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Abstract

Electroencephalography (EEG) has, historically, played a focal role in the assessment of neural 

function in children with attention deficit hyperactivity disorder (ADHD). We review here the 

most recent developments in the utility of EEG in the diagnosis of ADHD, with emphasis on the 

most commonly used and emerging EEG metrics and their reliability in diagnostic classification. 

Considering the clinical heterogeneity of ADHD and the complexity of information available from 

the EEG signals, we suggest that considerable benefits are to be gained from multivariate analyses 

and a focus towards understanding of the neural generators of EEG. We conclude that while EEG 

cannot currently be used as a diagnostic tool, vast developments in analytical and technological 

tools in its domain anticipate future progress in its utility in the clinical setting.
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Introduction

The use of electroencephalography (EEG) in ADHD began more than 75 years ago with 

Jasper et al. [1] reporting a slowing of the EEG rhythms at fronto-central sensors, a putative 

indicator of abnormal brain function in a group of “behavior problem children” – described 

as hyperactive, impulsive and highly variable. The relative maturity of this finding when 

compared with recency of other major advances in neuroimaging [2, 3], underscores the 

potential for clinical utility of EEG. EEG is readily accessible and inexpensive, and 

measures with millisecond temporal resolution, the electrical activity produced by neuronal 

ensembles of the cerebral cortex. Yet, 75 years later clinical applications of EEG in 

psychiatry are extremely controversial, with the primary question being whether the 

knowledge gained from EEG has any practical diagnostic value [4–6]. A number of 

excellent recent reviews have discussed methodological limitations, from a clinical 
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standpoint, of using EEG as a diagnostic [6], as well as pointing to a relative lack of 

diagnostic studies [5, 7].

In this review, we focus instead on the current state of EEG metrics that have potential for 

application in diagnosis of ADHD. We first summarize the most recent progress in two 

classes of neurophysiological features that have been associated with group differences 

between ADHD and other populations, the slow EEG rhythms described by Jasper et al. [1] 

and event-related potentials (ERP). Second, we evaluate new developments that more 

directly address the links between EEG features and clinical heterogeneity in ADHD – 

significant factors that may have limited past utility of EEG in ADHD diagnosis. We 

cautiously conclude that these new developments, which include multivariate analyses and 

resolution of EEG signals into their neural generators, place EEG on a path to transition 

from a research tool to an aid in clinical evaluation of ADHD.

Neurophysiological Candidates for Biomarkers of ADHD

The signal measured by each EEG sensor is a time course representing, in amplitude, the 

amount of summed electrical activity occurring somewhere in the cortex. This signal is rich 

in information that can be extracted using a variety of different techniques. In Figure 1, we 

summarize common techniques for extracting information from the EEG time course that 

can be used to diagnose ADHD. Meaningful information content is extracted from such a 

signal, typically, in one of two ways: by quantifying the power (absolute magnitude) of 

oscillations of the signal spanning an interval of minutes (typically during resting conditions, 

[Fig. 1a, lower left]), and, by computing the average change in latency or amplitude of the 

electrical potential in the range of hundreds of milliseconds following or preceding some 

event (e.g., event-related potential, ERP, [Fig. 1a, upper right). The former is broadly 

compatible with a measure of brain state, whereas the latter measures transient cortical 

dynamics. A combination of these techniques can be used to quantify event-related changes 

in power (and therefore brain state, [Fig. 1a, lower right]). Since EEG signals are collected 

from many spatial locations on the scalp, representing the contributions of many sources in 

the cortex, these spectral (i.e., power) and temporal metrics can be computed for different 

electrodes (Fig. 1b). The EEG dataset is therefore a combination of temporal, spectral and 

spatial (e.g., electrodes) “features”, all of which can be used to assist diagnosis (Fig. 1c). In 

the following discussion we review recent developments in common metrics used in ADHD 

diagnosis.

