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A Survey of Medical 
Image Registration on 
Multicore and the GPU

I
n this article, we look at early, recent, and 
state-of-the-art methods for registration of 
medical images using a range of high-perfor-
mance computing (HPC) architectures including 
symmetric multiprocessing (SMP), massively multi-

processing (MMP), and architectures with distributed memory 
(DM), and nonuniform memory access (NUMA). The article is 
designed to be self-sufficient. We will take the time to define and 
describe concepts of interest, albeit briefly, in the context of image 
registration and HPC. We provide an overview of the registration 
problem and its main components in the section “Registration.” 
Our main focus will be HPC-related aspects, and we will high-
light relevant issues as we explore the problem domain. This 
approach presents a fresh angle on the subject than previously 
investigated by the more general and classic reviews in the liter-
ature [1]–[3]. The sections “Multi-CPU Implementations” and 
“Accelerator Implementations” are organized from the perspec-
tive of high-performance and parallel- computing with the reg-
istration problem embodied. This is meant to equip the reader 

with the knowledge to map a registration problem to a given 
computing architecture. 

IN AN OPERATING ROOM 
NOT SO FAR INTO THE FUTURE
A surgeon is performing a potentially life-saving pancreatect-
omy on a patient in early stages of pancreatic cancer. Two 
small incisions of no more than half an inch allow laparoscop-
ic tools including a video camera and an ultrasound probe to 
be guided inside the abdominal cavity. A third, larger incision, 
is occupied by a hand-access device that facilitates the opera-
tion. The surgeon is able to locate the tumor in the ultrasound 
view with ease. This is largely possible due to a newly installed 
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three-dimensional (3-D) navigation and visualization system 
that virtually renders the patient transparent. 

The visualization system combines data from preoperative 
magnetic resonance (MR) and computed tomography (CT) scans 
with intraoperative laparoscopic ultrasound data to produce 
real-time high quality and dynamic 3-D images of the patient, in 
a process better known as multimodal registration and fusion. 
The high quality 3-D images of the tumor and the surrounding 
tissue allow the surgeon to resect the malignant cells with little 
damage to healthy structures. 

Such a minimally invasive approach avoids the trauma of 
open surgery, and a faster recovery time means that the 
patient will be released from the hospital in just two days. 

MULTIPROCESSING IN AN OPERATING ROOM
Image-guided therapy (IGT) systems play an increasingly 
important role in clinical treatment and interventions. By pro-
viding more accurate information about a patient during a 
procedure, these systems improve the quality and accuracy of 
procedures and make less invasive options for treatment avail-
able. They contribute to reduced morbidity rate, intervention 
time, post-intervention care, and procedure costs. For practi-
cal reasons, however, imaging systems that can be deployed in 
an operating room produce images with lower resolutions and 
lower signal to noise ratios than can be achieved by the state-
of-the-art imaging systems preoperatively. Therefore, it is 
desirable to be able to use preoperative images of a patient 
together with those acquired during a procedure for best 
results. In brain surgery, for example, the main challenge is to 
remove as much as the malignant tissue as possible without 
affecting critical structures and while minimizing damage to 
healthy tissue. The surgeon uses high quality CT and MR scans 
of the patient to carefully plan a procedure. During a proce-
dure, however, the brain undergoes varying levels of deforma-
tions at different stages of the surgery known as the brain 
shift. This brain shift, a result of change in the intracranial 
pressure, leakage of cerebrospinal fluid and removal of tissue, 
affects the accuracy of earlier planning and needs to be com-
pensated for. The surgeon may take a number of intraoperative 
scans to correct the plan based on patient’s current state and 
also to detect complications such as bleeding. To support the 
surgeon, the IGT system needs to register intraoperative scans 
with the patient and with preoperative images. 

Modern medical imaging technologies are capable of pro-
ducing high resolution 3-D or four-dimensional (4-D) (3-D 1 
time) images. This makes medical image processing tasks at 
least one dimension more compute-intensive than standard 
two-dimensional (2-D) image processing applications. The 
higher computational cost of medial image analysis together 
with the time constraints imposed by the medical procedure 
determine the range of tools that can be practically offered 
through an IGT platform. It also often means that an IGT plat-
form has to rely on HPC hardware and highly parallelized 
software. There are other practical considerations. For exam-
ple, equipment used in an operating room should be designed 

to minimize footprint, power consumption, operating noise, 
and cost. 

The continued development of multicore and massively 
multiprocessing architectures in recent years holds great 
promise for interventional setups. In particular, massively 
multiprocessing graphics units with general-purpose program-
ming capabilities have emerged as front runners for low-cost 
high-performance processing. HPC, in the order of 1 TFLOPS, 
is available on commodity single-chip graphics processing 
units (GPUs) with power requirements not much greater than 
an office computer. Multi-GPU systems with up to eight GPUs 
can be built in a single host and can provide a nominal pro-
cessing capacity of eight TFLOPS with less than 1,500 W 
power consumption under full load. 

Hardware and architectural complexities in designing mul-
ticore systems aside, perhaps as big a challenge is an overhaul 
of existing application design methodologies to allow efficient 
implementation on a range of massively multicore architec-
tures. As one quickly might find, direct adaptation of existing 
serial algorithms is more often than not neither possible due 
to hardware constraints nor computationally justified. 

REGISTRATION
Registration is a fundamental task frequently encountered in 
image processing applications [1]. In medical applications, 
images of similar or differing modalities often need to be 
aligned as a preprocessing step for many planning, navigation, 
data-fusion and visualization tasks. Registration of images has 
been extensively researched in the medical imaging domain. 
Image based registration may use features that are derived 
from the subject’s anatomy or those artificially introduced spe-
cifically for registration purposes. The former class of registra-
tion methods are known as intrinsic and the latter as extrinsic 
[2]. Extrinsic methods involve introduction of foreign objects 
such as stereotactic frames or fiducial markers and may be 
invasive. Once attached to the subject, markers remain fixed 
for multiple imaging sessions and can be used to align the 
images. Intrinsic methods, on the other hand, are noninvasive 
and can be used retrospectively. They may match a small set of 
corresponding anatomical and geometrical landmarks, use a 
set of structures obtained through segmentation, or be based 
on the entire content of images (e.g., voxel intensities). 
Content-based methods are particularly of interest since they 
can be fully automated but are typically compute-intensive. 
The focus of this survey is content-based registration methods. 

Figure 1 shows various components of a general registration 
solver, with the main components being a transformer, 
a  measure, and an optimizer. Registration as depicted here is 
an iterative process where one image is transformed within a 
 predetermined parameter space and compared against the 
other. We call the former the moving and the latter the fixed 
image. A measure of similarity or distance is computed between 
the images at each step and used to determine if they are “suffi-
ciently” aligned. This process is controlled by the optimizer 
that starts from an initial guess and determines  subsequent 
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steps to reach an optimal alignment. We will discuss each com-
ponent in more detail in the following subsections. 

