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Abstract—This paper studies single-channel speech separation,
assuming unknown, arbitrary temporal dynamics for the speech
signals to be separated. A data-driven approach is described,
which matches each mixed speech segment against a composite
training segment to separate the underlying clean speech seg-
ments. To advance the separation accuracy, the new approach
seeks and separates the longest mixed speech segments with
matching composite training segments. Lengthening the mixed
speech segments to match reduces the uncertainty of the con-
stituent training segments, and hence the error of separation. For
convenience, we call the new approach Composition of Longest
Segments, or CLOSE. The CLOSE method includes a data-driven
approach to model long-range temporal dynamics of speech
signals, and a statistical approach to identify the longest mixed
speech segments with matching composite training segments.
Experiments are conducted on the Wall Street Journal database,
for separating mixtures of two simultaneous large-vocabulary
speech utterances spoken by two different speakers. The results
are evaluated using various objective and subjective measures,
including the challenge of large-vocabulary continuous speech
recognition. It is shown that the new separation approach leads to
significant improvement in all these measures.

Index Terms—Co-channel speech, longest matching segment,
speaker identification, speech recognition, speech separation,
temporal dynamics.

I. INTRODUCTION

W E consider the problem of speech separation as falling
into two categories: constrained and unconstrained.

By constrained speech separation we mean that there is a
priori knowledge about the vocabulary and grammar (or
language model) of the speech utterances to be separated.
For constrained speech separation, researchers have recently
demonstrated a case of reaching near human performance,
in the PASCAL Speech Separation Challenge (see, for ex-
ample, [1], [8], [33]). The challenge was about the separation
of two simultaneous speech utterances given single-channel
mixed speech data; each utterance was formed from a small
vocabulary obeying a command-sentence grammar, with both
the vocabulary and grammar being known. This knowledge
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of vocabulary and grammar has been used to impose up to
utterance-long constraints on the underlying speech signals,
to restrict their allowable temporal-spectral structures and
hence reduce their uncertainties. This has helped to correctly
separate the underlying clean speech utterances. In this paper,
we remove the requirement for prior information about the
vocabulary, grammar or language model of the underlying
speech utterances. Specifically, we deal with separation of two
simultaneous utterances from two different speakers based on
single-channel data, assuming unknown, arbitrary acoustic,
lexical and language dynamics for both utterances. We call
this problem unconstrained speech separation. We describe
a system aiming to achieve the performance of constrained
speech separation but for unconstrained speech.

In the past, model-based approaches have been heavily
used to impose temporal constraints on speech signals for
speech separation. The work in [7], for example, considered
the phone-level dynamics by modeling phones using hidden
Markov models (HMMs). The work in [28], for example,
concatenated phone HMMs following a pronunciation dic-
tionary, thereby extending the dynamics modeling to the
lexicon level. Some PASCAL challenge methods considered
word-level dynamics by using whole-word HMMs (e.g., [5],
[12], [33]). Finally, many of the challenge methods went fur-
ther to model utterance-level dynamics based on the known
grammar [1]. For HMM-based modeling methods, the factorial
HMM approach is typically used to model co-channel speech
signals and perform separation (e.g., [2]–[8]). Two-dimensional
Viterbi algorithms and approximations (e.g., iterative Viterbi
or loopy belief) have been used to perform the inference [9].
As demonstrated in the PASCAL challenge task, imposing
long-range temporal constraints helps separate speech from
co-channel mixtures. However, modeling subword, word and
sentence level dynamics requires transcribed training data and
knowledge of the task. Without these, how to model long-range
temporal dynamics of speech for speech separation remains
an open research question. For separation of unconstrained
speech (i.e., the speech with unconstrained acoustic, lexical and
language dynamics), most current model-based systems use a
Gaussian mixture model (GMM) or vector quantization (VQ)
approach, which assumes independence between successive
speech frames (see, for example, [10]–[16], [29]).

Other popular approaches suitable for unconstrained speech
separation include computational auditory scene analysis
(CASA) and basis-function based decomposition. CASA-based
algorithms, for example [17]–[24], work in the time-fre-
quency plane by segmenting the psychoacoustic cues such as
pitch, onset/offset, temporal continuity, harmonic structures
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Fig. 1. Illustration of the proposed approach. Shown are a co-channel utterance containing mixture of two speech utterances, and the clean training utterances of
the two constituent speakers. Also shown is the separation of a mixed speech segment by finding a composite training segment that matches the mixed segment.
The composite training segment is formed by combining two clean training segments from the two speakers. We aim to identify the longest mixed speech segments
with matching composite training segments for the separation. This will reduce the uncertainty, and hence the error, of the constituent training segments.

and modulation correlation into different sources, and per-
forming separation by masking the interfering sources. Recent
CASA-based algorithms also incorporate statistical models
such as the HMM, GMM, and VQ into the segmentation process
[12], [20], [21], [24]. In basis-function based decomposition,
for example [25]–[29], a set of bases (or dictionary) is used
to represent the short-time speech spectra of each constituent
speaker; separation is performed by finding linear combinations
of the constituent basis sets that match the given speech mix-
tures. Different methods have been used to derive the spectral
basis functions, including nonnegative matrix factorization
(NMF), VQ, GMM, and independent component analysis
(ICA). The CASA and basis-function based approaches can be
used for speech separation without requiring a priori knowl-
edge such as vocabulary; the separation is usually performed on
a frame-by-frame basis, or by capturing short-term dynamics
(e.g., pitch contiguity) of speech [9].