Theta: Slowed Brain Rhythms

The most robust EEG feature associated with ADHD is elevated power of slow waves (4–

7Hz “theta”) and/or decreased power of fast waves (14–30Hz “beta”), typically recorded 

over fronto-central electrodes, which are sometimes combined and quantified by the theta/

beta ratio (TBR) [8, 9]. This conclusion was bolstered by early reports of medium to large 

effect sizes, ranging from .62 and 3.08 [10–12], for group differences in TBR and of 

diagnostic sensitivities and specificities in excess of 90% in multiple reports [13–15]. The 

relevance of TBR to ADHD was further strengthened by initial hypotheses linking the 

increases of slow wave activity contributing to this ratio with hypoarousal [9, 16], one of the 

earliest characterizations of the disorder [17]. The combination of a clear theoretical 
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rationale and significant statistics inevitably contributed to the July 15, 2013 news release 

(http://www.fda.gov/newsevents/newsroom/pressannouncements/ucm360811.htm), by the 

Food and Drug Administration, of approval for a Neuropsychiatric EEG-Based Assessment 

Aid (NEBA) System for the diagnosis of ADHD – rooted in TBR.

The timing of the NEBA news release coincides with rising concern over the accuracy and 

reliability of TBR as a diagnostic [4] (Table 1). At least five recent studies have failed to 

replicate theta or TBR differences in ADHD versus non-ADHD, between groups of children 

[18] and adults [19, 20], as well as cross-sectionally across age [21–23]. In a study of 101 

children (62 diagnosed with ADHD), Ogrim et al. [18] reported sensitivity of 63% and 

specificity of only 58% in differentiating between children with and without ADHD based 

on TBR, to contrast with an accuracy of 85% based on classification by omission errors 

alone. In a cross-sectional analysis, using logistic regression, Buyck and Wiersema [21] 

reported accuracy of 89.8–96.5% in TBR predicting age (theta decreased with age), but only 

49.2–54.8% accuracy in predicting whether an individual has ADHD. Similarly, Liechti et 

al. [22] found 81% accuracy in predicting age based on TBR, but only 53% accuracy in 

predicting diagnosis. In the largest study of the TBR to date, no significant differences were 

found between 562 children, adolescents, and adults with ADHD compared to 309 non-

ADHD controls, although modest heterogeneity was attributed to ADHD subtype and 

psychiatric co-morbidity [23]. These null results were confirmed in a recent meta-analysis 

by Arns et al [12], who reported a diminishing, non-significant TBR effect size that was 

significantly associated with year of study publication (r=−0.96, p=0.002). Notably the TBR 

for the ADHD group has remained fairly stable, however, the control group TBR has 

steadily risen over the years between 2006 and 2013 [12]. Furthermore, in two recent 

attempts to explicitly test the posited [16] association between TBR and arousal, Clarke et 

al. [24] and Barry et al. [25] have reported no significant relationship between TBR and skin 

conductance level (SCL). Rather, they replicated their previously reported associations 

between SCL and power in the “alpha” (8–14 Hz) frequency range [26, 27]. The absence of 

a TBR-SCL correlation was despite detection of significant group differences in SCL and 

theta power, indicating that lack of power was not the mediating factor in the null result. It 

therefore remains unclear with what cortical activity, cognitive functions and behavioral 

symptomatology the TBR is associated. These studies do suggest, however, that TBR is not 

reliable in discriminating between individuals with and without ADHD.

Event-Related Potentials: Abnormal Cortical Processing

The transient neural dynamics captured by ERPs have also been explored for distinguishing 

features of ADHD. An advantage of ERPs is that, because they capture the temporal 

evolution of neural activity following a prescribed event, they can be linked with specific 

stages of processing. They can be used to distinguish, for instance, between deficits of 

sensory processing (e.g., expected to occur within the first 100 ms or so following a tone) 

and post-sensory discrimination (e.g., expected only after sensory processing has 

completed), thus potentially allowing for a more refined diagnostic.

In practice, classification success using features of ERPs has been modest, hovering in the 

range of 70–80% [8, 28]. In a review of a decade of ERP research (2002–2012), Johnstone 
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et al. [7] pointed to group differences between ADHD and controls in a variety of ERP 

features related to executive functions such as selective attention (P2, P3), response 

inhibition (N2, P3), error detection (ERN, Pe) and feedback processing (FRN), but noted 

that the results were quite variable, and that systematic studies of diagnostic success were 

largely absent from the literature. We are aware of only one recent meta-analysis [29] of the 

P3, a positive voltage deflection around 300 ms that has been associated with stimulus 

evaluation and response selection [30, 31], conducted across six studies in adults. This 

analysis revealed a large effect size (Cohen’s d = −0.55) for distinguishing adults with and 

without ADHD, which is consistent with the conclusions of Johnstone et al. [7] but requires 

further research and reporting of sensitivity and specificity. The calculation of ERP features 

such as peak amplitudes or latencies, however, can be susceptible to high variance when 

relatively few trials are averaged (<50), especially when only one sensor is considered. This 

may have limited the efficacy of ERP features in predicting ADHD diagnosis in prior 

studies.