TRANSFORMER
The transformer maps points in the moving image to new 
locations in the transformed image. Depending on the regis-
tration problem, a transformation can be collinear or deform-
able. Collinear transformations are line-preserving i.e., map 
straight lines onto straight lines. Collinear transformations 
can be described by a 4 3 4 matrix acting on homogeneous 
vectors representing 3-D points. Examples of collinear trans-
formations include rigid, similarity, affine, and projective 
(projective transformations are rarely required in medical 
imaging applications). For this reason, these types of transfor-
mations have nearly identical complexity. Methods that imple-
ment rigid registration can be easily extended to affine, often 
without any change to the transformer. 

Deformable transformation methods can be further catego-
rized as parametric and nonparametric. Nonparametric meth-
ods are based on a variational formulation of the registration 
problem, where the transformation is described by an arbitrary 
displacement field regularized by some smoothing criteria [4]. 
Parametric methods are based on some piecewise polynomial 
interpolation of a displacement field using a set of control 
points placed in the image domain. B-splines are the favorites 
because they induce local deformations that limit the compu-
tational complexity of a large grid of control points [5]. Other 
functions such as thin-plate splines and Bezier functions have 
also been used. There are efficient methods for nonparametric 
registration including multigrid solvers. While parametric 
methods are more demanding, they yield themselves more 
easily to multimodal registration applications. 

The transformer determines the intensity of the points in 
the transformed image by interpolating intensity values of cor-
responding points in the moving image. The simplest and fast-
est interpolation method is the nearest neighbor interpolation. 
Nearest neighbor should never be used in practice, as it results 
in poorly shaped cost functions, but may be useful to establish 
the baseline performance of the transformer. The most 

 commonly used interpolation method is linear interpolation. 
Other methods include quadratic, cubic, cubic B-spline, and 
Gaussian interpolation [6]. 

A transformer spends the majority of its time performing 
interpolations. As noted by Castro-Pareja et al. [7] interpola-
tion of the transformed moving image does not benefit from 
standard memory caching mechanisms due to nonsequential 
pattern of access to memory with low locality. As a result, 
transformer performance can well become memory bound. 

MEASURE
A method of measuring the similarity or distance between 
images is required for automatic registration. Ideally a similarity 
measure attains its maximum, where the images are perfectly 
aligned and decreases as the images move farther away. A dis-
tance measure, on the other hand, attains its minimum where 
the images are aligned. 

Commonly used similarity and distance measures are sum-
marized in Table 1. Just as different classes of transformations 
are suitable for modeling different geometric distortions 
between the images, different similarity measures are used for 
different intensity distortions between the images. Measures 
are broadly categorized based on their suitability for sin-
gle-modality and multimodality problems. All of the 
 single- modality measures  listed in Table 1 can be calculated by 
independent computations at each spatial location. From a 
parallelization point of view, this makes them readily adaptable 
to single instruction multiple data (SIMD) instruction sets and 
architectures such as GPUs. Multimodality measures deter-
mine statistical (mutual information) or functional (correla-
tion ratio) dependance of images where each image is assumed 
to be a realization of an underlying discrete random variable. 
These methods require estimation of joint and marginal prob-
ability mass functions (pmfs) of the underlying discrete ran-
dom variables from image data. Methods of pmf computation 
can be parallelized with varying degrees of difficulty and per-
formance improvement. We will discuss this issue in more 
detail in the context of MI computation on the GPU in the sec-
tion “GPUs.” 

OPTIMIZER
The optimizer is responsible for an efficient and often non-
exhaustive strategy to search the transformation parameter 
space for the best match between the images. In image registra-
tion, optimizers can be broadly categorized as gradient-based or 
gradient-free, global or local, and serial or parallelizable. 

Gradient-based methods require computation of partial 
derivatives of a cost function in addition to frequent computa-
tion of the cost function itself. Therefore, from an implementa-
tion perspective, they are more involved than gradient-free 
methods. The gradient computation can be based on the numer-
ical estimation of the derivatives using finite differences. 
Alternatively, direct computation of the gradient can be per-
formed when closed-form equations for the partial derivatives 
can be derived. 
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[FIG1] A general registration solver and its main components: 
F, M, and M(T) are fixed, moving, and transformed moving 
images, respectively.
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Local methods find a local optimum in the vicinity of an 
initial point and within their capture range. They may con-
verge to an incorrect alignment if not properly initialized. 
Global methods, however, find the global optimum within a 
given range of parameters. They are robust with respect to 
selection of the initial point but at the cost of slower conver-
gence. Global and local methods may be combined to 
improve robustness while maintaining a reasonable conver-
gence rate. 

Some optimization algorithms are only suited for serial exe-
cution, where each optimization step is dependent on the out-
come of previous step(s). Others may be amenable to 
parallelization. For example, each step of the gradient descent 
optimization in N-dimensional space requires computation of 
N  partial derivatives of the cost function. Here, there is limited 
opportunity to run up to N  tasks in parallel, and of course the 
additional line minimization step that may follow cannot be 
readily parallelized. We call such methods partially paralleliz-
able. And finally, we refer to optimization methods that have 
been designed for parallel execution with minimal interstep 
dependency as fully parallelizable. 

Table 2 lists some optimization algo-
rithms used for image registration and their 
respective classification. 

The overall performance of a registration 
algorithm is dependent on the effectiveness 
of the optimization strategy. This in turn 
depends on the iterations needed for the 
algorithm to converge. For gradient-free 
optimization, we define an iteration as a 
step that involves a single computation of 
the cost function. For gradient-based opti-
mization, an iteration is defined as a step 

that involves a single computation of the gradient. Depending 
on the type of gradient-based method this may involve several 
evaluations of the cost function. 

Gradient-based optimizers do more in a single iteration and 
they also converge with a significantly lower number of itera-
tions compared to gradient-free methods. The convergence rate 
of an optimizer depends on many factors including the size of 
the parameter space, optimizer settings (e.g., convergence crite-
ria), and the misalignment between the images. It is also often 
data dependent. 

The computational bottleneck of registration is not the opti-
mizer but the computation of the transformation and the mea-
sure. Most researchers have focused on fine-grained parallelization 
of these components. A few have considered coarse-grained par-
allelization, which involves parallelization of the optimizer 
itself [18], [19].

PREPROCESSOR
We have shown the preprocessor in dotted lines in Figure 1 to 
emphasize that it is an optional component. Preprocessing 

[TABLE 1] COMMONLY USED MEASURES.

