
IEEE SIGNAL PROCESSING MAGAZINE [50] MARCH 2010

 Digital Object Identifier 10.1109/MSP.2009.935387

A Survey of Medical
Image Registration on
Multicore and the GPU

I
n this article, we look at early, recent, and
state-of-the-art methods for registration of
medical images using a range of high-perfor-
mance computing (HPC) architectures including
symmetric multiprocessing (SMP), massively multi-

processing (MMP), and architectures with distributed memory
(DM), and nonuniform memory access (NUMA). The article is
designed to be self-sufficient. We will take the time to define and
describe concepts of interest, albeit briefly, in the context of image
registration and HPC. We provide an overview of the registration
problem and its main components in the section “Registration.”
Our main focus will be HPC-related aspects, and we will high-
light relevant issues as we explore the problem domain. This
approach presents a fresh angle on the subject than previously
investigated by the more general and classic reviews in the liter-
ature [1]–[3]. The sections “Multi-CPU Implementations” and
“Accelerator Implementations” are organized from the perspec-
tive of high-performance and parallel- computing with the reg-
istration problem embodied. This is meant to equip the reader

with the knowledge to map a registration problem to a given
computing architecture.

IN AN OPERATING ROOM
NOT SO FAR INTO THE FUTURE
A surgeon is performing a potentially life-saving pancreatect-
omy on a patient in early stages of pancreatic cancer. Two
small incisions of no more than half an inch allow laparoscop-
ic tools including a video camera and an ultrasound probe to
be guided inside the abdominal cavity. A third, larger incision,
is occupied by a hand-access device that facilitates the opera-
tion. The surgeon is able to locate the tumor in the ultrasound
view with ease. This is largely possible due to a newly installed

[Ramtin Shams, Parastoo Sadeghi, Rodney A. Kennedy, and Richard I. Hartley]

1053-5888/10/$26.00©2010IEEE

[A look at early, recent,
 and state-of-the-art
 methods using
 high-performance
 computing
 architectures]

© PHOTO F/X2

IEEE SIGNAL PROCESSING MAGAZINE [51] MARCH 2010

three-dimensional (3-D) navigation and visualization system
that virtually renders the patient transparent.

The visualization system combines data from preoperative
magnetic resonance (MR) and computed tomography (CT) scans
with intraoperative laparoscopic ultrasound data to produce
real-time high quality and dynamic 3-D images of the patient, in
a process better known as multimodal registration and fusion.
The high quality 3-D images of the tumor and the surrounding
tissue allow the surgeon to resect the malignant cells with little
damage to healthy structures.

Such a minimally invasive approach avoids the trauma of
open surgery, and a faster recovery time means that the
patient will be released from the hospital in just two days.

MULTIPROCESSING IN AN OPERATING ROOM
Image-guided therapy (IGT) systems play an increasingly
important role in clinical treatment and interventions. By pro-
viding more accurate information about a patient during a
procedure, these systems improve the quality and accuracy of
procedures and make less invasive options for treatment avail-
able. They contribute to reduced morbidity rate, intervention
time, post-intervention care, and procedure costs. For practi-
cal reasons, however, imaging systems that can be deployed in
an operating room produce images with lower resolutions and
lower signal to noise ratios than can be achieved by the state-
of-the-art imaging systems preoperatively. Therefore, it is
desirable to be able to use preoperative images of a patient
together with those acquired during a procedure for best
results. In brain surgery, for example, the main challenge is to
remove as much as the malignant tissue as possible without
affecting critical structures and while minimizing damage to
healthy tissue. The surgeon uses high quality CT and MR scans
of the patient to carefully plan a procedure. During a proce-
dure, however, the brain undergoes varying levels of deforma-
tions at different stages of the surgery known as the brain
shift. This brain shift, a result of change in the intracranial
pressure, leakage of cerebrospinal fluid and removal of tissue,
affects the accuracy of earlier planning and needs to be com-
pensated for. The surgeon may take a number of intraoperative
scans to correct the plan based on patient’s current state and
also to detect complications such as bleeding. To support the
surgeon, the IGT system needs to register intraoperative scans
with the patient and with preoperative images.

Modern medical imaging technologies are capable of pro-
ducing high resolution 3-D or four-dimensional (4-D) (3-D 1
time) images. This makes medical image processing tasks at
least one dimension more compute-intensive than standard
two-dimensional (2-D) image processing applications. The
higher computational cost of medial image analysis together
with the time constraints imposed by the medical procedure
determine the range of tools that can be practically offered
through an IGT platform. It also often means that an IGT plat-
form has to rely on HPC hardware and highly parallelized
software. There are other practical considerations. For exam-
ple, equipment used in an operating room should be designed

to minimize footprint, power consumption, operating noise,
and cost.