Partially in response to this limitation, there has been a rise in the use of multivariate 

analyses that exploit the co-variation between measures from many time points and many 

sensors to characterize group differences (Fig. 1c, Table 2). The gain in power from these 

approaches is evident in studies by Mueller et al. [32] and Nazvahani et al. [33], who used 

machine learning algorithms and a combination of ERP-derived metrics to achieve 

classification accuracy in excess of 90%. Mueller et al. [32] reported sensitivity and 

specificity of 91% in predicting diagnosis in a sample of 150 adults (75 with ADHD), 

exploiting a combination of five response-inhibition ERP features identified using 

independent component analysis. In a smaller sample (n = 36), focusing on visual evoked 

responses to flashes of light, Nazhvani et al. [33] developed an algorithm that identified the 

combination of time points at which the ERP amplitude maximized the accuracy of group 

discrimination. Using this approach they reached an accuracy of 94.6% in discriminating 

adults with ADHD from controls and also an accuracy of 92.9% in distinguishing adults 

with ADHD from those with bipolar mood disorder. Similarly, three recent applications of 

machine learning approaches to predict diagnostic category based on spectral power across a 

range of frequency bands and higher-order descriptors, accuracy ranged from 86–97%. 

Using a combination of spectral power and fractal features (see glossary) of EEG time 

series, one study reported diagnostic accuracy to be 86.4%, with fractal features showing the 

strongest discrimination [34].

Ahmadlou and Adeli [35] reported maximal accuracy of 95.6% based on the combination of 

theta band synchronization at electrodes O2/P4 and frontal electrodes, and delta band 

synchronization at electrode T5 and frontal electrodes. Similarly, Abibullaev and An [36] 

obtained a maximal accuracy of 97%, using relative theta measures recorded from nine 

frontal scalp electrodes. Based on these accuracy rates, we may conclude that the potential 

of multivariate machine learning tools in EEG-based diagnostics is intriguing but, as such 

studies remain sparse and the results offer no simple interpretation (also c.f. Individual Level 

Diagnostics), requires further replication and validation.
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Capturing Clinical Heterogeneity in EEG-Based Diagnostics

The limited success of EEG in diagnosis of ADHD is perhaps not surprising when 

considering the heterogeneity in etiology, symptoms and treatment outcomes of the disorder, 

a fact that has led most theorists to favor multiple pathway models over single-cause 

explanations of the disorder [37–42]. Affected neural circuits in ADHD have included 

nigrostriatal, mesolimbic and mesocortical dopamine pathways [38], noradrenergic 

dysregulation of posterior attentional pathways [43], delayed development of frontal cortex 

[44], and, atypical functioning of default mode network [45]. The plausibility of multiple 

pathways causing the same set of ADHD symptoms implies that a single EEG measure, like 

TBR, will be effective in predicting ADHD in only a subset of those diagnosed. A growing 

awareness of increased heterogeneity even in non-ADHD populations is noted by Arns et al. 

[12], who report that the significant heterogeneity in the control group TBR is responsible 

for the attenuated effect size of the TBR in ADHD. This means that the major challenge for 

any diagnostic is to contend with heterogeneity, not only of the disorder but also at the larger 

population level as well. Current efforts to disambiguate the links between clinical 

heterogeneity of ADHD and EEG-based metrics include multivariate, multidimensional 

analyses of EEG features previously associated with ADHD (Fig. 1c), as well as 

mechanistically motivated studies of the neural correlates of EEG features.