MEASURE ACRONYM TYPE USAGE FORMULA1  

SUM OF SQUARED DIFFERENCES SSD DIST. SINGLE-MOD DSSD 1I, J 2 5 a
x[V

1I 1x 2 2J 1x 2 22 

SUM OF ABSOLUTE DIFFERENCES SAD DIST. SINGLE-MOD DSAD 1I, J 2 5 a
x[V

|I 1x 2 2J 1x 2 | 

NORMALIZED CROSS CORRELATION [1] NCC SIM. SINGLE-MOD SNCC 1I, J 2 5 a
x[V

I 1x 2  J 1x 2
"E 3I 1x 22 4E 3J 1x 22 4

CORRELATION COEFFICIENT [1] CC SIM. SINGLE-MOD SCC 1I, J 2 5 a
x[V

1I 1x 2 2 E 3I 1x 2 4 2 1J 1x 2 2 E 3J 1x 2 4 2
s 1I 2s 1J 2

GRADIENT CORRELATION GC SIM. SINGLE-MOD SGC 1I, J 2 5 1
da

d

i51
SCCa'I'xi

, 
'J
'xi
b  

MUTUAL INFORMATION [8, 9] MI SIM. MULTI-MOD SMI 1I, J 2 5 a
i
a

j
pIJ 1 i, j 2 log

pIJ 1 i, j 2
pI 1 i 2pJ 1 j 2  

NORMALIZED MUTUAL INFO. [10] NMI SIM. MULTI-MOD SNMI 1I, J 2 5 2SMI 1I, J 2
H 1I 2 1H 1J 2  (SEE NOTE 2)

CORRELATION RATIO [11] CR SIM. MULTI-MOD 
SCR 1I;J 2 5 s

21E 3J|I 4
s2 1I 2

1V ( Rd  represents a d-dimensional image domain. 
2Entropy is defined as H 1I 2 5 a i pI 1 i 2 log 1/pI 1 i 2 , where image I  is assumed to be a discrete random variable with a probability mass function (pmf) given by pI 1 # 2 .

[TABLE 2] CLASSIFICATION OF SOME OPTIMIZATION METHODS.

METHOD CLASSIFICATION

POWELL [12] GRADIENT FREE LOCAL SERIAL 
SIMPLEX [13] GRADIENT FREE LOCAL PARTIALLY PARALLELIZABLE
SOBLEX1 [14] GRADIENT FREE COMBINED PARTIALLY PARALLELIZABLE
MDS1,2 [15] GRADIENT FREE LOCAL PARTIALLY PARALLELIZABLE
GRADIENT DESCENT [12] GRADIENT BASED LOCAL PARTIALLY PARALLELIZABLE
QUASI-NEWTON [12] GRADIENT BASED LOCAL PARTIALLY PARALLELIZABLE
LEVENBERG-MARQUARDT [12] GRADIENT BASED LOCAL PARTIALLY PARALLELIZABLE
SIMULATED ANNEALING [12] GRADIENT FREE COMBINED PARTIALLY PARALLELIZABLE
DIRECT3 [16] GRADIENT FREE GLOBAL FULLY PARALLELIZABLE 
GENETIC [17] GRADIENT FREE GLOBAL FULLY PARALLELIZABLE 

1 A simplex variant, 2 multidirectional search, 3 dividing rectangles.



IEEE SIGNAL PROCESSING MAGAZINE   [54]   MARCH 2010

encapsulates a wide range of tasks that may be performed on 
images outside the optimization loop and at the beginning of 
the process. These may include filtering, rectification, gradient 
computation, pyramid construction, feature detection, etc. An 
example is given in one of the earlier efforts to parallelize 
image registration by Warfield et al. [20]. They extract features 
based on tissue labels given by prior segmentation and paral-
lelize a feature-based interpatient registration method on a 
cluster of multiprocessor computers. They use the number of 
mismatching labels (NML) as a measure of distance in their 
registration algorithm. 

Given that preprocessor is not in the critical pass, there is 
little incentive for parallelizing it. Unless of course the registra-
tion process itself is sped up to the point that preprocessing 
becomes a bottleneck. This is likely to become the case as regis-
tration algorithms enter the real-time domain. 

COMPUTATIONAL EXPENSE OF 
IMAGE REGISTRATION
Image registration in general is computationally expensive and 
has been largely confined to preoperative applications. The main 
bottlenecks are typically the transformer and the computation 
of the measure. Single modality measures such as sum of 
squared differences (SSD) and correlation coefficient (CC) are 
less compute-intensive than multimodality measures such 
as mutual information (MI) and correlation ratio (CR). (Some 
authors use “normalized cross correlation” to refer to correla-
tion coefficient. We prefer correlation coefficient, which is the 
accepted term in statistics.) Computation of MI requires an esti-
mation of the joint probability density of image intensities. This 
typically entails, computing a joint histogram of image intensi-
ties. A seemingly simple task that is far from trivial on some 
massively parallel architectures such as GPUs [21]. 

A sample breakdown of computations in one iteration of a 
gradient-free optimization algorithm is given in Table 3 for 
affine registrations using a single modality and a multimodality 
measure. The measurements are based on a Quad core Intel 
Core i7 920 and an NVIDIA GTX 295. The time spent outside of 
the measure and transformation components is negligible com-
pared to the measure and transformation. On the CPU, the exe-
cution time is dominated by the transformer whereas on the 
GPU, the time spent in computing the measure, particularly for 
the MI, exceeds the transformer time. This is expected as GPUs 
are designed to speed up geometric transformations. Obviously, 
for more complex transformation models such as the deform-
able B-splines, more time will be spent in the transformer for 
both platforms. 

We note that optimization algorithms make decisions based 
on the measure and do not directly use the intermediate results of 
the transformer. As such, transformation and similarity measure 
computations may be performed in one step and within the same 
module to remove the need for storage and subsequent retrieval 
of transformed image data. This obviously improves performance, 
especially where input/output traffic is an issue. However, it also 
makes it more difficult to modularize the implementation and 
cater for arbitrary combinations of transformations and measures.

MULTI-CPU IMPLEMENTATIONS

SYMMETRIC MULTIPROCESSING
In SMP architectures, multiple CPUs/cores have access to a sin-
gle shared main memory. This makes parallelization of serial 
code relatively straightforward. The main methods for paral-
lelization on SMP architectures are POSIX threads (pthreads) 
and OpenMP [22], [23]. The pthreads standard defines an appli-
cation programming interface (API) for explicit instantiation, 
management and synchronization of multiple threads, whereas 
OpenMP mainly consists of a set of compiler directives (and a 
supporting API) that allows for implicit parallelization. 