The continued development of multicore and massively
multiprocessing architectures in recent years holds great
promise for interventional setups. In particular, massively
multiprocessing graphics units with general-purpose program-
ming capabilities have emerged as front runners for low-cost
high-performance processing. HPC, in the order of 1 TFLOPS,
is available on commodity single-chip graphics processing
units (GPUs) with power requirements not much greater than
an office computer. Multi-GPU systems with up to eight GPUs
can be built in a single host and can provide a nominal pro-
cessing capacity of eight TFLOPS with less than 1,500 W
power consumption under full load.

Hardware and architectural complexities in designing mul-
ticore systems aside, perhaps as big a challenge is an overhaul
of existing application design methodologies to allow efficient
implementation on a range of massively multicore architec-
tures. As one quickly might find, direct adaptation of existing
serial algorithms is more often than not neither possible due
to hardware constraints nor computationally justified.

REGISTRATION
Registration is a fundamental task frequently encountered in
image processing applications [1]. In medical applications,
images of similar or differing modalities often need to be
aligned as a preprocessing step for many planning, navigation,
data-fusion and visualization tasks. Registration of images has
been extensively researched in the medical imaging domain.
Image based registration may use features that are derived
from the subject’s anatomy or those artificially introduced spe-
cifically for registration purposes. The former class of registra-
tion methods are known as intrinsic and the latter as extrinsic
[2]. Extrinsic methods involve introduction of foreign objects
such as stereotactic frames or fiducial markers and may be
invasive. Once attached to the subject, markers remain fixed
for multiple imaging sessions and can be used to align the
images. Intrinsic methods, on the other hand, are noninvasive
and can be used retrospectively. They may match a small set of
corresponding anatomical and geometrical landmarks, use a
set of structures obtained through segmentation, or be based
on the entire content of images (e.g., voxel intensities).
Content-based methods are particularly of interest since they
can be fully automated but are typically compute-intensive.
The focus of this survey is content-based registration methods.

Figure 1 shows various components of a general registration
solver, with the main components being a transformer,
a measure, and an optimizer. Registration as depicted here is
an iterative process where one image is transformed within a
 predetermined parameter space and compared against the
other. We call the former the moving and the latter the fixed
image. A measure of similarity or distance is computed between
the images at each step and used to determine if they are “suffi-
ciently” aligned. This process is controlled by the optimizer
that starts from an initial guess and determines subsequent

IEEE SIGNAL PROCESSING MAGAZINE [52] MARCH 2010

steps to reach an optimal alignment. We will discuss each com-
ponent in more detail in the following subsections.

TRANSFORMER
The transformer maps points in the moving image to new
locations in the transformed image. Depending on the regis-
tration problem, a transformation can be collinear or deform-
able. Collinear transformations are line-preserving i.e., map
straight lines onto straight lines. Collinear transformations
can be described by a 4 3 4 matrix acting on homogeneous
vectors representing 3-D points. Examples of collinear trans-
formations include rigid, similarity, affine, and projective
(projective transformations are rarely required in medical
imaging applications). For this reason, these types of transfor-
mations have nearly identical complexity. Methods that imple-
ment rigid registration can be easily extended to affine, often
without any change to the transformer.

Deformable transformation methods can be further catego-
rized as parametric and nonparametric. Nonparametric meth-
ods are based on a variational formulation of the registration
problem, where the transformation is described by an arbitrary
displacement field regularized by some smoothing criteria [4].
Parametric methods are based on some piecewise polynomial
interpolation of a displacement field using a set of control
points placed in the image domain. B-splines are the favorites
because they induce local deformations that limit the compu-
tational complexity of a large grid of control points [5]. Other
functions such as thin-plate splines and Bezier functions have
also been used. There are efficient methods for nonparametric
registration including multigrid solvers. While parametric
methods are more demanding, they yield themselves more
easily to multimodal registration applications.

The transformer determines the intensity of the points in
the transformed image by interpolating intensity values of cor-
responding points in the moving image. The simplest and fast-
est interpolation method is the nearest neighbor interpolation.
Nearest neighbor should never be used in practice, as it results
in poorly shaped cost functions, but may be useful to establish
the baseline performance of the transformer. The most

 commonly used interpolation method is linear interpolation.
Other methods include quadratic, cubic, cubic B-spline, and
Gaussian interpolation [6].

A transformer spends the majority of its time performing
interpolations. As noted by Castro-Pareja et al. [7] interpola-
tion of the transformed moving image does not benefit from
standard memory caching mechanisms due to nonsequential
pattern of access to memory with low locality. As a result,
transformer performance can well become memory bound.