Emerging Multivariate EEG Profiles

Both exploratory and targeted analyses of spectral power in the continuous EEG recording 

have indicated the presence of multiple multidimensional clusters within ADHD, suggesting 

that using any one spectral power (or ERP) feature is likely to be characteristic of only a 

subset of kids with ADHD. Using a multivariate cluster analysis, Clarke et al. [46] 

characterized the variability within EEG data of 264 children (155 with ADHD) to reveal 

five behaviorally and symptomatically unique clusters. Of these, only two (55 participants, 

36% of the ADHD sample) showed elevated theta (and reduced beta), one of which was 

associated with reduced ADHD symptoms and the other with enhanced self-enjoyment. The 

remaining three clusters were characterized by: elevated beta (12.5–25Hz) power that was 

coupled with symptoms of delinquent behaviors (n=36), elevated slow wave (<12.5Hz) 

power that was coupled with indices of maturational lag (n=38), and elevated frontal alpha 

(7.5–12.5Hz) power that was coupled with markers of ritualistic obsessive behaviors 

(n=26). Clearly, elevated spectral power in the theta band (or any particular frequency band 

for that matter) is not a feature that is homogenous within ADHD but characterizes only a 

subset of patients.

Furthermore the overall spectral profile may also vary with gender and clinical subtype [47–

50]. In several studies TBR was reported to be enhanced in the combined subtype of ADHD 

more than in the inattentive subtype [23, 49], and only in boys in other studies [48, 49]. 

These data indicate that there are important sources of heterogeneity in ADHD (and the 

larger population) that make it unlikely that any one EEG or ERP feature can capture all or 

the majority of the variance. Although previous studies have focused on ADHD subtype, 

which is one of the most salient diagnostic divisions, this too may be tenuous. It is notable 

that, in a comprehensive review of the validity of DSM-IV subtype criteria, Willcutt et al. 
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[51] have concluded that the distinction between inattentive, combined and hyperactive sub-

types is minimally supported, in contrast to the symptom dimensions of inattention and 

hyperactivity, which were well supported. It seems therefore that the sub-group 

characterized by elevated spectral power or ERP feature need not correspond to an existing 

sub-type.

Alternative approaches have been proposed to adapt EEG-based diagnostics to the 

heterogeneity of the ADHD clinical sample. Hermens et al. [52, 53] argued that EEG 

features ought to be best utilized as part of a larger profile and for prediction of treatment 

response rather than as a diagnostic. Defining response criteria based on performance on 

cognitive tests, and various EEG features (including resting state spectral power and ERP-

related features) they achieved a sensitivity of 80–90%, and specificity of 90–95%. In more 

recent logistic regression analyses, Ogrim et al. [54, 55] identified EEG features that, as part 

of a larger profile, predicted positive response to methylphenidate (determined by symptom 

reductions), as well as the side effects. In these analyses, responders were characterized by 

higher baseline theta-band and alpha-band power, whereas side effects were predicted by a 

number of baseline ERP components including visual evoked potentials, anticipatory 

potentials and P3 amplitude. Interestingly, neither medication response nor side effects were 

predicted by ADHD sub-type (combined versus inattentive), in agreement with the 

conclusions of Willcutt et al. [51]. Finally, Clarke et al. [56], in an 11-year follow up, 

reported that individuals whose ADHD persisted into adulthood had greater childhood 

global relative beta power, reduced frontal relative theta power, and increased frontal 

absolute and relative beta power. These studies demonstrate proof-of-concept utility of EEG 

as predictor of outcome rather than as diagnostic, and highlight the value of multivariate 

profiling. They also demonstrate the challenge with this approach. The profiles are complex, 

which makes their interpretation and direct comparison across studies difficult at best. Their 

generalizability remains to be tested.

Emerging Neural Mechanisms of EEG Features

In contrast to large-scale data mining efforts that seek to extract predictive content out of 

EEG (and other) data, efforts are emerging that aim to map the neural mechanisms of EEG 

features. From this perspective, clinical heterogeneity of ADHD may be addressed by 

identifying the neural pathways that account for distinct groups of ADHD symptoms or 

neurocognitive performance profiles. Mapping these to their EEG correlates could 

furthermore improve the diagnostic accuracy of EEG. This approach, though in relative 

infancy, is important because circuitry has been extensively studied in ADHD using 

magnetic resonance imaging (MRI) [5, 40, 57–64], and thus provides priors for the 

categories that may be nested within EEG metrics in ADHD. Group differences in neural 

activity and connectivity have been documented for fronto-striato-cerebellar dopamine 

pathways [38, 65], attentional pathways [43, 61, 62], as well as default mode network [40, 