Most serial programs can be parallelized on SMP architec-
tures with minimal modification. The ease with which paral-
lelization can be achieved, especially with OpenMP, can be 
deceiving. There is an adage in HPC circles that says “OpenMP 
does not make parallel programming easy, it only makes bad 
parallel programming easy.” We should emphasize that there is 
nothing inherently inhibiting about OpenMP or SMP platforms. 
It is only that optimal parallelization usually requires a change 
in the algorithm, programming model and memory access pat-
tern in addition to the syntax. We encourage the reader to be 
prepared to reevaluate the approach to solving a problem on 
parallel systems and avoid the temptation of simply mapping a 
serial code to multiple threads. We also advise that use of syn-
chronization primitives should be limited to a minimum and 
alternative methods to achieve an outcome without synchroni-
zation should be investigated. Synchronization refers to any 
mechanism for coordinating multiple threads or processes to 
complete a task. Examples of synchronization primitives include 
mutual exclusion (mutex), thread-join, and barrier. Atomic 
operations also involve implicit synchronization.

A good example of SMP parallelization of a registration algo-
rithm is given by Rohlfing et al. [24]. They use pthreads to par-
allelize B-spline deformable registration on 64 CPUs. They 
exploit a combination of procedural (precomputation, multires-
olution, and adaptive activation of control points) and architec-
tural elements (e.g., data partitioning) to optimize their method. 
While the hardware has been long superseded, their approach is 
still relevant today. We would not change much about their 
method except that they use synchronized reduction of partial 
joint histograms into a global histogram in the MI computation 
phase by using the mutex lock. One can avoid the need for syn-
chronization by dividing partial histograms and the resulting 
global histogram among the available threads. For N  threads, 

[TABLE 3] A SAMPLE BREAKDOWN OF COMPUTATIONS FOR 
AFFINE REGISTRATIONS ON A MULTICORE CPU AND A GPU.

AFFINE (SSD) AFFINE (MI)

MEASURE TRANSFORM MEASURE TRANSFORM
CPU 4.3% 95.7% 13.5% 86.5% 
GPU 50.4% 49.2% 86.9% 13.0% 



IEEE SIGNAL PROCESSING MAGAZINE   [55]   MARCH 2010

this divides each partial histogram into N  equally sized non-
overlapping regions. Each thread, then, computes part of the 
global histogram by summing values across corresponding 
regions of partial histograms. Since the regions are nonoverlap-
ping, the computations are guaranteed to be free of write-con-
flicts and no synchronization is required. 

MULTIPROCESSING WITH NUMA
Efficient memory access is an important design consideration in 
multiprocessor systems with many cores where maintaining an 
efficient cache coherency on a single-shared-bus becomes less 
practical as the number of processors increases. NUMA architec-
ture divides memory into multiple banks; each assigned to one 
processor. Processors have faster access to their local bank than 
remote banks attached to other processors. 

Access to memory on remote banks can be several times 
slower than access to local memory. This is due to data traveling 
through a longer path and also transient access requests by 
other processors that may require the memory bus to be shared. 
Figure 2 shows the schematic of a multiprocessor system with a 
NUMA architecture. An algorithm that is optimally designed for 
NUMA makes only infrequent attempts to access data on remote 
banks. A parallel application can theoretically achieve linear 
scalability with respect to memory throughput whenever proper 
distribution of memory to local banks is possible. 

Image registration can be efficiently implemented on NUMA 
architectures as shown in Figure 3. Both the transform and 
measure computation can work on a spatial subset of the imag-
es. To achieve optimal performance, the fixed image F is divided 
among the memory banks and the corresponding portion of the 
transformed moving image M 1T 2  will also be stored on the 
same memory bank. However, the path taken by the optimiza-
tion algorithm cannot be determined a priori and the trans-
former will use different areas of M  to create the local portion 
of M 1T 2  at each iteration. As such, each memory bank will need 
to receive a local copy of the moving image M  during the ini-
tialization step. Given that the optimization algorithm will take 
several iterations to converge, this initial overhead is justified. 

The distribution of resources to specific memory banks requires 
setting an appropriate memory and processor affinity . Processor 
affinity refers to explicit binding of a thread to a specific processor. 
Memory affinity is explicit allocation of data on a specific memory 
bank. This is operating system dependent and will make the code 
less portable. The alternative is, of course, to be completely oblivi-
ous to the memory architecture and hope that the compiler and 
the operating system will make the right decisions. This may not 
be an entirely unreasonable strategy, depending on the number of 
processors and whether a program is memory bound or CPU 
bound. However, as the number of available CPUs increases or for 
programs that are memory intensive, it becomes more important 
to design an optimal memory access strategy.

MULTIPROCESSING WITH DISTRIBUTED MEMORY
DM architectures are characterized by lack of access to a global 
shared memory available to all processors. DM systems are 

 typically built by clustering SMP or NUMA nodes. As such, in 
distributed architectures, subgroups of processors have access 
to shared memory. 

From a programming standpoint, these systems are charac-
terized by the need for explicit data distribution and interpro-
cess communication. The former has to be built into the 
application design and the latter is most commonly achieved 
through the message passing interface (MPI) [25]. 

The model given for data distribution in NUMA Figure 3 can 
be equally applied here. An early implementation is given by 
Butz and Thiran [18], where a Linux cluster was used to speed 
up MI-based registration for a global genetic optimizer. In [26], 
Ino et al. further partition the moving image to reduce the 
memory usage. This is motivated by the need to process large 
images in the order of 1,024 3 1,024 3 590  voxels. 
Partitioning both images also reduces traffic on the network 
during initialization. This can be an important consideration as 
the number of nodes increases and the overhead of the initial-
ization phase compared to the optimization phase can no longer 
be ignored. Partitioning the moving image requires a prior esti-
mate of the range of transformation parameters to ensure that a 
large enough portion of the image is loaded for the transformer. 

A variation is given by distributed shared memory (DSM) 
architectures, where a large virtual address space is made avail-
able to all processes across all nodes. DSM can only hide the 
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mechanism of communication between processes and not the 
associated latency. We argue that if the end goal is to achieve 
the highest performance, little benefit can be drawn from 
the convenience of a DSM architecture and the program should 
be designed to be aware of the locality of data. 

Wachowiak and Peters [19] develop MI-based registration 
for a DSM architecture. Their implementation does not take 
memory locality into account, but they use DIRECT and MDS 
parallel optimization methods to their advantage. This coarse-
grained parallelization results in lower communication-to- 
computation overhead. 

As some authors have pointed out [27], a major benefit of 
DM clusters is their lower cost compared to many-core SMPs or 
DSM systems. 

ACCELERATOR IMPLEMENTATIONS

GRAPHICS PROCESSING UNITS
The majority of recent research in multicore adaptation 
of registration algorithms has been focused on GPUs [28]–
[34]. There are several reasons for the interest in GPUs. 
Thanks to fierce competition and driven by the gaming indus-
try, GPUs today provide some of the highest performance per 
dollar and the lowest power consumption per FLOPS of any 
computing platform. While not every radiology department 
can afford the cost and space needed by a conventional HPC 
data center, they can certainly benefit from unlocking the 
computational power of the GPUs in their existing computers. 