MEASURE
A method of measuring the similarity or distance between
images is required for automatic registration. Ideally a similarity
measure attains its maximum, where the images are perfectly
aligned and decreases as the images move farther away. A dis-
tance measure, on the other hand, attains its minimum where
the images are aligned.

Commonly used similarity and distance measures are sum-
marized in Table 1. Just as different classes of transformations
are suitable for modeling different geometric distortions
between the images, different similarity measures are used for
different intensity distortions between the images. Measures
are broadly categorized based on their suitability for sin-
gle-modality and multimodality problems. All of the
 single- modality measures listed in Table 1 can be calculated by
independent computations at each spatial location. From a
parallelization point of view, this makes them readily adaptable
to single instruction multiple data (SIMD) instruction sets and
architectures such as GPUs. Multimodality measures deter-
mine statistical (mutual information) or functional (correla-
tion ratio) dependance of images where each image is assumed
to be a realization of an underlying discrete random variable.
These methods require estimation of joint and marginal prob-
ability mass functions (pmfs) of the underlying discrete ran-
dom variables from image data. Methods of pmf computation
can be parallelized with varying degrees of difficulty and per-
formance improvement. We will discuss this issue in more
detail in the context of MI computation on the GPU in the sec-
tion “GPUs.”

OPTIMIZER
The optimizer is responsible for an efficient and often non-
exhaustive strategy to search the transformation parameter
space for the best match between the images. In image registra-
tion, optimizers can be broadly categorized as gradient-based or
gradient-free, global or local, and serial or parallelizable.

Gradient-based methods require computation of partial
derivatives of a cost function in addition to frequent computa-
tion of the cost function itself. Therefore, from an implementa-
tion perspective, they are more involved than gradient-free
methods. The gradient computation can be based on the numer-
ical estimation of the derivatives using finite differences.
Alternatively, direct computation of the gradient can be per-
formed when closed-form equations for the partial derivatives
can be derived.

Topt

Optimizer

Terminate?

Point
Generator

No

Transformer
T

Measure

M(T)

P
reprocessor

F

M M0

F0

Initial
Point

L(T)
+

S(F, M (T))

S
m

oother

 Yes

[FIG1] A general registration solver and its main components:
F, M, and M(T) are fixed, moving, and transformed moving
images, respectively.

IEEE SIGNAL PROCESSING MAGAZINE [53] MARCH 2010

Local methods find a local optimum in the vicinity of an
initial point and within their capture range. They may con-
verge to an incorrect alignment if not properly initialized.
Global methods, however, find the global optimum within a
given range of parameters. They are robust with respect to
selection of the initial point but at the cost of slower conver-
gence. Global and local methods may be combined to
improve robustness while maintaining a reasonable conver-
gence rate.

Some optimization algorithms are only suited for serial exe-
cution, where each optimization step is dependent on the out-
come of previous step(s). Others may be amenable to
parallelization. For example, each step of the gradient descent
optimization in N-dimensional space requires computation of
N partial derivatives of the cost function. Here, there is limited
opportunity to run up to N tasks in parallel, and of course the
additional line minimization step that may follow cannot be
readily parallelized. We call such methods partially paralleliz-
able. And finally, we refer to optimization methods that have
been designed for parallel execution with minimal interstep
dependency as fully parallelizable.

Table 2 lists some optimization algo-
rithms used for image registration and their
respective classification.

The overall performance of a registration
algorithm is dependent on the effectiveness
of the optimization strategy. This in turn
depends on the iterations needed for the
algorithm to converge. For gradient-free
optimization, we define an iteration as a
step that involves a single computation of
the cost function. For gradient-based opti-
mization, an iteration is defined as a step

that involves a single computation of the gradient. Depending
on the type of gradient-based method this may involve several
evaluations of the cost function.

Gradient-based optimizers do more in a single iteration and
they also converge with a significantly lower number of itera-
tions compared to gradient-free methods. The convergence rate
of an optimizer depends on many factors including the size of
the parameter space, optimizer settings (e.g., convergence crite-
ria), and the misalignment between the images. It is also often
data dependent.

The computational bottleneck of registration is not the opti-
mizer but the computation of the transformation and the mea-
sure. Most researchers have focused on fine-grained parallelization
of these components. A few have considered coarse-grained par-
allelization, which involves parallelization of the optimizer
itself [18], [19].

PREPROCESSOR
We have shown the preprocessor in dotted lines in Figure 1 to
emphasize that it is an optional component. Preprocessing

[TABLE 1] COMMONLY USED MEASURES.