45, 64]. Preliminary reports suggest that the degree of dysfunction in these networks can 

vary with ADHD subtype, comorbidity and symptoms. Fair et al. [66], having analyzed the 

connectivity patterns of 648 datasets (455 from individuals with ADHD), suggested that 

ADHD inattentive subtype is associated with a dysfunction of dorsolateral prefrontal cortex 

– a core node in the striatal and attentional pathways, whereas ADHD combined subtype is 

Lenartowicz and Loo Page 6

Curr Psychiatry Rep. Author manuscript; available in PMC 2015 November 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



associated with dysfunction of default mode network regions. Arnsten and Rubia [59] 

reviewed differential network involvement according to comorbidity, highlighting, for 

example, dysfunction of attentional systems in obsessive-compulsive disorder that is more 

prominent than in major depressive disorder or conduct disorder.

The large body of knowledge derived from MRI and functional MRI may be helpful in 

refining the efficacy of EEG measures in ADHD diagnosis and prognosis. Direct studies 

comparing MRI and EEG in the context of ADHD are sparse but at least three lines of work 

have begun to yield results. In 2007, Sonuga-Barke and Castellanos [45] put forth the 

hypothesis that default mode network activity is dysfunctional and interferes with attentional 

control. This hypothesis has spurred a number of experiments that collectively suggest a 

positive relationship between slow fluctuations of the default mode network and ultra-slow 

fluctuations of the EEG signal, that together appear to account for response variability [67–

71]. These slow fluctuations may prove helpful in identifying patients with alterations of 

default mode network functioning.

Using a different approach Lenartowicz et al. [72] combined two techniques, independent 

component analysis and event-relatedl spectral analysis, to link poor spatial working 

memory in a group of ADHD children with ineffective stimulus encoding. Specifically, poor 

working memory encoding was associated with weaker desynchronization (i.e., decrease) of 

alpha power (resulting in elevated alpha power) and elevated midline theta power that were, 

through source imaging of independent components, associated with occipito-parietal and 

frontal brain regions, respectively. The data suggested that stimulus-locked 

desynchronization in alpha power in posterior regions may be a marker for the efficacy of 

attention network interactions – one of the primary networks implicated in ADHD and 

notably absent in the ADHD group during spatial working memory performance. Mazaheri 

et al. [50, 73] put forth a similar notion, supported by disrupted coherence (see glossary) 

between alpha-theta frequency band power in individuals with ADHD.

The most direct test of EEG-fMRI interactions is made possible by concurrent recording of 

the two modalities. This approach was adopted by Karch et al. [74, 75] who, in a 

preliminary study with only 8 patients and 8 controls, demonstrated that the stimulus-locked 

fronto-central N2 ERP response was associated with reduced involvement of attention-

related neural structures, including middle and medial prefrontal cortex and insula. A 

combined approach can therefore offer validation of EEG metrics as they relate to existing 

network hypotheses as well as provide mechanistically driven priors for network-based 

sources of heterogeneity in ADHD. The primary challenge in concurrent EEG-fMRI 

recordings is degradation of the EEG signal by induced artefacts from MR gradients and 

cardiac activity that are amplified by head motion [76–78], meaning that small trial numbers 

and hyperkinetics (e.g., fidgeting) associated with ADHD (and with childhood) can 

seriously compromise the signal-to-noise of the EEG in the ADHD demographic. New 

methods are, however, emerging that will allow practitioners to more accurately characterize 

(and eliminate) the noise [79–82], promising increasing feasibility of the technique.
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Individual-Level Diagnostics

Independent of the sensitivity and specificity that a diagnostic tool achieves across 

individuals, its diagnostic value is also influenced by at least three other factors: robustness, 

interpretability and feasibility. Considering, as an example, the X-Ray in diagnosing 

tuberculosis, it is not only sensitive and specific, it also produces a signal that is distinct 

from noise (robust), allows for clear interpretation based on the presence or absence of 

masses in the lungs (interpretable), and it can be administered in less than 10 minutes within 

an outpatient clinic (feasibile). Can any EEG-derived metric come close to meeting these 

criteria? In terms of robustness, we suggest that spectral-based metrics outweigh the 

potential value of ERP-based measures. Spectral power indices such as relative level of 

alpha band power in a resting state recording, or event-related changes in alpha power, 

produce identifiable signal with a short recording of 10–15 minutes and with (in event-

related analyses) as few as 30 trials [e.g., 72]. In contrast, ERP analyses rely on averaging 

over in excess of 100 trials [83] in order to arrive at a reliable signal for each individual. 

