain recommended build plan(s) and necessary assessment such as
inventory cost, manufacturing cost and SLA measurement. Note that
commitment relationship may imply either event/situation flows or data
flows between commitment-related BAM-WSs, and the actions to be taken
really depend on the definition of the involved commitments, i.e., on the
expectations, actions and responses that are delineated in the committed
BAM-WSs. The aforementioned commitments are all endogenous commit-

Fig. 11. Network of commitments

82 J.-J. Jeng et al.

ments. However, Portal BAM-WS has an exogenous commitment to the
decision maker that represents the ultimate user of the BAM system.

5.2 A BAM implementation for manufacturing process

We have worked with a chip maker and applied BAM Policy Framework to
fulfilling the requirements raised in the electronic manufacturing domain.
Specifically, we have implemented a ‘‘sense-and-respond’’ system in that
domain. This system senses events generated in the manufacturing systems,
detects manufacturing-related business situations, conducts analysis on the
data embedded in the situations and enterprise database, and finally
provided recommended actions to decision makers.
Between the dashboard and the management layer, there is a dashboard

façade with the following components:

– Widget BAM Web Services that are customized for specific domains.
– User BAM-WSs: User Web Services are data containers and functional
components that are also specialized for specific domain. Examples are
charting controller, personal alert controller and event controllers, tag
libraries. User Web Services are reusable components that aid in building
quick dashboard for each domain.

– Data BAM-WSs: Data Web Services are connected to the management
Web Services and used to serve the requests from dashboard users. This
layer consists of adaptors that connect to BAM artifacts and convert all
requests to XML, which is then processed on by the user Web Services and
widget Web Services.

Fig. 12. BAM monitoring console

A policy framework for Web-Service based Business Activity Management (BAM) 83

Management clients can be of in many forms: management console,
manufacturing portal, planning system client, OLAP client, and business
activity dashboard. The BAM management console in Fig. 12 presents the
unified view for the BAM users to monitor all the manufacturing processes
and activities, manufacturing exceptions, links to perform OLAP analysis,
presents recommended actions to manufacturing exceptions and so on. The
right-hand side of this console present four monitoring portals and the real
monitoring of manufacturing events are shown in the portal on the left-hand
side. Fig. 13 shows the revenue performance of a manufacturing process. The
portal on the left-hand side shows the revenue statistics including both actual
and predictive performance data. On the right-hand side, a graphical
representation of the performance data is shown in a portal where the upper
and lower bounds indicate the performance targets. A business situation will
be raised whenever the revenue performance data is out of the boundaries.
Thereafter, a decision making process will be triggered to resolve such
situation. As mentioned, all of these interactions are handled by designated
web services based upon predefined BAM policies.

6 Related work

Minsky and Ungureanu (Minsky, 2000) described a mechanism called law-
governed interaction (LGI), which is designed to satisfy three principles: (1)
coordination policy needs to be coordinated; (2) the enforcement needs to be
decentralized; and (3) coordination policies need to be formulated. LGI uses
decentralized controllers co-located with agents. The concept of policy
virtualization in the BAM Policy Framework does not exist in LGI. The
policy works in the standards bodies such as IETF (IETF Policy Framework
Working Group) and DMTF (Distributed Management Task Force Policy
Working Group) are more focused on defining policy frameworks for

Fig. 13. Monitoring revenue performance

84 J.-J. Jeng et al.

traditional IT systems. Hence, some important issues, e.g., virtualization and
constraint inferences, are not as seriously concerned as in the BAM Policy
Framework.
Verma (2002) proposes a policy service for resource allocation in the Grid

environment. Due to the nature of Grid computing, virtualization has been
greatly used for defining policy services in the paper. However, in contrast to
their work, the BAM Policy Framework is aimed for providing policy
framework for business activities instead of a service for system domain. In
general, most of policy works are specific to quality of service management
(Cisco Systems Inc., 2000; Hewlett-Packard Company, 2001; IP Highway
Ltd, 2001; Orchestream Ltd, 2001; Orchestream Ltd, 2001). The Ponder
(Damianou et al. 2001) and Policy Framework for Management of
Distributed Systems (Damianou, 2002) address the implementation of
managing network systems based on policies. They constitute Network
Management Policy Enforcement, which is very different from the domain of
BAM Policy Framework.
Policies have been made comparison with business rules. Basically, a

business rule is a compact statement about an aspect of a business (Morgan,
2002). It is intended to assert business structure or to control or to influence
the behaviour of a business. There are many well-known rules engines that
are used to implement business rules. Our position is that the policies and
business rules are complementary. While BAM policies can be implemented
in business rules, there are many other possible ways of realizing policies.
BAM policies can be enabled by other programming paradigms such as
object-oriented methods, relational databases, or decision trees. On the other
hand, the parameters of business rules and their execution strategy can be
well-defined in policies and realized in non-rule software components.
In general, the BAM Policy Framework is complementary with other

policy efforts in that it is aimed for both modeling and tuning up the
decisional behaviours embedded in BAM related business processes.
According to our experience in the area of microelectronic manufacturing,
this framework shows some traits, to name a few, as follows (1) The decision
strategies hidden in the manufacturing processes are externalized and
formally described in policies; (2) Those externalized decisions can be
changed through policies without re-implementation of related modules; and
(3) Since functional components can be developed without regard of business
decisions, greater reusability has been achieved through our approach.