GPU implementations tend to be more challenging than 
multicore CPU implementations and are more rewarding in 
terms of achievable performance gains. Earlier work in this area 
(mainly prior to 2007) [35]–[42] involved devising methods to 
map the registration problem onto a graphics pipeline that was 
not specifically designed for general-purpose computing. The 
GPU landscape has since gone through a seismic change with 
the introduction of native general-purpose computing capabili-
ties in late 2006. The GPU registration literature prior to 2007 
has been superseded from both hardware and software perspec-
tives. We will focus on the latest technology for general-purpose 
computing on GPUs in this section. 

The modern software platforms for general-purpose pro-
gramming on the GPU are currently NVIDIA’s CUDA [43] and 
AMD/ATI’s Brook+ [44]. These platforms are vendor-specific, 
however, OpenCL compliant implementations that provide 
hardware-independence are being gradually released by the ven-
dors. This essentially invalidates the only remaining argument 
in favor of using the graphics pipeline for general-purpose pro-
gramming, which has been better portability. 

None of the papers we considered for this survey developed their 
methods for ATI Brook+. It appears that the research community 
has almost exclusively adopted CUDA as their preferred GPU plat-
form. This is likely to change with wider support for OpenCL in 
non-GPU architectures such as IBM’s Cell/BE and Intel’s Larrabee. 

Modern GPUs extend the single instruction multiple data 
(SIMD) paradigm to a single instruction multiple threads 

 architecture (SIMT). SIMT provides more flexibility by parallel-
ism for (almost) independent threads as well as data-parallel 
code. GPUs achieve their computational performance by dedi-
cating more transistors to their arithmetic logic units (ALUs) 
for data processing, at the expense of reduced flow control and 
data caching. They extend the conventional thread-level paral-
lelism by introducing two additional layers of parallelism in the 
form of closely knit groups of threads known as warps or wave-
fronts, and groups of warps/wavefronts known as thread blocks 
or simply blocks. Warps are significant since they define the 
unit of flow control in a GPU. Threads in a warp are bound to 
execute the same instruction (on different data). Diverging 
paths of execution for threads in a warp result in serial execu-
tion of all paths. Hence, an important consideration in adapting 
parallel code to GPU architecture is minimizing diversion in 
warps. This can be achieved by designing warp-aware algo-
rithms and reorganizing data to optimize flow control. An 
example of such an approach is given in [33]. 

Another notable technical feature in the current generation 
of GPUs is the availability of an abundance of high bandwidth 
on-board RAM. The memory bandwidth of top-of-the-line 
GPUs exceeds 140 GB/s and cards with up to 4 GB of memory 
are available. This is particularly important for medical image 
analysis applications that have to deal with large 3-D data sets. 
Despite an extremely high bandwidth, the GPU’s main memory 
is largely uncached and suffers from a rather large latency. 
Hence to fully utilize the bandwidth and achieve an optimal 
performance, one needs to understand the hardware architec-
ture and its various memory and limited caching models. 
Optimum use of memory such as coalesced transfers may 
speed up an application by an order of magnitude. This level of 
flexibility is typically available with lower-level APIs and run-
time SDKs such as CUDA (NVIDIA) [43] and CAL (ATI/AMD) 
[44]. Programs developed with a lower-level API lack portabili-
ty and need to be maintained as the hardware evolves. 
Abstraction layers such as OpenCL and Brook+ avoid these 
issues by hiding memory management details from the devel-
oper. However, better portability may come at the cost of sub-
optimal performance. 

GPUs are well equipped for speeding up geometric transfor-
mations. Geometric transformations (regardless of their type) 
require some sort of interpolation that involves reading the con-
tent of adjacent voxels in a cubic region of memory. Standard 
computer architectures are designed to optimize sequential 
memory access through their caching mechanism. This does 
not fully benefit 3-D interpolations over a cubic mesh. Modern 
GPUs, on the other hand, support a 3-D texture addressing 
mode that takes the geometric locality into account for caching 
purposes. This greatly improves the efficiently of transforma-
tions on the GPU. 

Different MI computation methods on the GPU have been 
reported in the literature. Shams et al. compute MI by comput-
ing joint histograms on the GPU in [21], [29], and [33]. A main 
finding is that for different sized histograms (number of bins 
used for MI computation), the optimal algorithm differs. For bin 
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ranges typical in MI computation (100 3 100 and above) an 
efficient histogram computation algorithm specifically designed 
for massively multiprocessing architectures is presented in [33]. 
The paper describes a new method for histogram computation 
(sort and count) that removes the need for synchronization or 
atomic operations, based on sorting chunks of data with a paral-
lel sort algorithm such as bitonic sort. Lin and Medioni [30] 
report an adaptation of Viola’s MI computation approach [8]. 
Their method approximates the joint pmf by stochastic sam-
pling of the image intensities and using Parzen windowing. This 
method lends itself well to parallelization on the GPU, reduces 
the computational burden of transformations by only using a 
subset of image data, and provides analytic equations for com-
putation of MI derivatives. However, sparse sampling of the data 
set may compromise accuracy of the registration [37]. A sam-
pling method specifically designed for the GPU is given by 
Shams and Barnes [29]. This method samples the bin space for 
computing histograms rather than the intensity space. The 
method improves performance of computations and is subject 
to the same trade off between performance and accuracy. We 
note that a majority of researchers use direct computation of 
the histogram [3]. 

A natural extension to parallelization of registration algo-
rithms on the GPU is horizontal parallelization across multiple 
GPUs. Multi-GPU systems belong to DM class of parallel archi-
tectures. An implementation on such systems involves data par-
titioning and the use of MPI as discussed in the section 
“Multiprocessing with Distributed Memory.” We recommend 
the reader to refer to a more detailed discussion of the subject 
by Plishker et al. [45]. 

CELL BROADBAND ENGINE
Cell broadband engine (Cell/BE) is an asymmetric heteroge-
neous multicore processor with a DM architecture. It comprises 
a general-purpose PowerPC core known as a PPE and eight spe-
cialized vector processing cores known as SPEs. Each SPE is 
equipped with a four-way SIMD engine and has its own small 
(uncached) memory known as the local storage.  Local storage 
is only 256 KB in the current generation of hardware, and it is 
shared between data and kernel instructions.

Optimal implementation of registration algorithms on 
Cell/BE architectures involves task-level parallelization, data 
partitioning, and vectorization of the code for the SPEs’ 
SIMD engine. It also involves handling the transfer of data 
between the system memory and SPEs’ local storage. The 
results by Ohara et al. [46], [47] and Rohrer and Gong [48] 
provide good insight into challenges involved in designing 
registration on this architecture for collinear and deformable 
registration, respectively. 