In this paper, we study a new approach to unconstrained
speech separation. We aim to improve the separation accuracy
by imposing long-range temporal constraints on unconstrained
speech signals. We achieve this by separating segments of
consecutive frames as whole units, in a data-driven framework.
Our approach is illustrated in Fig. 1. It shows a test utterance
which is a co-channel mixture of two speech utterances with
arbitrary temporal dynamics, and the clean training utterances
of the two constituent speakers.1Fig. 1 also shows an example
of separating a test segment of the co-channel speech by finding
a composite training segment that best matches the test seg-
ment. The composite training segment is formed by combining
two clean training segments from the two speakers. Knowing
the make-up of the matching composite training segment we
can separate the test segment into two clean speech segments,
using the two constituent training segments. To enhance the
separation accuracy, we aim to identify the longest test seg-
ments which can be accurately matched by composite training
segments. The longer the test segments to match, the more
specific the constituent training segments. Therefore separation
based on the longest matching segments reduces the error of

1Identifying the two constituent speakers given the speech mixture is part of
the separation problem and will be discussed in the paper.

separation. The new approach represents a data-driven way to
imposing long-range temporal constraints on the underlying
speech signals, without requiring knowledge about the speech
signals (e.g., vocabulary, language model, etc.), and transcripts
of the training data. This work is an extension of our previous
work [35] for noisy speech enhancement. For convenience,
we call our new approach CLOSE (Composition of Longest
Segments).

The paper is organized as follows. In Section II, we describe
the new CLOSE method. Two algorithms are described: an
“exact” algorithm and an approximation; the latter bears a
substantially reduced computational load and hence is the
main algorithm used in our experiments. It is shown that the
conventional GMM-based separation algorithm is a special
case of the new algorithm. Section III presents more details of
implementing the CLOSE method, including the identification
of the constituent speakers given a speech mixture, and the
reconstruction of the clean speech utterances based on the
longest matching constituent training segments found. Experi-
mental studies for separating unconstrained, large-vocabulary
co-channel speech are presented in Section IV. Finally, conclu-
sions are drawn in Section V.

II. THE CLOSE APPROACH TO SPEECH SEPARATION

The new approach consists of two main parts. The first part is
a data-driven approach for modeling the training speech utter-
ances of the constituent speakers; the model facilitates the com-
parison of long-range temporal dynamics between speech utter-
ances with unconstrained temporal dynamics. The second part
is a method for identifying the longest segments of co-channel
speech with matching composite training segments, for sepa-
rating the underlying clean speech. The following provides the
details.

A. Modeling Training Utterances

For each test utterance, we use clean training utterances as ex-
amples of the underlying clean speech. We aim to identify long
matching segments (i.e., long matching temporal dynamics) for
the separation. For underlying speech with unknown, arbitrary
temporal dynamics, we use a data-driven approach to perform
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the identification. First, we model the complete temporal dy-
namics in each training utterance. As such, any segment of any
length in a training utterance, up to the complete training utter-
ance, can be used as a whole unit to identify a corresponding un-
derlying speech segment, for separating the segment. This mod-
eling approach is similar to that described in [34], [35].

Let represent a training
utterance for speaker , where is the number of frames in this
utterance (which can be variable from utterance to utterance)
and is the feature vector of the frame at time . We take
two steps to build a model for each training utterance .
First, we train a GMM for the feature vectors of each speaker by
using all the training utterances from the speaker. Denote by
the GMM for speaker , of Gaussian components, trained
using all the training utterances . This can be expressed
as

(1)

where is the ’th Gaussian component and is
the corresponding weight, for speaker . Second, based on ,
we build a model for each training utterance by taking
each frame from and finding the Gaussian component
in that produces the maximum likelihood for the frame.
As such, can be alternatively represented by a corre-
sponding time sequence of Gaussian components

, where is a Gaussian component
taken from with index , which produces the maximum
likelihood for the training frame . This time sequence of
Gaussian components can be fully characterized by the corre-
sponding time sequence of Gaussian indexes, which we write
as , where

(2)

We call (2) an utterance model, for the training utterance
. In the training stage, we create a model for

each training utterance of each speaker . All the
training utterance models for a speaker together form a speech
model of the speaker, to be used in the CLOSE system for
separation.

As can be noticed, the above utterance model shares
characteristics with a template, in the sense that both capture
the full temporal dynamics, from acoustic to lexical and to
language, that join together the appropriate short-time frames
to form a specific training utterance. However, the model (2)
provides a smoother, and hence more robust, representation
than templates by representing each speech frame , which
is subject to random variation, using a Gaussian component

. Other advantages of the model over templates are
the reduced memory space for storing the training data, and
the reduced computation for frame matching. By mapping all
the training utterances to a GMM, the complexity of finding a
match of a test frame among all the training frames is scaled
down to the calculation of the Gaussians of the test frame.
The model was first introduced in [34] for speech segmenta-
tion and recognition, and has lately been further explored for
speech enhancement [35], speaker recognition [36] and speech
recognition [38].

B. Separation Based on Composition of Longest
Segments—CLOSE

Let be a test utterance (a
co-channel speech mixture) with frames, containing two
speech utterances spoken by speaker and speaker (later we
will discuss an algorithm for identifying these two speakers
given the test utterance). In our system, the problem of speech
separation can be stated as: for each test frame , identifying
one training frame from speaker and another training
frame from speaker , such that their combination
matches . This separates the two clean speech frames forming
the test frame; the two clean frames can be reconstructed by
using the corresponding clean training frames, modeled by the
Gaussian components and .

Because of the short duration of a frame, given a test frame
of co-channel speech, there could be many different choices of
the two constituent training frames in terms of producing a sim-
ilar composite frame matching the test frame. Therefore uncer-
tainty remains over the correct constituent training frames. We
solve this problem by matching test segments and composite
training segments, both consisting of consecutive frames (see
Fig. 1). The longer the test segment to match, the more spe-
cific the constituent training segments, because of the increas-
ingly distinct temporal dynamics. Therefore separation based on
matching long test segments reduces the uncertainty of the cor-
rect constituent training frames for each test frame, and hence
the error of separation. The following describes the CLOSE al-
gorithm, which aims to match the longest test segments for sep-
aration given the training and test data. The training data are
modeled by using the training utterance model (1) and (2) de-
scribed in the last section.