7 Concluding remarks

In this paper, we have presented a policy framework for business activity
management. The BAM Policy Framework is based on the requirements
gathered from real use cases in supply chain management and other domains.
We focus on deriving a framework that can be easily used by business
analysts and developers via virtualization and policy utilities provided by the
framework itself. We have leveraged the experience gained through earlier
attempts at implementing policy architecture for manufacturing systems in
the supply chain domain, to provide for the implementation of a general
policy-based management platform. We are currently working on building

A policy framework for Web-Service based Business Activity Management (BAM) 85

tools to enhance the usability and capability of the BAM Policy Framework.
Using the similar concepts and framework, we are building various
architectures for various domains. This actually help us grasp the whole
spectrum of BAM domain. We are also working on providing further
analysis by simulating the execution of policies for business activities. An
integrated environment for animating the simulation and viewing the results
will be part of such a task. We are developing formal BAM models based
upon UML as the endeavor towards an enabling infrastructure for adaptive
BAM systems. We are investigating cloning, versioning, and mobility of
BAM systems with an eye towards non-functional requirements such as
performance, availability, fail-over, and migration that are critical to the
success of BAM system in practice. This infrastructure is being applied to
real-world scenarios, including supply chain, logistics, finance, insurance,
and life science. We will also present case studies of applying BAM models to
developing and generating BAM solutions.

Acknowledgement. We would like thank David Cohn, Kevin McAuliffs and Kumar Bhaskaran

for their support on the development of this work. Special thanks also go to the BAM team

members including Steve Buckley, Grace Lin, Heng Cao, Pawan Chowdhary, Shubir Kapoor,

John Kearney, Haifei Li , Josef Schiefer and Haifeng Xi.

References

Buchmann F, Meunier R, Rohnerr H, Sommerlad P, Stal M (1996) A System of Patterns:

Pattern-Oriented Software Architecture. New York: Wiley

Business Process Execution Language, available at the URL http://www-106.ibm.com/develop-

erworks/webservices/library/ws-bpel/

Cisco Systems Inc. (2000) Cisco Assure Policy Manager, Available electronically at: http://

www.cisco.com/warp/public/cc/pd/nemnsw/cap/index.shtml

Damianou N, Dulay N, Lupu E, Sloman M (2001) The Ponder Policy Specification Language.

Proceedings of the Policy Workshop 2001, HP Labs, Bristol, UK, Springer-Verlag http://

www.doc.ic.ac.uk/�mss/Papers/Ponder-Policy01V5.pdf

Damianou N (2002) A Policy Framework for Management of Distributed Systems. PhD Thesis,

Faculty of Engineering of the University of London, London, England http://www-

dse.doc.ic.ac.uk/Research/policies/ponder/thesis-ncd.pdf

Distributed Management Task Force Policy Working Group, Charter available at URL http://

www.dmtf.org/about/working/sla.php.

Ervin R (2002) Chains of Commitment Software Architecture. ACM SIGecom Exchanges

Special Issues Chains of Commitment, http://www.acm.org/sigs/sigecom/exchanges/-

volume_3_(02)/3.1-Ervin.pdf

Ferber J (1999) Multi-Agent Systems: An Introduction to Distributed Artificial Intelligence,

Addison-Wesley Pub Co

Fordyne K (2001) New Supply Chain Management Applications Provide Better Customer

Service: Serious Gets Exciting. Journal of IBM Microelectronics pp 15–19

Gamma E, Helm R, Johnson R, Vlissides J (1995) Design Pattersn: Elements of Reusable Object-

Oriented Software, Addison-Wesley Professional Computing Series, Addison-Wesley

Haeckel SH, Slywotzky AJ (1999) Adaptive Enterprise: Creating and Leading Sense-and-Respond

Organizations, Harvard Business School Publisher, August

Hewlett-Packard Company (2001) PolicyXpert, Available electronically at: http://www.open-

view.hp.com/products/policyexpert/index.asp

IETF Policy Framework Working Group: Charter available at the URL http://www.ietf.org/

html.charters/policy-charter.html

86 J.-J. Jeng et al.

IP Highway Ltd, (2001) Policy Management Console Available electronically at: http://

www.iphighway.com/

Jeng JJ, Buckley S, Chang H, Chung JY, Kapoor S, Kearney J, Li H, Schiefer J (2002) BPSM:

An Adaptive Platform for Managing Business Process Solutions. Proceedings of the Fifth

International Conference on Electronic Commerce Research (ICECR-5), Montreal, Canada

Jeng JJ, Li H (2002) Business Commitments for Dynamic E-business Solution Management:

Concept and Specification. Proceedings of 6th World Multi Conference on Systemics,

Cybernetics and Informatics (SCI), Vol VIII, Concepts and Applications of Systemics,

Cybernetics and Informatics II, July 14 - 18, Orlando, Florida USA, pp 403–407

Minsky NH, Ungureanu V(2000) Law-Governed Interaction: A Coordination and Control

Mechanism for Heterogenous Distributed Systems. ACM Transaction on Software Engineering

and Methodology, Vol 9, No 3, pp 273–305

Morgan T (2002) Business Rules and Information Systems, Addison-Wesley

Orchestream Ltd (2001) Orchestream Service Activator, Available electronically at: http://

www.orchestream.com/

Lin G et al (2002) New Frontier: Sense and Respond System for Global Value Chain

Optimization. OR/MS Today

Sheppard D (1994) An Introduction to Formal Specification With Z and VDM, McGraw Hill

Book Co Ltd

Strosnider J et al (2002) IGS BizADS Handbook. IBM Redbooks

Supply Chain Operations Reference Model (SCOR), Supply Chain Council, Version 3.1, March,

2001

Verma D (2000) Policy Enabled Networking. New Riders Publications

Verma D (2002) A Policy Service for Grid Computing. In: Parashar M (ed.) GRID 2002, LNCS

2536, pp 243–255

Wu LSY, Hosking JRM, Doll JM (2002) Business Planning Under Uncertainty: Will We Attain

Our Goal? IBM Research Report, RC 16120 (71660)

A policy framework for Web-Service based Business Activity Management (BAM) 87