Furthermore the typical ERPs that have been most relevant to ADHD diagnosis, such the 

error related negativity or P3 responses to unexpected events (i.e., oddball paradigm), are 

produced by stimuli that by design must occur infrequently (10–30%). The diagnostic test 

must therefore be at minimum 2–4 times longer than the duration of the data that is of 

interest. It is noteworthy that, because of volume conduction, EEG metrics at any electrode 

represent the summation of multiple electrical events from, possibly, different locations in 

cortex. Approaches that attempt to un-mix these signals into their source components (Fig. 

1b), such as independent component analysis [84, 85] and inverse modeling [86, 87], 

improve the signal-to-noise (of either spectral or ERP measures), and so, in the case of ERP 

analysis, can counteract some of the single-trial variability associated with the technique 

[e.g., 32, 54, 72].

Multivariate approaches that combine many different metrics, including behavioral and 

other neuroimaging measures, into a diagnostic profile, face a different problem. These 

methods, because of their computational power, can be very robust. The more variables in 

the diagnostic, the more likely it is that some kind of a signal will be available from at least 

a subset of such variables. However such profiling faces a problem with feasibility and with 

interpretation. While machine-learning algorithms are becoming increasingly available, a 

norm in big-data mining, obtaining large amounts of data can lead to long and tiring 

sessions. The collection of cognitive, neuropsychological, EEG and other physiological 

measures requires multiple hours of testing time, which creates a confound of fatigue and 

learning-transfer. In other words, exhaustive tests can be impractical, undermining the 

feasibility of the diagnostic. Multivariate profiling also raises the issue of interpretation. 

Most measures of cognition, behavior and neurophysiology fall on a spectrum for the 

population. They cannot be trivially dichotomized into a ‘yes’ or ‘no’ answer. This means 

that such diagnostics rely on norms and/or databases, which themselves require updating as 

well as interpretation [53]. This problem is compounded as more measures become 

involved. Of course multivariate profiles can and are typically thresholded to output a binary 

decision. However, dependent on the design of the algorithm, such profiles can be 

susceptible to errors when the incoming patient’s profile does not fit perfectly in either the 
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ADHD or the non-ADHD template (i.e., they can over-fit to the training data, failing to 

generalize). Balancing robustness, interpretability, feasibility, reliability and validity are not 

easy goals, particularly with a backdrop of EEG heterogeneity. Although it is still unclear 

which combination of EEG markers will ultimately be identified, we believe that parsimony 

allowing for heterogeneity should be the goal.

Conclusion

As the past 75 years will attest, finding a simple diagnostic measure for ADHD (i.e., 

behavioral, cognitive, etiologic, neurophysiologic, or neurobiologic) has not been possible 

and such a measure may not exist at all. Needless to say, we believe that EEG/ERP are not 

ready to serve as tools to diagnose or aide in the diagnosis of ADHD. Our caveat, based on 

review of current literature, is that this conclusion is not specific to EEG/ERP but reflects a 

general problem of univariate measures or markers (biological or otherwise) being used to 

predict clinically heterogeneous disorders such as ADHD. Nonetheless, it is notable that the 

relatively high (>90%) sensitivities and specificities reported using EEG, far exceed the 

most advanced of classification attempts using anatomical and functional MRI data. The 

competition put forth by the ADHD-200 consortium, challenging scientists to develop novel 

diagnostic profiles based on over 700 MRI datasets [88], resulted in a range of accuracies 

from 55 to 78% (arrived at by internal cross-validation). EEG thus remains a strong 

contender for a spot in the clinical setting, contingent on continued efforts – via multivariate 

analyses and refined studies of EEG signal generators – to capture additional sources of 

heterogeneity in ADHD.