Let represent a test segment
of the co-channel speech taken from the test utterance and
consisting of consecutive frames from time to . In a similar
notation, let represent a
training segment taken from the model and modeling
consecutive frames from to in the training utterance
of speaker . Given , we identify the two matching con-
stituent training segments and (see Fig. 1) by
using the posterior probability . Assume
an equal prior probability for all possible constituent seg-
ments from the two speakers. This posterior probability
can be expressed as shown in equation (3) at the bottom of the
next page, where is the likelihood that
the given test segment is matched by the two constituent
training segments and . Assuming that the frames
within a segment are conditionally independent (conditioned on
the segment), this segmental likelihood function can be written
as

(4)

where is the likelihood that the given
test frame is matched by the two constituent training frames

and . In our experiments reported in this paper,
we use a log-max model to calculate , dis-
cussed in Section III-A. In (4), and represent the time
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warping functions between the test segment and the two
constituent training segments and , in forming the
match. We assume a fixed-endpoint condition: ,
, and , . Furthermore, to speed up the algo-

rithm, in our experiments we only compare equal-length seg-
ments with linear time warping. In other words, we only search
temporally identical segments for the matching/separation.

In (3), the denominator is expressed as the sum of two terms.
The first term is the average likelihood that the given test seg-
ment is matched by a composite segment with both of
its constituent segments found in the training data; this like-
lihood is calculated over all possible training segments of the
two speakers. The second term, denoted by , repre-
sents the average likelihood that the test segment is matched
by a composite segment with either or both of its constituent
segments not found in the training data. This likelihood, asso-
ciated with unseen constituent segments, can be expressed by
using a mixture model, allowing for temporally independent
combinations of the training frames to simulate arbitrary unseen
speech segments (similar to the use of a temporally independent
GMM to model text-independent speech). Combining the two
speakers’ GMMs [i.e., (1)], we use the expression

(5)

The sums inside the brackets provide a mixture-based likeli-
hood for the test frame , assuming that it will match one
of the composite frames taking into consideration all possible
combinations of frames between the two speakers. Equation
(5) further assumes statistical independence between consec-
utive frames, so that it can simulate test segments with arbi-
trary temporal dynamics. In other words, if we view the seg-
mental temporal dynamics as “text” dependence, then (4) gives
a “text-dependent” likelihood of the test segment, dependent on
the temporal dynamics of both constituent training segments,
while (5) gives a “text-independent” likelihood of the test seg-
ment. Test segments with mismatched constituent training seg-
ments will result in low “text-dependent” likelihoods [i.e.,(4)]
but not necessarily low “text-independent” likelihoods [i.e.,(5)],
and hence low posterior probabilities of match [i.e.,(3)]. For
test segment with matched constituent training segments

and , we can assume that the “text-dependent”
likelihood is greater than the “text-independent” likelihood, i.e.,

. This is because

(6)

The second approximation is based on the assumption that
matching and hence highly likely constituent training frames
dominate the mixture-based likelihood. Therefore, with (3) and
(5), we can obtain a larger posterior probability for matching
constituent training segments, and a smaller posterior proba-
bility for mismatching constituent training segments, for the
given test segment.

The posterior probability formulation (3) has another im-
portant characteristic: it favors the continuity of match and
produces larger probabilities for the constituent training seg-
ments matching longer test segments. Assume that the test
segment and the two constituent training segments
and are matching, in the sense that the segmental likeli-
hoods
for any , and

. Then we can have
the following inequality concerning the posterior probabilities
of the matching constituent and test segments with different
lengths

(7)

where , with , is a test segment starting at the same time
as but not lasting as long and and are
the corresponding constituent training subsegments matching
the shorter test segment . The inequality indicates that
larger posterior probabilities are obtained when longer test
segments are matched. A similar inequality, concerning the
posterior probability of match between a test segment and a
single training segment for speech enhancement from noise,
is proven in [35]. In this paper, we have extended the proof to

(3)
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the match between a test segment and two constituent training
segments, as indicated above. For clarity of presentation, the
proof is included in Appendix A.

Based on (7), therefore, we can use the maximum values of
the posterior probability to locate the longest test segments with
matching constituent training segments, to be used to separate
the test utterance into clean utterances. Consider a test utter-
ance . At each frame time ,
we can find a longest test segment, denoted by , and the
corresponding matching constituent training segments, denoted
by and , by maximizing the posterior probability,
i.e.,

(8)

That is, the longest and the matching
are found by first finding for each fixed-length test segment
the most-likely constituent training segments, and then finding
the test segment with maximum length (i.e., ) that results
in the maximum posterior probability. Before discussing more
details of implementing this algorithm for speech separation, we
consider two special cases.

C. Special Cases

In (8), by forcing each test segment to contain only a single
frame, i.e., for all , we obtain a system which finds two
constituent training frames for each test frame independently
of the other test/training frames in the sequence. Noting that
in our system each constituent training frame corresponds to
a Gaussian component, this frame-by-frame matching system
is effectively identical to the conventional GMM-based sepa-
ration system (e.g., [13]–[16]), which performs unconstrained
speech separation assuming temporal independence between
speech frames. We will include this GMM-based separation
system in our experimental comparison, to demonstrate the
effect of segment matching, based on the CLOSE algorithm,
on unconstrained speech separation.

Equation (8) corresponds to a “two-sided” constrained sep-
aration system, in which both the constituent training frames
for each test frame are constrained temporally by their respec-
tive longest matching constituent training segments. To find the
two matching constituent training segments for a test segment,
this system needs to search possible combinations,
where and represent the number of training segments
from speaker and speaker , respectively. Between the GMM-
based system in which there is no temporal constraint on succes-
sive constituent frames, and the two-sided constrained system
in which both constituent frames are constrained temporally by
longest matching constituent segments, there is a third system in
which one constituent frame is constrained by longest matching
constituent segment and the other constituent frame is left un-
constrained temporally. We call the third system a “one-sided”
constrained system, with the formulation presented below. As
will be demonstrated experimentally in the paper, the one-sided
constrained system has the potential to offer a good balance be-
tween the accuracy of separation and the computational load of
separation, in comparison to the two-sided constrained system.