MEASURE ACRONYM TYPE USAGE FORMULA1

SUM OF SQUARED DIFFERENCES SSD DIST. SINGLE-MOD DSSD 1I, J 2 5 a
x[V

1I 1x 2 2J 1x 2 22

SUM OF ABSOLUTE DIFFERENCES SAD DIST. SINGLE-MOD DSAD 1I, J 2 5 a
x[V

|I 1x 2 2J 1x 2 |

NORMALIZED CROSS CORRELATION [1] NCC SIM. SINGLE-MOD SNCC 1I, J 2 5 a
x[V

I 1x 2 J 1x 2
"E 3I 1x 22 4E 3J 1x 22 4

CORRELATION COEFFICIENT [1] CC SIM. SINGLE-MOD SCC 1I, J 2 5 a
x[V

1I 1x 2 2 E 3I 1x 2 4 2 1J 1x 2 2 E 3J 1x 2 4 2
s 1I 2s 1J 2

GRADIENT CORRELATION GC SIM. SINGLE-MOD SGC 1I, J 2 5 1
da

d

i51
SCCa'I'xi

,
'J
'xi
b

MUTUAL INFORMATION [8, 9] MI SIM. MULTI-MOD SMI 1I, J 2 5 a
i
a

j
pIJ 1 i, j 2 log

pIJ 1 i, j 2
pI 1 i 2pJ 1 j 2

NORMALIZED MUTUAL INFO. [10] NMI SIM. MULTI-MOD SNMI 1I, J 2 5 2SMI 1I, J 2
H 1I 2 1H 1J 2 (SEE NOTE 2)

CORRELATION RATIO [11] CR SIM. MULTI-MOD
SCR 1I;J 2 5 s

21E 3J|I 4
s2 1I 2

1V (Rd represents a d-dimensional image domain.
2Entropy is defined as H 1I 2 5 a i pI 1 i 2 log 1/pI 1 i 2 , where image I is assumed to be a discrete random variable with a probability mass function (pmf) given by pI 1 # 2 .

[TABLE 2] CLASSIFICATION OF SOME OPTIMIZATION METHODS.

METHOD CLASSIFICATION

POWELL [12] GRADIENT FREE LOCAL SERIAL
SIMPLEX [13] GRADIENT FREE LOCAL PARTIALLY PARALLELIZABLE
SOBLEX1 [14] GRADIENT FREE COMBINED PARTIALLY PARALLELIZABLE
MDS1,2 [15] GRADIENT FREE LOCAL PARTIALLY PARALLELIZABLE
GRADIENT DESCENT [12] GRADIENT BASED LOCAL PARTIALLY PARALLELIZABLE
QUASI-NEWTON [12] GRADIENT BASED LOCAL PARTIALLY PARALLELIZABLE
LEVENBERG-MARQUARDT [12] GRADIENT BASED LOCAL PARTIALLY PARALLELIZABLE
SIMULATED ANNEALING [12] GRADIENT FREE COMBINED PARTIALLY PARALLELIZABLE
DIRECT3 [16] GRADIENT FREE GLOBAL FULLY PARALLELIZABLE
GENETIC [17] GRADIENT FREE GLOBAL FULLY PARALLELIZABLE

1 A simplex variant, 2 multidirectional search, 3 dividing rectangles.

IEEE SIGNAL PROCESSING MAGAZINE [54] MARCH 2010

encapsulates a wide range of tasks that may be performed on
images outside the optimization loop and at the beginning of
the process. These may include filtering, rectification, gradient
computation, pyramid construction, feature detection, etc. An
example is given in one of the earlier efforts to parallelize
image registration by Warfield et al. [20]. They extract features
based on tissue labels given by prior segmentation and paral-
lelize a feature-based interpatient registration method on a
cluster of multiprocessor computers. They use the number of
mismatching labels (NML) as a measure of distance in their
registration algorithm.

Given that preprocessor is not in the critical pass, there is
little incentive for parallelizing it. Unless of course the registra-
tion process itself is sped up to the point that preprocessing
becomes a bottleneck. This is likely to become the case as regis-
tration algorithms enter the real-time domain.

COMPUTATIONAL EXPENSE OF
IMAGE REGISTRATION
Image registration in general is computationally expensive and
has been largely confined to preoperative applications. The main
bottlenecks are typically the transformer and the computation
of the measure. Single modality measures such as sum of
squared differences (SSD) and correlation coefficient (CC) are
less compute-intensive than multimodality measures such
as mutual information (MI) and correlation ratio (CR). (Some
authors use “normalized cross correlation” to refer to correla-
tion coefficient. We prefer correlation coefficient, which is the
accepted term in statistics.) Computation of MI requires an esti-
mation of the joint probability density of image intensities. This
typically entails, computing a joint histogram of image intensi-
ties. A seemingly simple task that is far from trivial on some
massively parallel architectures such as GPUs [21].