FIELD PROGRAMMABLE GATE ARRAYS
A custom field programmable gate array (FPGA) accelerator 
prototype for MI-based rigid registration is given by Castro-
Pareja et al. in [7]. They argue that a major bottleneck in MI 
computation using Collignon’s method [9] is partial volume 

(PV) interpolation and that it is memory bound. They improve 
performance by parallelizing access to memory and assigning 
independent memory controllers and types of memory for stor-
age and access to the fixed image, the moving image, and the 
joint histogram. A cubic addressing scheme is used for the mov-
ing image to speed up the interpolation. This is similar to cach-
ing available in GPUs for access to texture memory. An enhanced 
version of [7] is presented in [49] and a multirigid version with 
volume subdivisions is given by Dandekar [50]. 

FPGAs allow one to design customized hardware for spe-
cific registration tasks. However, they provide less flexibility 
compared to software-based implementations. With flexible 
general-purpose programming capabilities of modern GPUs, it 
is doubtful if FPGA-based implementations present any real 
benefit in this area. 

SUMMARY OF THE LITERATURE
We have summarized existing contributions in HPC of regis-
tration methods in Table 4. The table serves as a quick refer-
ence to an array of methods on various platforms and by 
different groups. 

Researchers have used various methods to present their per-
formance results. All groups report at least the speedup results 
compared to a single-core CPU implementation. When inter-
architecture comparisons are drawn, it is not always clear how 
well the CPU implementation has been optimized, if the 
streaming SIMD extensions (SSE) instruction set has been 
used, whether the code has been compiled as 64- or 32-b, or if 
64- or 32-b floating point operations have been used. For these 
reasons, speedup results should be interpreted with caution, 
more so when the reported speedups are in the order of a hun-
dred times or more. 

Most groups report their speedups for the entire registra-
tion algorithm and for specific data sets. Comparison of dif-
ferent results is further complicated as authors may have 
implemented a multiresolution scheme to further speed up 
the process and used different convergence criteria. We have 
reported/estimated the results for the finest resolution in 
Table 4, whenever possible. As discussed earlier, the execu-
tion time is an almost linear function of the number of itera-
tions of the optimization algorithm. Convergence criteria 
are most commonly based on the value of the measure and 
its relative improvement in a given step of the optimization. 
A less common approach is to set a fixed number of itera-
tions as the convergence criterion. We call the former strat-
egy dynamic convergence and the latter static convergence. 
Lack of associativity for floating point operations have the 
inevitable consequence that the same optimization algo-
rithm operating on the same data set converges with differ-
ent number of iterations on different architectures when 
dynamic convergence is employed. Even on the same archi-
tecture, compiler optimization of floating point operations 
results in variations. Unless experiments are performed on a 
large set of images, this skews the performance results one 
way or the other. 
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We have given normalized performance results in Table 4 
where possible. The word “performance” is ambiguous in the 
context of registration. It is sometimes used to refer to the 
degree of success for a registration algorithm based on accuracy 
of the registration results. In this article, we use “performance” 
in its computational capacity referring to execution efficiency of 
the registration algorithm. The purpose of normalizing the 
reported results is to give the reader an indication of the speed-
ups expected from a method without dependence on the size of 
images involved, convergence criteria, use of a multiresolution 
scheme, and to some extent the type of optimization algorithm. 
Normalized results are given in terms of average execution time 
in milliseconds for a single iteration of the optimization algo-
rithm and for processing 1,000,000 voxel pairs (ms/MVoxel/itr). 

Many authors have used gradient descent as their optimiza-
tion algorithm, largely due to its simple structure and ease of 
implementation. Once the gradient is computed, the choices 
include taking a single step in a direction opposite to the gradi-
ent where the step size may be adjusted over time, or use of a 
line minimization algorithm such as Brent’s [12]. Line minimi-
zation usually involves several computations of the cost func-
tion alone without its derivatives. 

When comparing results it is important to identify which 
variation of the gradient descent is used. We have come across 
four different implementations:

Type A: closed-form differentiation with a single step.  ■

Type B: closed-form differentiation with line minimization.  ■

Type C: numerical differentiation with a single step.  ■

Type D: numerical differentiation with line minimization. ■

Most authors exclude initialization time, including disk IO 
and loading data from host memory to GPU memory. This is a 
reasonable practice since initialization time is typically a small 
fraction of the registration task. Initialization occurs at the 
beginning of the registration algorithm whereas the optimiza-
tion loop is executed several times. 

Some of the information presented in Table 4 were not 
immediately available in the original manuscripts and were pro-
vided by the authors of the respective papers. Unless specifically 
specified, listed methods are for 3-D/3-D registration. 

FINAL WORDS
Over the last decade, a rich and diverse literature on HPC of 
medical image registration has emerged. Research in this area 
continues to be motivated by the need to minimize the overhead 
of image registration that is used as an integral part of image-
guided intervention and IGT systems. The continued research in 
this area will also facilitate the adaption of existing preoperative 
tools to real-time intraoperative environments. 

From a technical perspective, there has been a gradual shift 
away from expensive SMP supercomputers to less expensive 
clusters of commodity computers and more recently inexpen-
sive massively multiprocessing GPUs. This trend has the poten-
tial to lead to more widespread use of medical imaging tools in 
everyday clinical practice by making them affordable outside of 
research facilities and expensive operating theaters. 

ACKNOWLEDGMENTS
We would like to thank Prof. Alistair Rendell for making staff 
and computational resources available for our experiments. We 
would also like to thank Ahmed El Zein and Benjamin Murphy 
for their efforts in porting the original code to Solaris, Linux, 
and its adaptation to Brook+. 

We also thank many authors, whose work we have referred 
in this article, for providing additional information and for 
clarification of their results. 

AUTHORS
Ramtin Shams (ramtin.shams@anu.edu.au) is an Australian 
postdoctoral Fellow in the College of Engineering and 
Computer Science at the Australian National University (ANU). 
He received his B.E. and M.E. degrees in electrical engineering 
from Sharif University of Technology, Tehran, and completed 
his Ph.D. degree at ANU in 2009 with a thesis in medical image 
registration. He was the recipient of a Fulbright scholarship in 
2008. He has more than ten years of industry experience in the 
ICT sector and worked as the CTO of GPayments Pty. Ltd 
between 2001 to 2007. His research interests include medical 
image analysis, HPC, and wireless communications. 

Parastoo Sadeghi (parastoo.sadeghi@anu.edu.au) is a 
Fellow (senior lecturer) at the Research School of Information 
Sciences and Engineering at ANU. She received her B.E. and 
M.E. degrees in electrical engineering from Sharif University 
of Technology, Tehran, and her Ph.D. degree in electrical engi-
neering from The University of New South Wales in Sydney, in 
2006. In 2003 and 2005, she received two IEEE Region 10 
Paper Awards for her research in the information theory of 
time-varying fading channels. Her research interests include 
applications of signal processing, information theory, and HPC 
in telecommunications and medical image analysis. 