Reconsider the segmental likelihood function (4) of a test seg-
ment , now associated with a temporally constrained con-
stituent training segment from speaker , and a tempo-
rally unconstrained constituent training segment from speaker

. Denote the unconstrained constituent training segment as
. This likelihood function can be expressed as

(9)

The unconstrained constituent training segment is formed
by choosing the frames freely from the training data of
speaker (mapped to GMM ), to maximize the like-
lihood with the constrained constituent training segment.
Thus, where each

. Equation
(9) gives a “text-dependent” likelihood of the test segment,
dependent on the temporal dynamics of the constituent training
segment . Substituting into (3) in
place of the two-sided constrained likelihood function, we can
obtain the one-sided constrained posterior probability. We use
the expression

(10)

Equation (10) is only a function of the temporally constrained
training segment . Similar to (8), we can locate the longest
test segments with matching temporally constrained training
segments, by maximizing the posterior probabilities. At each
frame time , we obtain the longest test segment and the
corresponding matching temporally constrained training seg-
ment by first finding for each fixed-length test segment

the most-likely temporally constrained training segment,
and then finding the test segment with maximum length (i.e.,

) that results in the maximum posterior probability, i.e.,

(11)
Equation (11) shows the estimation of the temporally con-
strained training segments for speaker . By switching the
temporal constraint from speaker to speaker , the same
system can be used to identify the temporally constrained
training segments for speaker .

Therefore, the two-sided constrained problem (8) can be re-
duced to two one-sided constrained problems (11), each dealing
with the estimation of a clean speech utterance from the test
utterance. To find the two temporally constrained constituent
training segments for a test segment, the one-sided constrained
system has a search complexity of about possible
combinations, which can be significantly less than re-
quired for the two-sided constrained system, for large numbers
of training segments and . See Fig. 2 for a pseudo-pro-
gram description of the one-sided constrained CLOSE algo-
rithm. Further details of this algorithm, including its computa-
tional complexity, will be revealed in Sections III–V.
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Fig. 2. Outline of the one-sided constrained CLOSE algorithm for separating one clean speech utterance from a co-channel speech mixture. Part A, B and C
include the major strategies for accelerating the algorithm, detailed in Section IV-D.

III. MORE IMPLEMENTATION DETAILS

A. Likelihood of Mixed Frame and Gain Modeling

In the above algorithms, (4), (5), (9), we need to calculate
the likelihood of a test frame associated with two constituent
training frames , where and each corre-
spond to a Gaussian component in the appropriate speaker’s
GMM, i.e., and , which model the prob-
ability distributions of the two constituent frames. Given the
probability distribution of each constituent frame, and given the
assumption that the test frame is an additive mixture of the
two constituent frames, there can be several methods, for ex-
ample, log-max, Algonquin, lifted max or parallel model com-
bination [2], [9], [30]–[32], that can be used to derive the like-
lihood of the test frame. In this paper, we use a simple method,
the log-max model, to obtain this likelihood.

For each frame, we calculate its log power spectrum as the
feature. Assume that the log power spectrum of can be ex-
pressed in distinct frequency channels, i.e.,

, where is the log power of the th channel.
Then can be expressed as

(12)

where is the likelihood of the log power of the
th channel. For simplicity, in (12) we assume independence

between the frequency channels. Let and represent
the log powers of the same channel of the two constituent
frames, subject to probability distributions and

. We can have [2], [30].
Thus, can be written as

(13)

where , and likewise for
.

In the separation, we need to model constituent speakers/
frames with gains different from the training data. Rewrite
the constituent-frame Gaussians as and

, where and are the gain updates
(in dB) for speaker and speaker , respectively, and

, where and
are the training-data based mean vector and covariance

matrix of the appropriate Gaussian. For any given test utterance,
we calculate the gain updates and at the frame level on a
frame-by-frame basis, by maximizing the test frame likelihood

against a set of predefined update values for each
constituent speaker. The gain-optimized test frame likelihood
can be expressed as

(14)
where and are the predefined gain-update value sets for
speaker and , and is the local channel
likelihood (13) with each component Gaussian including a cor-
responding gain update.

B. Speaker-Pair Identification

In the above discussions, we have assumed that for each
test utterance the identities of the two constituent speakers
are known. Actually, in our experiments, we assume no prior
knowledge about the speakers’ identities. The following de-
tails the algorithm which we use to automatically identify the
constituent speakers for each given test utterance.

Assume that a test utterance contains frames/segments
which are dominated by the individual speakers. Therefore, the
problem can be viewed as one to identify the two constituent
speakers using a noisy utterance, with partial temporal cor-
ruption (corresponding to those heavily mixed features not
matching any single speaker’s feature). We describe a new
approach for extracting the single-speaker dominated features
for the identification. The new approach is an extension of our
previous approach [37] for speech recognition using signals
with partial temporal corruption.

Given a test utterance , we
use the following GMM-based expression to calculate its frame
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likelihood associated with speaker and speaker with respec-
tive gains and :

(15)

When the test frame is dominated by a single speaker, or
, and has the correct gain, should be large.

Therefore, we can identify the speaker pair by using the frames
producing large likelihoods, assuming that they are likely to
correspond to the single-speaker dominated frames of the two
speakers. Denote by the test-frame likeli-
hoods sorted in descending order, with , ,
corresponding to the test frames from the highest likelihood
to the lowest likelihood associated with speaker pair , and
gains , . To select the optimal frames for identification, we
formulate a posterior probability for each speaker pair using
the corresponding for each pair, as a function
of the number of test frames with the highest likelihoods. This
posterior probability can be expressed as

(16)

where we assume an equal prior probability for all the speaker
pairs and gains, and is the number of the highest-likelihood
frames used in forming the posterior probability. Thus, the
most-likely speaker pair can be obtained by jointly maximizing

over all speaker pairs and all possible numbers
of the highest-likelihood frames , i.e.,

(17)

We have found that it is helpful to impose a constraint on
the minimum value of the optimal frame number . The con-
straint reflects a balance between retaining sufficient features
for identification and ignoring noisy features for robustness. In
our experiments, we forced , i.e., at least half of the
frames from a test utterance are used to identify the constituent
speakers.

C. Clean Utterance Reconstruction

Given test utterance , after
finding the longest test segment and the matching con-
stituent training segments and at each time [i.e.,
(8) or (11)], we use and to estimate the two under-
lying clean speech utterances forming the test utterance. In the
following, we describe the algorithm which uses to es-
timate the clean utterance from speaker . The same algorithm

can be used to estimate the clean utterance from speaker , by
replacing with .