A sample breakdown of computations in one iteration of a
gradient-free optimization algorithm is given in Table 3 for
affine registrations using a single modality and a multimodality
measure. The measurements are based on a Quad core Intel
Core i7 920 and an NVIDIA GTX 295. The time spent outside of
the measure and transformation components is negligible com-
pared to the measure and transformation. On the CPU, the exe-
cution time is dominated by the transformer whereas on the
GPU, the time spent in computing the measure, particularly for
the MI, exceeds the transformer time. This is expected as GPUs
are designed to speed up geometric transformations. Obviously,
for more complex transformation models such as the deform-
able B-splines, more time will be spent in the transformer for
both platforms.

We note that optimization algorithms make decisions based
on the measure and do not directly use the intermediate results of
the transformer. As such, transformation and similarity measure
computations may be performed in one step and within the same
module to remove the need for storage and subsequent retrieval
of transformed image data. This obviously improves performance,
especially where input/output traffic is an issue. However, it also
makes it more difficult to modularize the implementation and
cater for arbitrary combinations of transformations and measures.

MULTI-CPU IMPLEMENTATIONS

SYMMETRIC MULTIPROCESSING
In SMP architectures, multiple CPUs/cores have access to a sin-
gle shared main memory. This makes parallelization of serial
code relatively straightforward. The main methods for paral-
lelization on SMP architectures are POSIX threads (pthreads)
and OpenMP [22], [23]. The pthreads standard defines an appli-
cation programming interface (API) for explicit instantiation,
management and synchronization of multiple threads, whereas
OpenMP mainly consists of a set of compiler directives (and a
supporting API) that allows for implicit parallelization.

Most serial programs can be parallelized on SMP architec-
tures with minimal modification. The ease with which paral-
lelization can be achieved, especially with OpenMP, can be
deceiving. There is an adage in HPC circles that says “OpenMP
does not make parallel programming easy, it only makes bad
parallel programming easy.” We should emphasize that there is
nothing inherently inhibiting about OpenMP or SMP platforms.
It is only that optimal parallelization usually requires a change
in the algorithm, programming model and memory access pat-
tern in addition to the syntax. We encourage the reader to be
prepared to reevaluate the approach to solving a problem on
parallel systems and avoid the temptation of simply mapping a
serial code to multiple threads. We also advise that use of syn-
chronization primitives should be limited to a minimum and
alternative methods to achieve an outcome without synchroni-
zation should be investigated. Synchronization refers to any
mechanism for coordinating multiple threads or processes to
complete a task. Examples of synchronization primitives include
mutual exclusion (mutex), thread-join, and barrier. Atomic
operations also involve implicit synchronization.

A good example of SMP parallelization of a registration algo-
rithm is given by Rohlfing et al. [24]. They use pthreads to par-
allelize B-spline deformable registration on 64 CPUs. They
exploit a combination of procedural (precomputation, multires-
olution, and adaptive activation of control points) and architec-
tural elements (e.g., data partitioning) to optimize their method.
While the hardware has been long superseded, their approach is
still relevant today. We would not change much about their
method except that they use synchronized reduction of partial
joint histograms into a global histogram in the MI computation
phase by using the mutex lock. One can avoid the need for syn-
chronization by dividing partial histograms and the resulting
global histogram among the available threads. For N threads,

[TABLE 3] A SAMPLE BREAKDOWN OF COMPUTATIONS FOR
AFFINE REGISTRATIONS ON A MULTICORE CPU AND A GPU.

AFFINE (SSD) AFFINE (MI)

MEASURE TRANSFORM MEASURE TRANSFORM
CPU 4.3% 95.7% 13.5% 86.5%
GPU 50.4% 49.2% 86.9% 13.0%

IEEE SIGNAL PROCESSING MAGAZINE [55] MARCH 2010

this divides each partial histogram into N equally sized non-
overlapping regions. Each thread, then, computes part of the
global histogram by summing values across corresponding
regions of partial histograms. Since the regions are nonoverlap-
ping, the computations are guaranteed to be free of write-con-
flicts and no synchronization is required.

MULTIPROCESSING WITH NUMA
Efficient memory access is an important design consideration in
multiprocessor systems with many cores where maintaining an
efficient cache coherency on a single-shared-bus becomes less
practical as the number of processors increases. NUMA architec-
ture divides memory into multiple banks; each assigned to one
processor. Processors have faster access to their local bank than
remote banks attached to other processors.

Access to memory on remote banks can be several times
slower than access to local memory. This is due to data traveling
through a longer path and also transient access requests by
other processors that may require the memory bus to be shared.
Figure 2 shows the schematic of a multiprocessor system with a
NUMA architecture. An algorithm that is optimally designed for
NUMA makes only infrequent attempts to access data on remote
banks. A parallel application can theoretically achieve linear
scalability with respect to memory throughput whenever proper
distribution of memory to local banks is possible.