Rodney A. Kennedy (rodney.kennedy@anu.edu.au) received 
his B.E. degree from the University of New South Wales, 
Australia, his M.E degree from the University of Newcastle, and 
his Ph.D. degree from ANU. For three years, he worked for the 
Commonwealth Scientific and Industrial Research 
Organization on the Australia Telescope Project.  He is cur-
rently a professor and director of research at the College of 
Engineering and Computer Science at the ANU. His research 
interests are in the fields of signal processing, digital and wire-
less communications, and acoustical signal processing.

Richard I. Hartley (richard.hartley@anu.edu.au) is a mem-
ber of the computer vision group in the College of Computer 
Science and Engineering at ANU. He also belongs to the 
Vision Science Technology and Applications Program in 
National ICT Australia. He graduated from the University of 
Toronto in 1976 with a thesis in knot theory and worked in 
this area for several years before joining the General Electric 
Research and Development Center, where he worked from 
1985 to 2001. In 1991, he was awarded GE’s Dushman Award 
for this work. In 2000, he coauthored a book on multiple view 
geometry. He has authored close to 200 scholarly papers and 
holds 32 U.S. patents.



IEEE SIGNAL PROCESSING MAGAZINE   [60]   MARCH 2010

REFERENCES
[1] L. G. Brown, “A survey of image registration techniques,” ACM Comput. Surv., 
vol. 24, no. 4, pp. 325–376, Dec. 1992. 

[2] J. B. A. Maintz and M. A. Viergever, “A survey of medical image registration,” 
Med. Image Anal., vol. 2, no. 1, pp. 1–36, 1998. 

[3] J. P. W. Pluim, J. B. A. Maintz, and M. A. Viergever, “Mutual-information-based 
registration of medical images: A survey,” IEEE Trans. Med. Imag., vol. 22, no. 8, 
pp. 986–1004, Aug. 2003. 

[4] J. Modersitzki, Numerical Methods for Image Registration. New York: Oxford 
Univ. Press, 2004. 

[5] D. Rueckert, L. I. Sonoda, C. Hayes, D. L. G. Hill, M. O. Leach, and D. J. 
Hawkes, “Nonrigid registration using free-form deformations: Application to breast 
MR images,” IEEE Trans. Med. Imag., vol. 18, no. 8, pp. 712–721, Aug. 1999. 

[6] T. M. Lehmann, C. Gönner, and K. Spitzer, “Survey: Interpolation methods 
in medical image processing,” IEEE Trans. Med. Imag., vol. 18, no. 11, pp. 1049–
1075, Nov. 1999. 

[7] C. R. Castro-Pareja, J. M. Jagadeesh, and R. Shekhar, “FAIR: A hardware ar-
chitecture for real-time 3-D image registration,” IEEE Trans. Inform. Technol. 
Biomed., vol. 7, no. 4, pp. 426–434, Dec. 2003. 

[8] P. Viola and W. M. Wells, III, “Alignment by maximization of mutual informa-
tion,” in Proc. Int. Conf. Computer Vision (ICCV), June 1995, pp. 16–23. 

[9] A. Collignon, F. Maes, D. Delaere, D. Vandermeulen, P. Suetens, and G. Mar-
chal, “Automated multimodality medical image registration using information 
theory,” in Proc. Int. Conf. Information Processing in Medical Imaging: Com-
putational Imaging and Vision 3, Apr. 1995, pp. 263–274. 

[10] C. Studholme, D. L. G. Hill, and D. J. Hawkes, “An overlap invariant entropy 
measure of 3D medical image alignment,” Pattern Recognit., vol. 32, no. 1, pp. 
71–86, 1999.

[11] A. Roche, G. Malandain, X. Pennec, and N. Ayache, “The correlation ratio 
as a new similarity measure for multimodal image registration,” in Proc. Medical 
Image Computing and Computer Assisted Intervention (MICCAI), Oct. 1998, 
pp. 1115–1124. 

[12] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical 
Recipes: The Art of Scientific Computing, 3rd ed. Cambridge, U.K.: Cambridge 
Univ. Press, 2007. 

[13] J. A. Nedler and R. Mead, “A simplex method for function minimization,” Com-
put. J., vol. 7, no. 4, pp. 308–331, 1965.

[14] R. Shams, R. A. Kennedy, P. Sadeghi, and R. Hartley, “Gradient intensity-
based registration of multi-modal images of the brain,” in Proc. IEEE Int. Conf. 
Computer Vision (ICCV), Rio de Janeiro, Brazil, Oct. 2007.

[15] J. E. Dennis, Jr. and V. Torczon, “Direct search methods on parallel machines,” 
SIAM J. Optim., vol. 1, no. 4, pp. 448–474, 1991.

[16] D. R. Jones, C. D. Perttunen, and B. E. Stuckman, “Lipschitzian optimiza-
tion without the Lipschitz constant,” J. Optim. Theory Appl., vol. 79, no. 1, pp. 
157–181, 1993. 

[17] E. Cantú-Paz, “A survey of parallel genetic algorithms,” Calculateurs Paral-
leles, vol. 10, no. 2, pp. 141–171, 1998.

[18] T. Butz and J-P. Thiran, “Affine registration with feature space mutual infor-
mation,” in Proc. Medical Image Computing and Computer Assisted Interven-
tion (MICCAI), 2001, pp. 549–556. 

[19] M. P. Wachowiak and T. M. Peters, “High-performance medical image registra-
tion using new optimization techniques,” IEEE Trans. Inform. Technol. Biomed., 
vol. 10, no. 2, pp. 344–353, Apr. 2006. 

[20] S. Warfield, F. Jolesz, and R. Kikinis, “A high performance computing ap-
proach to the registration of medical imaging data,” Parallel Comput., vol. 24, no. 
9-10, pp. 1345–1368, Sept. 1998. 

[21] R. Shams and R. A. Kennedy, “Efficient histogram algorithms for NVIDIA 
CUDA compatible devices,” in Proc. Int. Conf. Signal Processing and Communi-
cations Systems (ICSPCS), Gold Coast, Australia, Dec. 2007, pp. 418–422. 

[22] (2009). OpenMP application programming interface, version 3.0, OpenMP 
[Online]. Available: http://openmp.org/wp/openmp-specifications/ 

[23] B. Chapman, G. Jost, and R. van der Pas, Using OpenMP: Portable Shared 
Memory Parallel Programming. Cambridge, MA: MIT Press, 2008. 

[24] T. Rohlfing and C. R. Maurer, Jr., “Nonrigid image registration in shared-
memory multiprocessor environments with application to brains, breasts, and 
bees,” IEEE Trans. Inform. Technol. Biomed., vol. 7, no. 1, pp. 16–25, Mar. 2003. 

[25] E. Lusk W. Gropp, and A. Skjellum, Using MPI: Portable Parallel 
Programming with the Message Passing Interface, 2nd ed. Cambridge, MA: MIT 
Press, 1999. 