Let represent the clean frame of speaker at time ,
, and be the magnitude spectrum of the frame.

We can obtain an estimate of by taking all the longest
matching training segments that contain and averaging over
the corresponding training frames. In the average, we use the
posterior probability, obtained in (8) or (11), as a confidence
score. We use the expression

(18)

where the sum is over all test segments that contain
frame ; is the training frame and is the
corresponding gain [obtained using (14)] corresponding to

, taken from the longest matching training segment ;
represents a magnitude spectrum corresponding to

training frame . As shown in (18), each clean frame is
estimated through identification of a longest matching training
segment, and each estimate is smoothed over successive longest
matching training segments. This improves both accuracy for
frame estimation and robustness to imperfect segment match.
Frames within the same segment share a common confidence
score which is the posterior probability of the segment. In (18),

is a normalization term. In our experiments, the following
expression is found to be suitable:

(19)

The last condition prevents small posterior probabilities being
scaled up to give a false emphasis. If we use the one-sided con-
strained system (11), the posterior probabilities in (18) and (19)
should be replaced by , as defined
in (11).

In our system, we use the DFT (discrete Fourier transform)
magnitudes of the training frames as the magnitude spectra

to form the estimate. Given the index of a training
frame , we can have two different approaches to calculate

. First, can be calculated directly using the
specific training speech frame corresponding to
[see the definition of in (2)]. Alternatively,
can be calculated as an average DFT magnitude over all the
training speech frames used to form the Gaussian component

in the speaker’s GMM [see (1)]. In the latter case,
corresponds to the mean vector of in the

DFT magnitude format. For convenience, we call the estimate
(18) based entirely on the training data a codeword-based esti-
mate, by viewing each training frame or Gaussian component
as a codeword and the corresponding training data set or GMM
as a codebook.

Alternatively, we can form an estimate for each clean utter-
ance by directly suppressing the crosstalk noise in the test ut-
terance. In this approach, we use the codeword-based estimate
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(18) to form an optimal filter. In our system, we use a Wiener
filter of the form:

(20)

where represents the filter function at time , and is an
estimate of the crosstalk noise power spectral density, which can
be obtained by using the test speech periodogram and the clean
speech power spectral density estimate in a smoothed recursion:

(21)

where is a smoothing constant ( in our experiments)
and represents the test speech periodogram at time . For
convenience, we call the estimate based on (20) a filter-based
estimate. In our experiments, both estimates based on the code-
words and on the filter produced similar separation quality. The
filter-based estimates are used in the evaluation.

IV. EXPERIMENTAL STUDIES

A. Test Data, Systems and Performance Measures

The large-vocabulary continuous speech recognition Wall
Street Journal Phase I (WSJ0) database [39] was used in the
experiments. In the database, there are 101 speakers providing
short-term data for speaker-independent training (SI-TR-S).
From these, we selected 20 speakers (10 male, 10 female) to
construct our experimental data set. Each speaker has about
140 utterances, with an average utterance duration of about
7 s. For each speaker, we chose two utterances to be used to
form mixed speech, or co-channel speech, for separation test,
and used the remaining (about 138) utterances for training; the
training utterances and test utterances had no sentence texts in
common (a simulation of the unconstrained speech scenario).
All the test utterances of all the speakers were chosen to have a
similar duration (about 9 s), with an average of 20.4 words per
utterance (see Appendix B for more details).

The two test utterances of each speaker (target) were mixed
with the two test utterances of each of the other 19 speakers
(masker), first utterance to first utterance, and second utterance
to second utterance, at five different target-to-masker ratios
(TMRs): 10, 5, 0, , and dB, measured on the utter-
ance level (i.e., the target speakers vary from being dominant
to background). Therefore, at each TMR level, there were
20 19 co-channel utterances, each co-channel
utterance containing two speech utterances, for separation
test. In other words, at each TMR level, every speaker was
used as target, with every of the other speakers being used as
masker, for the mixture; two sets of such speech mixtures were
generated for the test, each set containing a different utterance
for each speaker.

To build the CLOSE system, first, we trained a GMM
[i.e., (1)] for each speaker using the training utterances of the
speaker. In our experiments, each speaker’s GMM contained
512 Gaussian components with diagonal covariance matrices.
Then, we took the GMM and the training utterances of each
speaker and obtained an utterance model [i.e., (2)] for each
training utterance, to be used in the CLOSE algorithm for

segment matching. The speech signals, sampled at 16 kHz,
were divided into frames of 20 ms with a frame period of 10
ms. In our experiments, for identifying matching segments,
we represented each frame in the form of Mel-frequency log
filterbank power spectrum. We have tested filterbanks of vari-
able numbers of channels, from 26 as typically used in speech
analysis for speech recognition, to some higher resolutions up
to 128. In general, a higher-resolution power spectrum rep-
resentation gave improved results, but also resulted in higher
computational load. For the experiments in this paper, we
used a 50-channel filterbank representation, which appeared
to provide a good balance. As described in Section III-C,
when matching training segments are found, the clean speech
frames are reconstructed using the DFT magnitudes of the
corresponding training frames (with phases taken from the test
frames of co-channel speech). In the CLOSE system for the
experiments, we used a gain-update set [ , , , ,
0, 3, 6, 9, 12] to account for the variable gain changes from
the training data, without assuming specific knowledge of the
TMR in each test utterance. This set corresponds to and
in (14) and (16).

In the CLOSE system, for identifying the longest matching
segments, we have implemented both the two-sided constrained
algorithm (8) and the one-sided constrained algorithm (11).
Our experiments were performed mainly using the one-sided
algorithm, for its much lower computational complexity.
We have compared the two-sided algorithm and one-sided
algorithm using a smaller number of training utterances for
each speaker, and found that they achieved similar separation
performance. We chose the GMM-based separation system as a
baseline system for comparison. As described in Section II-C,
the GMM-based system is a special case of the CLOSE system,
which assumes independence between consecutive speech
frames to account for the lack of knowledge of temporal
dynamics of unconstrained speech. The comparison between
the GMM-based system and the CLOSE system demonstrates
the feasibility and benefits of identifying maximum-length
matching segments between the training data and test data
as a form of temporal constraint for unconstrained speech
separation.