Image registration can be efficiently implemented on NUMA
architectures as shown in Figure 3. Both the transform and
measure computation can work on a spatial subset of the imag-
es. To achieve optimal performance, the fixed image F is divided
among the memory banks and the corresponding portion of the
transformed moving image M 1T 2 will also be stored on the
same memory bank. However, the path taken by the optimiza-
tion algorithm cannot be determined a priori and the trans-
former will use different areas of M to create the local portion
of M 1T 2 at each iteration. As such, each memory bank will need
to receive a local copy of the moving image M during the ini-
tialization step. Given that the optimization algorithm will take
several iterations to converge, this initial overhead is justified.

The distribution of resources to specific memory banks requires
setting an appropriate memory and processor affinity . Processor
affinity refers to explicit binding of a thread to a specific processor.
Memory affinity is explicit allocation of data on a specific memory
bank. This is operating system dependent and will make the code
less portable. The alternative is, of course, to be completely oblivi-
ous to the memory architecture and hope that the compiler and
the operating system will make the right decisions. This may not
be an entirely unreasonable strategy, depending on the number of
processors and whether a program is memory bound or CPU
bound. However, as the number of available CPUs increases or for
programs that are memory intensive, it becomes more important
to design an optimal memory access strategy.

MULTIPROCESSING WITH DISTRIBUTED MEMORY
DM architectures are characterized by lack of access to a global
shared memory available to all processors. DM systems are

 typically built by clustering SMP or NUMA nodes. As such, in
distributed architectures, subgroups of processors have access
to shared memory.

From a programming standpoint, these systems are charac-
terized by the need for explicit data distribution and interpro-
cess communication. The former has to be built into the
application design and the latter is most commonly achieved
through the message passing interface (MPI) [25].

The model given for data distribution in NUMA Figure 3 can
be equally applied here. An early implementation is given by
Butz and Thiran [18], where a Linux cluster was used to speed
up MI-based registration for a global genetic optimizer. In [26],
Ino et al. further partition the moving image to reduce the
memory usage. This is motivated by the need to process large
images in the order of 1,024 3 1,024 3 590 voxels.
Partitioning both images also reduces traffic on the network
during initialization. This can be an important consideration as
the number of nodes increases and the overhead of the initial-
ization phase compared to the optimization phase can no longer
be ignored. Partitioning the moving image requires a prior esti-
mate of the range of transformation parameters to ensure that a
large enough portion of the image is loaded for the transformer.

A variation is given by distributed shared memory (DSM)
architectures, where a large virtual address space is made avail-
able to all processes across all nodes. DSM can only hide the

CPU1

RAM

CPU3

RAM

CPU5

RAM

CPU2 CPU4 CPU6 CPU8

RAM

RAM RAM RAM RAM

PCI

PCI-E

CPU7

[FIG2] SunFire X4600 M2 schematic with eight NUMA nodes.
A CPU can access remote memory through a maximum of
three hops.

[FIG3] Partitioning of the data set among multiple memory
banks for improved access. The original data is loaded from
a shared storage medium.

Shared Memory

CPU1

Bank1

M

M

M1(T)

F1

F

CPU2 CPUn

Bankn

Fn

…

…

Bank2

M

M2(T)

M

Mn(T)

F2

IEEE SIGNAL PROCESSING MAGAZINE [56] MARCH 2010

mechanism of communication between processes and not the
associated latency. We argue that if the end goal is to achieve
the highest performance, little benefit can be drawn from
the convenience of a DSM architecture and the program should
be designed to be aware of the locality of data.

Wachowiak and Peters [19] develop MI-based registration
for a DSM architecture. Their implementation does not take
memory locality into account, but they use DIRECT and MDS
parallel optimization methods to their advantage. This coarse-
grained parallelization results in lower communication-to-
computation overhead.

As some authors have pointed out [27], a major benefit of
DM clusters is their lower cost compared to many-core SMPs or
DSM systems.

ACCELERATOR IMPLEMENTATIONS

GRAPHICS PROCESSING UNITS
The majority of recent research in multicore adaptation
of registration algorithms has been focused on GPUs [28]–
[34]. There are several reasons for the interest in GPUs.
Thanks to fierce competition and driven by the gaming indus-
try, GPUs today provide some of the highest performance per
dollar and the lowest power consumption per FLOPS of any
computing platform. While not every radiology department
can afford the cost and space needed by a conventional HPC
data center, they can certainly benefit from unlocking the
computational power of the GPUs in their existing computers.

GPU implementations tend to be more challenging than
multicore CPU implementations and are more rewarding in
terms of achievable performance gains. Earlier work in this area
(mainly prior to 2007) [35]–[42] involved devising methods to
map the registration problem onto a graphics pipeline that was
not specifically designed for general-purpose computing. The
GPU landscape has since gone through a seismic change with
the introduction of native general-purpose computing capabili-
ties in late 2006. The GPU registration literature prior to 2007
has been superseded from both hardware and software perspec-
tives. We will focus on the latest technology for general-purpose
computing on GPUs in this section.