Glossary

Feature a descriptor or metric of EEG data; can be categorized into 

subclasses (see below) such as spectral, temporal, spatial or 

fractal

Spectral referring to characterization of frequency content of EEG time 

series

Temporal referring to characterization of time content of EEG time series

Spatial referring to characterization of electrode or cortical source of 

EEG time series

Fractal referring to characterization of jaggedness or serratedness of an 

EEG time series

Event-Related 
Potential (ERP)

the average EEG signal in a time window following an event of 

interest (e.g., beep), computed over many repetitions of that 

event; typically associated with transient cortical dynamics in 

response to a stimulus or response

Power a measure of the amplitude of oscillations of a particular 

frequency in an EEG time course; typically associated with 

brain state
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Frequency number of cycles of an oscillation occurring per unit time; units 

of Hertz (Hz) or cycles/sec; distinguishes between “fast” and 

“slow” oscillations

Spectral Analysis quantification of time series in terms of power across 

frequencies, producing a power “spectrum”;

Delta Band referring to oscillations <4Hz

Theta Band referring to oscillations in the range of 4–7Hz

Alpha Band referring to oscillations in the range of 8–15 Hz

Beta Band referring to oscillations in the range of 16–30 Hz

Gamma Band referring to oscillations above 30Hz

Event-Related 
Spectral Analysis

the average power in a time window following an event of 

interest (e.g., beep), computed over many repetitions of that 

event; computed separately across many frequencies; typically 

associated with transient changes in brain state

Synchronization the degree to which two or more neural units (cells or 

populations) show oscillations of a particular frequency that are 

the same across time (i.e., have the same phase and amplitude); 

the metric of “coherence” is sometimes used in analog to the 

“correlation” coefficient, to quantify this co-variation

Event-Related 
Synchronization (ERS)

increase in power of a frequency following a stimulus in event-

related spectral analysis relative to pre-event; thought to arise 

from increased synchronization of neural activity in that 

frequency

Event-Related 
Desynchronization 
(ERD)

decrease in power of a frequency following a stimulus in event-

related spectral analysis relative to pre-event; thought to arise 

from decreased synchronization of neural activity in that 

frequency

Multivariate simultaneous observation and analysis of more than one 

outcome variable

Multidimensional simultaneous observation and analysis of more than one 

domain of data (e.g., ERP and performance measures)

Machine Learning the study and design of computer-based statistical algorithms 

that can learn from the data; typically designed to predict 

categorical outcome variables such as diagnosis; logistic 

regression is a univariate example of Machine Learning

Independent 
Components Analysis

statistical technique that attempts to parse multivariate data 

(e.g., signal across many electrodes in EEG) into latent 

components that describe patterns of variables that covary 
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across some other variable (e.g., time); these components are 

selected to be maximally statistically independent
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Figure 1. 
Diagnosis of ADHD can be based on temporal (a), spectral (a) and spatial (b) features of 

EEG, either alone or in combination (c). Raw EEG (a, top left), can be decomposed into 

spectral components that are quantified by power, which represents the amplitude of 

oscillations of varying frequencies that are present in the continuous signal. These measures 

capture the background “state” of brain activity. Alternatively, the data can be segmented (or 

epoched) around an event of interest (x). The epochs are averaged and normalized by pre-

stimulus activity, to produce the event-related potential. These measures quantify temporal 

dynamics of information processing. By combining spectral analysis with event-related 

averaging, one can analyze event-related spectral power, changes in synchronization that 

may represent changes in the brain state during information processing. Spatial features (b) 

Lenartowicz and Loo Page 16

Curr Psychiatry Rep. Author manuscript; available in PMC 2015 November 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



of EEG are scalp topography maps (spectral and time-domain values across electrodes) and 

their estimated cortical sources. Any of the spatial, temporal and spectral features of the 

EEG signal may be used to distinguish between patients with and without ADHD. Diagnosis 

based on EEG features therefore benefits from multivariate approaches that use patterns 

across features to classify patients (c). The lower panel shows an extreme example of the 

benefit of multivariate classification. Whereas each measure alone shows only weak trend 

differences between the two populations (e.g., red = ADHD, blue = Control), the 

combination of the two metrics (middle scatter plot) produces a linear function that 

dissociates between the two groups (e.g., ADHD fall above and Control fall below the line). 

Such an approach is likely to be of value in ADHD, known to exhibit significant variability 

in EEG measures.
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