Both objective and subjective tests were conducted to
evaluate the separation performance. The objective measures
include sentence-level signal-to-noise ratio (SNR) improve-
ment after separation, perceptual evaluation of speech quality
(PESQ), and large-vocabulary continuous speech recognition
(LVCSR) word accuracy. The subjective tests include the
mean opinion score (MOS) for quality, for intelligibility, and
subjective preference test.

B. Speaker Identification Evaluation

In the first set of experiments, we evaluated our algorithm for
identifying the constituent speakers given co-channel speech.
The algorithm uses optimal frame selection, as described in
Section III-B. Table I presents the identification accuracy for
the target speaker in each co-channel utterance, as a function
of the utterance TMR. The results are averaged over the 760
co-channel utterances for test at each TMR condition, with all
the 20 speakers appearing as targets as described above. To
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TABLE I
TARGET SPEAKER IDENTIFICATION ACCURACY (%) GIVEN CO-CHANNEL

SPEECH, AS A FUNCTION OF THE TARGET-TO-MASKER RATIO (TMR), BY

THE PROPOSED SPEAKER-PAIR IDENTIFICATION ALGORITHM WITH OPTIMAL

FRAME SELECTION, COMPARED TO NO FRAME SELECTION

Fig. 3. Objective evaluation of the target speech given co-channel speech, as a
function of the TMR, in different-gender (DG) and same-gender (SG) mixtures
and separated utterances, by the GMM-based separation algorithm and the new
CLOSE separation algorithm. (a) SNR improvement. (b) PESQ measure.

assess the effect of optimal frame selection on the identifica-
tion, we also included the corresponding identification results
based on all the frames (i.e., no frame selection). From Table I,
it is evident that the optimal frame selection significantly
improved the speaker identification accuracy, especially at the
lower TMR conditions. All the experiments described below,
including those for the GMM-based separation system, were
based on the speaker identification results produced by the
algorithm.

C. One-Sided Constrained CLOSE System Evaluation

Three types of objective evaluation were conducted. At each
TMR condition, we divide the 760 co-channel utterances for test
into two group: same-gender (SG) mixture, with 360 utterances,
and different-gender (DG) mixture, with 400 utterances. The re-
sults presented below for each group are obtained by averaging
over the utterances within the group. Fig. 3(a) shows the SNR
improvement after separation by the CLOSE separation system
and GMM-based separation system, as a function of the original
co-channel utterance TMR. The CLOSE system improved over
the GMM-based system in all the gender group and TMR condi-
tions. The CLOSE system obtained positive SNR improvement
even in the high TMR condition (10 dB) where the GMM-based
system failed to show improvement.

Next, PESQ scores for the target speech in the co-channel
speech and separated utterances were calculated using the code
provided in [40] and the results are presented in Fig. 3(b).
Again, both separation systems improved the PESQ scores

TABLE II
LARGE-VOCABULARY CONTINUOUS SPEECH RECOGNITION WORD ACCURACY

(%) FOR THE TARGET SPEECH GIVEN CO-CHANNEL SPEECH, AS A

FUNCTION OF THE TMR, IN DIFFERENT-GENDER (DG) AND SAME-GENDER

(SG) MIXTURES AND SEPARATED UTTERANCES, BY THE GMM-BASED

SEPARATION ALGORITHM AND THE NEW CLOSE ALGORITHM

of the target utterances, and the CLOSE system obtained the
highest scores in all the gender group and TMR conditions. It is
also observed that as the TMR decreased, the CLOSE algorithm
suffered a slower degradation in the PESQ score than suffered
by the co-channel utterances and the GMM-based separation
algorithm, for both the SG and DG groups.

A more challenging objective measure was the accuracy rate
achieved by a large-vocabulary continuous speech recognition
(LVCSR) system. The LVCSR system was built following the
HTK WSJ Training Recipe [41], trained using the full set of
WSJ0 and WSJ1 training data, with TIMIT-bootstrapped mono-
phones. Slightly different from the recipe system, in our system
we dropped the zero’th cepstral coefficient (C0) to account for
the variable gain changes of the target speech. For validation,
the system was tested on the November’92 ARPA WSJ 5k-vo-
cabulary test set, with 330 test utterances from eight untrained
speakers, and achieved word accuracy. In the speech sep-
aration evaluation, the separated target utterances were passed
to the system for recognition without any compensation for the
likely acoustic mismatch caused by the separation and recon-
struction processes. Table II shows the word recognition ac-
curacy for the target utterances when they were clean, mixed
and separated, as a function of the TMR. First, the recognition
system obtained only 81.5% word accuracy for the 40 clean
WSJ0 utterances which we used to form the co-channel utter-
ances for test. This may indicate that these 40 utterances are
more difficult to recognize accurately than the average of the
November’92 test utterances. Second, compared to the GMM-
based separation system, the CLOSE system significantly im-
proved the word accuracy, especial with lower TMR levels.
Compared to the co-channel utterances, the GMM-based system
also improved the word recognition accuracy in almost all test
conditions, except for one test condition with same-gender mix-
ture at dB, in which it failed to improve the word
recognition accuracy. All the above three objective measures
indicate that it is generally more difficult to correctly separate
the utterances when the speakers are of the same gender. This is
shown by the lower scores in the SNR, PESQ, and word recogni-
tion accuracy for the separated target speech from same-gender
mixtures than from different-gender mixtures.

Three types of subjective listening tests were conducted. A
group of eighteen volunteers (four female and fourteen male)
participated in the tests. The test samples were also prepared in
two groups: same-gender mixture and different-gender mixture.
From the 20 constituent speakers, we selected 12 speakers
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TABLE III
FORMATION OF THE DG AND SG SPEECH MIXTURES FOR SUBJECTIVE

LISTENING TESTS. AFTER SEPARATION, THE ESTIMATED TARGET SPEECH

IN EACH MIXTURE IS PRESENTED TO THE SUBJECTS FOR EVALUATION

(7 female and 5 male), each speaker with one utterance, to form
the co-channel data for test. Table III gives the details of the
formation. As shown in the table, from the 12 speakers we cre-
ated 6 groups of co-channel utterances; each group consisted of
two co-channel utterances, differing in the target/masker speci-
fication, and formed by two speakers at one of the TMR levels
10/-10, 5/-5, and 0/0 dB. After separation, the separated target
utterances of all the groups were used for evaluation. Therefore,
for each separation system (GMM and CLOSE), there were a
total of 12 separated target utterances for evaluation which cov-
ered all the 12 constituent speakers and the full range of TMR
from 10 to dB.