The modern software platforms for general-purpose pro-
gramming on the GPU are currently NVIDIA’s CUDA [43] and
AMD/ATI’s Brook+ [44]. These platforms are vendor-specific,
however, OpenCL compliant implementations that provide
hardware-independence are being gradually released by the ven-
dors. This essentially invalidates the only remaining argument
in favor of using the graphics pipeline for general-purpose pro-
gramming, which has been better portability.

None of the papers we considered for this survey developed their
methods for ATI Brook+. It appears that the research community
has almost exclusively adopted CUDA as their preferred GPU plat-
form. This is likely to change with wider support for OpenCL in
non-GPU architectures such as IBM’s Cell/BE and Intel’s Larrabee.

Modern GPUs extend the single instruction multiple data
(SIMD) paradigm to a single instruction multiple threads

 architecture (SIMT). SIMT provides more flexibility by parallel-
ism for (almost) independent threads as well as data-parallel
code. GPUs achieve their computational performance by dedi-
cating more transistors to their arithmetic logic units (ALUs)
for data processing, at the expense of reduced flow control and
data caching. They extend the conventional thread-level paral-
lelism by introducing two additional layers of parallelism in the
form of closely knit groups of threads known as warps or wave-
fronts, and groups of warps/wavefronts known as thread blocks
or simply blocks. Warps are significant since they define the
unit of flow control in a GPU. Threads in a warp are bound to
execute the same instruction (on different data). Diverging
paths of execution for threads in a warp result in serial execu-
tion of all paths. Hence, an important consideration in adapting
parallel code to GPU architecture is minimizing diversion in
warps. This can be achieved by designing warp-aware algo-
rithms and reorganizing data to optimize flow control. An
example of such an approach is given in [33].

Another notable technical feature in the current generation
of GPUs is the availability of an abundance of high bandwidth
on-board RAM. The memory bandwidth of top-of-the-line
GPUs exceeds 140 GB/s and cards with up to 4 GB of memory
are available. This is particularly important for medical image
analysis applications that have to deal with large 3-D data sets.
Despite an extremely high bandwidth, the GPU’s main memory
is largely uncached and suffers from a rather large latency.
Hence to fully utilize the bandwidth and achieve an optimal
performance, one needs to understand the hardware architec-
ture and its various memory and limited caching models.
Optimum use of memory such as coalesced transfers may
speed up an application by an order of magnitude. This level of
flexibility is typically available with lower-level APIs and run-
time SDKs such as CUDA (NVIDIA) [43] and CAL (ATI/AMD)
[44]. Programs developed with a lower-level API lack portabili-
ty and need to be maintained as the hardware evolves.
Abstraction layers such as OpenCL and Brook+ avoid these
issues by hiding memory management details from the devel-
oper. However, better portability may come at the cost of sub-
optimal performance.

GPUs are well equipped for speeding up geometric transfor-
mations. Geometric transformations (regardless of their type)
require some sort of interpolation that involves reading the con-
tent of adjacent voxels in a cubic region of memory. Standard
computer architectures are designed to optimize sequential
memory access through their caching mechanism. This does
not fully benefit 3-D interpolations over a cubic mesh. Modern
GPUs, on the other hand, support a 3-D texture addressing
mode that takes the geometric locality into account for caching
purposes. This greatly improves the efficiently of transforma-
tions on the GPU.

Different MI computation methods on the GPU have been
reported in the literature. Shams et al. compute MI by comput-
ing joint histograms on the GPU in [21], [29], and [33]. A main
finding is that for different sized histograms (number of bins
used for MI computation), the optimal algorithm differs. For bin

IEEE SIGNAL PROCESSING MAGAZINE [57] MARCH 2010

ranges typical in MI computation (100 3 100 and above) an
efficient histogram computation algorithm specifically designed
for massively multiprocessing architectures is presented in [33].
The paper describes a new method for histogram computation
(sort and count) that removes the need for synchronization or
atomic operations, based on sorting chunks of data with a paral-
lel sort algorithm such as bitonic sort. Lin and Medioni [30]
report an adaptation of Viola’s MI computation approach [8].
Their method approximates the joint pmf by stochastic sam-
pling of the image intensities and using Parzen windowing. This
method lends itself well to parallelization on the GPU, reduces
the computational burden of transformations by only using a
subset of image data, and provides analytic equations for com-
putation of MI derivatives. However, sparse sampling of the data
set may compromise accuracy of the registration [37]. A sam-
pling method specifically designed for the GPU is given by
Shams and Barnes [29]. This method samples the bin space for
computing histograms rather than the intensity space. The
method improves performance of computations and is subject
to the same trade off between performance and accuracy. We
note that a majority of researchers use direct computation of
the histogram [3].