[26] F. Ino, K. Ooyama, and K. Hagihara, “A data distributed parallel algorithm 
for nonrigid image registration,” Parallel Comput., vol. 31, no. 1, pp. 19–43, Jan. 
2005. 

[27] S. Ourselin, R. Stefanescu, and X. Pennec, “Robust registration of multi-
modal images: Towards real-time clinical applications,” in Proc. Medical Image 
Computing and Computer Assisted Intervention (MICCAI), 2002, pp. 140–147. 

[28] G. C. Sharp, N. Kandasamy, H. Singh, and M. Folkert, “GPU-based streaming 
architectures for fast cone-beam CT image reconstruction and demons deformable 
registration,” Phys. Med. Biol., vol. 52, no. 19, pp. 5771–5783, 2007. 

[29] R. Shams and N. Barnes, “Speeding up mutual information computation 
using NVIDIA CUDA hardware,” in Proc. Digital Image Computing: Techniques 
and Applications (DICTA), Adelaide, Australia, Dec. 2007, pp. 555–560. 

[30] Y. Lin and G. Medioni, “Mutual information computation and maximization 
using GPU,” in Proc. IEEE Computer Vision and Pattern Recognition (CVPR) 
Workshops, June 2008, pp. 1–6. 

[31] W. Plishker, O. Dandekar, S. S. Bhattacharyya, and R. Shekhar, “Towards 
systematic exploration of tradeoffs for medical image registration on heteroge-
neous platforms,” in Proc. IEEE Biomedical Circuits and Systems Conf., Nov. 
2008, pp. 53–56. 

[32] P. Muyan-Özçelik, J. D. Owens, J. Xia, and S. S. Samant, “Fast deformable 
registration on the GPU: A CUDA implementation of demons,” in Proc. Int. Conf. 
Computational Science and Its Applications (ICCSA), 2008, pp. 5–8. 

[33] R. Shams, P. Sadeghi, R. A. Kennedy, and R. Hartley, “Parallel computation 
of mutual information on the GPU with application to real-time registration of 3D 
medical images,” Comput. Meth. Programs Biomed., to be published. 

[34] A. Ruiz, M. Ujaldon, L. Cooper, and K. Huang, “Non-rigid registration for 
large sets of microscopic images on graphics processors,” J. Signal Process. Syst., 
vol. 55, no. 1-3, pp. 229–250, Apr. 2009. 

[35] G. Soza, M. Bauer, P. Hastreiter, C. Nimsky, and G. Greiner, “Non-rigid 
registration with use of hardware-based 3D Bézier functions,” in Proc. Medical 
Image Computing and Computer Assisted Intervention (MICCAI), 2002, pp. 
549–556. 

[36] R. Strzodka, M. Droske, and M. Rumpf, “Image registration by a regularized 
gradient flow. A streaming implementation in DX9 graphics hardware,” Comput-
ing, vol. 73, no. 4, pp. 373–389, Nov. 2004. 

[37] A. Khamene, R. Chisu, W. Wein, N. Navab, and F. Sauer, “A novel projec-
tion based approach for medical image registration,” in Proc. 3rd Int. Workshop 
Biomedical Image Registration (WBIR), Utrecht, The Netherlands, June 2006, 
pp. 247–256. 

[38] F. Ino, J. Gomita, Y. Kawasaki, and K. Hagihara, “A GPGPU approach for 
accelerating 2-D/3-D rigid registration of medical images,” in Proc. Parallel and 
Distributed Processing and Applications, Feb. 2006, pp. 939–950.

[39] C. Vetter, C. Guetter, C. Xu, and R. Westermann, “Non-rigid multi-modal 
registration on the GPU,” in Proc. SPIE Medical Imaging: Image Processing, 
Feb. 2007, pp. 651228-1–651228-8.

[40] Z. Fan, C. Vetter, C. Guetter, D. Yu, R. Westermann, A. Kaufman, and C. 
Xu, “Optimized GPU implementation of learning-based non-rigid multi-modal 
registration,” in Proc. SPIE Medical Imaging: Image Processing, 2008.

[41] N. Courty and P. Hellier, “Accelerating 3D non-rigid registration using graph-
ics hardware,” Int. J. Image Graph., vol. 8, no. 1, pp. 1–18, Jan. 2008. 

[42] A. Kubias, F. Deinzer, T. Feldmann, S. Paulus, D. Paulus, B. Schreiber, and T. 
Brunner, “2D/3D image registration on the GPU,” Pattern Recognit. Image Anal., 
vol. 18, no. 3, pp. 381–389, Sept. 2008. 

[43] (2009). Compute unified device architecture (CUDA) programming guide, 
version 2.2, NVIDIA [Online]. Available: http://developer.nvidia.com/object/
cuda.html

[44] (2009). ATI stream computing user guide, version 1.4.0.a, ATI [Online]. 
Available: http://developer.amd.com/ 

[45] W. Plishker, O. Dandekar, S. S. Bhattacharyya, and R. Shekhar, “Utilizing hi-
erarchical multiprocessing for medical image registration,” IEEE Signal Process-
ing Mag., vol. 27, no. 2, pp. 62–68, Mar. 2010. 

[46] M. Ohara, H. Yeo, F. Savino, G. Iyengar, L. Gong, H. Inoue, H. Komatsu, V. 
Sheinin, and S. Daijavad, “Accelerating mutual-information-based linear regis-
tration on the cell broadband engine processor,” in Proc. IEEE Int. Conf. Multi-
media and Expo, 2007, pp. 272–275. 

[47] M. Ohara, H. Yeo, F. Savino, G. Iyengar, L. Gong, H. Inoue, H. Komatsu, 
V. Sheinin, S. Daijavad, and B. Erickson, “Real-time mutual-informatoin-based 
linear registration on the cell broadband engine processor,” in Proc. IEEE Int. 
Symp. Biomedical Imaging (ISBI), 2007, pp. 33–36. 

[48] J. Rohrer and L. Gong, “Accelerating mutual information based 3D non-rigid 
registration using the cell/B.E. processor,” in Proc. Workshop on Cell Systems 
and Applications (WCSA), 2008, pp. 32–40. 

[49] C. R. Castro-Pareja, J. M. Jagadeesh, and R. Shekhar, “FPGA-based accelera-
tion of mutual information calculation for real-time 3D image registration,” in 
Proc. SPIE Medical Imaging: Image Processing, 2008, pp. 212–219.

[50] O. Dandekar and R. Shekhar, “FPGA-accelerated deformable image registra-
tion for improved target-delineation during CT-guided interventions,” IEEE Trans. 
Biomed. Circuits Syst., vol. 1, no. 2, pp. 116–127, June 2007. 

[51] A. Köhn, J. Drexl, F. Ritter, M. König, and H. O. Peitgen, “GPU accelerated 
image registration in two and three dimensions,” in Proc. Bildverarbeitung für 
die Medizin, 2006, pp. 261–265. [SP]



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 2.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 2.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