The quality MOS test for the target speech was conducted by
closely adhering to the standard ITU-T P.800 [42]. The 24 sep-
arated target utterances produced by the two separation systems
were presented to each listener in random order. The listeners
assessed the quality of each utterance by rating it on one of the
five scales: 1-poor, 2-bad, 3-fair, 4-good, and 5-excellent. Fi-
nally, the mean opinion score for each utterance was obtained
by averaging its ratings over all the listeners. Fig. 4(a) shows the
results, as a function of the co-channel speech TMR. The results
reveal that the CLOSE system outperformed the GMM-based
system for both the DG and SG groups at all the TMR con-
ditions. Again, it can be found that the improvement by the
CLOSE system was greater in the lower TMR conditions than in
the higher TMR conditions. In the subjective tests, we have seen
cases in which higher scores were given to the target speech sep-
arated from same-gender mixtures than from different-gender
mixtures, in both separation systems.

The intelligibility MOS test for the target speech was con-
ducted using an approach similar to that described in [43], [44].
In [43], a five-scale system was used to assess the intelligi-
bility of a speech utterance, and in [44] a seven-scale system
was used to assess the difficulty in understanding a speech utter-
ance. In our test, we tried to combine these two rating systems.
We used a seven-scale rating system to assess the intelligibility
of each separated target utterance: 1-not intelligible, 2-slightly
intelligible, 3-somewhat intelligible, 4-mostly intelligible only
if I concentrate, 5-mostly intelligible, 6-completely intelligible
only if I concentrate, and 7-completely intelligible. We found
that the use of a higher-resolution rating system is helpful to

Fig. 4. Subjective evaluation of the target speech estimated by the GMM-based
separation algorithm and the new CLOSE algorithm. (a) MOS for quality. (b)
MOS for intelligibility. (c) Preference percentage.

reduce the ambiguity in assessing the intelligibility by the lis-
teners. The 24 separated target utterances produced by the two
separation systems were presented to each listener in random
order and the final score for each utterance was obtained by
averaging over all the listeners. Fig. 4(b) presents the results.
The CLOSE system outperformed the GMM-based system in
all the test conditions. At the very low dB, the
target utterances estimated by the CLOSE system were rated an
average score of about 4.5, between ‘mostly intelligible only
if I concentrate’ and ‘mostly intelligible,’ while the target ut-
terances estimated by the GMM-based system were rated an
average score of about 2.6, between ‘slightly intelligible’ and
‘somewhat intelligible.’

A further informal subjective evaluation, in the form of a pref-
erence test, was conducted. The same target utterances, one es-
timated by the GMM-based system and the other by CLOSE,
were paired. The 12 pairs were then presented in random order,
with the two utterances in each pair also in random order, to each
listener. The results are presented in Fig. 4(c), which shows the
percentage of the listeners preferring the utterances/separation
systems in all the utterance pairs.

D. CLOSE Algorithm Analysis

We conducted experiments to compare the two versions of the
CLOSE algorithm: the two-sided constrained algorithm (8) and
the one-sided constrained algorithm (11). The first is an “exact”
algorithm while the second is an approximation. The second is
more efficient in computation and was used to produce all the
experimental results described above. From the above full test
data set we chose a subset to conduct the comparison experi-
ments. We randomly selected eight speakers (four male and four
female) from the 20 speakers, each speaker taking one utterance,



MING et al.: CLOSE—A DATA-DRIVEN APPROACH TO SPEECH SEPARATION 1365

Fig. 5. Objective evaluation of the target speech given co-channel speech and
separated utterances, by the two-sided constrained CLOSE algorithm and one-
sided constrained CLOSE algorithm, for a smaller test data set. Ten training ut-
terances from each speaker were used to provide segment examples for segment
matching. (a) SNR improvement. (b) PESQ measure.

to form the co-channel utterances for test. For each TMR con-
dition, the full combination between the eight speakers resulted
in 56 co-channel utterances to be separated by each algorithm.

As discussed in Section II-C, for each test segment of the
co-channel speech, the two-sided algorithm needs to compare
all possible combinations between the training segments of the
two constituent speakers. For the WSJ0 database used in our
experiments, in which each constituent speaker has about 138
training utterances with an average utterance duration about 7 s
(an average overall duration about 16 min), the two-sided al-
gorithm requires an average of billion comparisons and

GB memory for finding the matching constituent training
segments for each test segment. This amount of computation
and memory usage was found to be impractical in our experi-
ments. Based on practicality reasons, we reduced the number of
the training utterances used to provide segment examples from

to 10 (about 1 min speech) for each constituent speaker.
These 10 training utterances were selected randomly for each
speaker from his/her training utterances. Both the two-sided and
one-sided algorithms were compared on this new system with
reduced numbers of segment examples for segment matching.

Fig. 5 and Table IV present the results of the comparison
using three objective measures: SNR improvement, PESQ
score and LVCSR word accuracy. We can see that the three
measures are well correlated, all showing slightly better per-
formance for the two-sided algorithm at the higher TMR
conditions, and all showing slightly better performance for
the one-sided algorithm at the lower TMR conditions. It was
observed that the one-sided algorithm actually found a greater
number of long matching segments between the co-channel
speech and the 10 constituent training utterances, than the
two-sided algorithm. This gave the one-sided algorithm better
robustness to separate the lower-TMR utterances. Given lim-
ited choices of constituent training segments, the probability of
finding simultaneously two long constituent training segments
that match a randomly given long co-channel speech segment
could be small. Therefore with limited training segments the
two-sided algorithm performed separation mainly based on

TABLE IV
LARGE-VOCABULARY CONTINUOUS SPEECH RECOGNITION WORD

ACCURACY (%) FOR THE TARGET SPEECH GIVEN CO-CHANNEL SPEECH

AND SEPARATED UTTERANCES, BY THE TWO-SIDED CONSTRAINED

CLOSE ALGORITHM AND ONE-SIDED CONSTRAINED CLOSE ALGORITHM.
TEN TRAINING UTTERANCES FROM EACH SPEAKER WERE USED TO

PROVIDE SEGMENT EXAMPLES FOR SEGMENT MATCHING

Fig. 6. Histogram of the length (in number of frames) of the longest matching
segments found by the CLOSE algorithm as a function of the co-channel speech
TMR.

matching short co-channel speech segments, which explains
its poorer robustness to the lower-TMR utterances. The above
experiments indicate that the one-sided algorithm is an ef-
fective alternative to the two-sided algorithm, for obtaining
comparable separation accuracy with significantly reduced
computational complexity. We also compared the results in
Fig. 5 and Table IV for the one-sided algorithm to the results
based on full set training shown in Fig. 3 and Table II, on the
same test data set. We noticed only moderate performance
reduction by reducing the number of training utterances for
segment matching from 138 to 10.

Fig. 6 shows the histogram of the length of the longest
matching co-channel speech segments found by the one-sided
constrained algorithm for correctly identified target speakers,
as a function of the TMR. The histograms are calculated over
the full test data set (with 760 co-channel utterances for each
TMR condition). It is interesting to note that the histogram fol-
lows a consistent pattern as the TMR decreases. For the target
speech with a high TMR, sharp matching training segments
can be found in the corresponding clean training utterances; the
number of these “true” matching segments which are long is
limited given the limited training data. As the TMR decreases,
ambiguity increases towards the identity of the true matching
segments; this is indicated by the increased number of longer,
but less sharp, matching segments. Across the TMR conditions,
over 97% of the matching segments found are four or more
frames long, with a mean length from about fifteen frames
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to about nineteen frames as the TMR varies from 10 dB to
10 dB. The rising tails of the histograms are mostly due to

the matches of the long beginning/ending silences between the
co-channel utterances and the training utterances.

Finally, in our experiments several strategies were used to
make the one-sided constrained CLOSE algorithm computa-
tionally efficient. These strategies are outlined in Fig. 2. The
first step of the algorithm, calculating the test frame likelihoods
(Part A in Fig. 2), has the same computational complexity as
the conventional GMM-based separation algorithm. This step
produces all the frame likelihoods required by the CLOSE al-
gorithm for segment matching; the maximization over is re-
quired in (9), which is taken here to reduce the memory required
for saving the likelihoods from two-dimensional to
one-dimensional . The subsequent search for the longest
matching segments is made computationally efficient mainly
in two steps. First, we only search equal-length or temporally
identical training/test segments using linear time warping for
matching (Part B). Second, pruning is used to remove those un-
likely training segments after comparing their first few frames
with the test segment (Part C); this can significantly reduce
the computation without noticeable loss of performance. Com-
bining these steps, the complexity of the algorithm scales lin-
early or less with the number of training segments used for
segment matching. With the WSJ0 database used in our ex-
periments, using the full training set for each speaker, our ex-
periments indicate a comparison of 2.6:1 for the average time
taken by the CLOSE algorithm compared to that taken by the
GMM-based algorithm, for separating the two clean utterances
of a co-channel utterance. This demonstrates the computational
feasibility of the CLOSE method.

V. CONCLUDING REMARKS

In this paper, we presented a new approach, namely CLOSE,
to single-channel speech separation. The CLOSE approach
aimed to improve the separation accuracy by imposing
long-range temporal constraints on the speech signals, without
assuming knowledge about the vocabulary, grammar, or lan-
guage model of the speech signals to be estimated. This was
achieved by using a data-driven framework. Given co-channel
speech and the training data of the individual speakers, we
seek the longest co-channel speech segments with matching
composite training segments to perform the separation. Our

conjecture was that this would help reduce the uncertainty of
the matching constituent training segments and hence the error
of separation. A statistical method was presented for identifying
the longest matching segments within the CLOSE system.

Experiments were conducted on the WSJ database, for sep-
arating mixtures of large-vocabulary speech utterances spoken
by different speakers, without assuming knowledge about the
task’s vocabulary and language model, and transcripts of the
training data. Various objective and subjective measures were
used to evaluate the performance, including large-vocabulary
continuous speech recognition. The results have demonstrated
the significance of matching longest speech segments for speech
separation, in terms of improving performance over conven-
tional frame-by-frame separation algorithms for all the mea-
sures. We have also demonstrated the computational feasibility
of the new method. Presently, we are studying the direct in-
corporation of the CLOSE algorithm into a speech recognition
system, for further optimized recognition performance.

APPENDIX A
PROOF OF INEQUALITY (7)

Express as a union of two consecutive subseg-
ments and the complement , and express the
two matching constituent segments and
each as a union of the corresponding constituent sub-
segments, i.e., , and

. We have the like-
lihood-ratio inequality (22) shown at the bottom of
the page. The last inequality is obtained based on the
assumption that the subsegment and the corre-
sponding constituents , are
matching and hence

for any
.

Based on (6), we can have a similar inequality concerning
the likelihood ratio associated with the unseen constituent
segments:

(23)

Dividing both the numerator and denominator of (3) by
, and applying the above two likeli-

hood-ratio inequalities to the expression, we can obtain the
posterior probability inequality (7).

(22)
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APPENDIX B
THE WSJ0 SPEAKERS AND TEST UTTERANCES

USED IN THE EXPERIMENTS

013c0202 013c021f 01gc020x 01gc0219 01kc021a
01kc021b 01lc020u 01lc021d 01oc0218 01oc021d 01sc020b
01sc020c 01uc0208 01uo030c 01vc020j 01vc021f 01xc0205
01xc020n 022c0203 022c0218 02bc0207 02bc0213 02dc020t
02dc021b 403c020f 403c021b 404c020h 404c020z 406c0206
406c020g 407c020s 407c021e 408c020g 408c021a 40fc020g
40fc0212 40gc0201 40gc0204 40jc020g 40jc0216
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