A natural extension to parallelization of registration algo-
rithms on the GPU is horizontal parallelization across multiple
GPUs. Multi-GPU systems belong to DM class of parallel archi-
tectures. An implementation on such systems involves data par-
titioning and the use of MPI as discussed in the section
“Multiprocessing with Distributed Memory.” We recommend
the reader to refer to a more detailed discussion of the subject
by Plishker et al. [45].

CELL BROADBAND ENGINE
Cell broadband engine (Cell/BE) is an asymmetric heteroge-
neous multicore processor with a DM architecture. It comprises
a general-purpose PowerPC core known as a PPE and eight spe-
cialized vector processing cores known as SPEs. Each SPE is
equipped with a four-way SIMD engine and has its own small
(uncached) memory known as the local storage. Local storage
is only 256 KB in the current generation of hardware, and it is
shared between data and kernel instructions.

Optimal implementation of registration algorithms on
Cell/BE architectures involves task-level parallelization, data
partitioning, and vectorization of the code for the SPEs’
SIMD engine. It also involves handling the transfer of data
between the system memory and SPEs’ local storage. The
results by Ohara et al. [46], [47] and Rohrer and Gong [48]
provide good insight into challenges involved in designing
registration on this architecture for collinear and deformable
registration, respectively.

FIELD PROGRAMMABLE GATE ARRAYS
A custom field programmable gate array (FPGA) accelerator
prototype for MI-based rigid registration is given by Castro-
Pareja et al. in [7]. They argue that a major bottleneck in MI
computation using Collignon’s method [9] is partial volume

(PV) interpolation and that it is memory bound. They improve
performance by parallelizing access to memory and assigning
independent memory controllers and types of memory for stor-
age and access to the fixed image, the moving image, and the
joint histogram. A cubic addressing scheme is used for the mov-
ing image to speed up the interpolation. This is similar to cach-
ing available in GPUs for access to texture memory. An enhanced
version of [7] is presented in [49] and a multirigid version with
volume subdivisions is given by Dandekar [50].

FPGAs allow one to design customized hardware for spe-
cific registration tasks. However, they provide less flexibility
compared to software-based implementations. With flexible
general-purpose programming capabilities of modern GPUs, it
is doubtful if FPGA-based implementations present any real
benefit in this area.

SUMMARY OF THE LITERATURE
We have summarized existing contributions in HPC of regis-
tration methods in Table 4. The table serves as a quick refer-
ence to an array of methods on various platforms and by
different groups.

Researchers have used various methods to present their per-
formance results. All groups report at least the speedup results
compared to a single-core CPU implementation. When inter-
architecture comparisons are drawn, it is not always clear how
well the CPU implementation has been optimized, if the
streaming SIMD extensions (SSE) instruction set has been
used, whether the code has been compiled as 64- or 32-b, or if
64- or 32-b floating point operations have been used. For these
reasons, speedup results should be interpreted with caution,
more so when the reported speedups are in the order of a hun-
dred times or more.

Most groups report their speedups for the entire registra-
tion algorithm and for specific data sets. Comparison of dif-
ferent results is further complicated as authors may have
implemented a multiresolution scheme to further speed up
the process and used different convergence criteria. We have
reported/estimated the results for the finest resolution in
Table 4, whenever possible. As discussed earlier, the execu-
tion time is an almost linear function of the number of itera-
tions of the optimization algorithm. Convergence criteria
are most commonly based on the value of the measure and
its relative improvement in a given step of the optimization.
A less common approach is to set a fixed number of itera-
tions as the convergence criterion. We call the former strat-
egy dynamic convergence and the latter static convergence.
Lack of associativity for floating point operations have the
inevitable consequence that the same optimization algo-
rithm operating on the same data set converges with differ-
ent number of iterations on different architectures when
dynamic convergence is employed. Even on the same archi-
tecture, compiler optimization of floating point operations
results in variations. Unless experiments are performed on a
large set of images, this skews the performance results one
way or the other.

IEEE SIGNAL PROCESSING MAGAZINE [58] MARCH 2010

[T
A

B
LE

 4
]

SU
M

M
A

RY
 O

F
H

IG
H

-P
ER

FO
R

M
A

N
C

E
IM

A
G

E
R

EG
IS

TR
A

TI
O

N
 M

ET
H

O
D

S
IN

 T
H

E
LI

TE
R

A
TU

R
E.

TR
A

N
SF

O
R

M
M

EA
S.

O
P

TI
M

IZ
ER

H
A

R
D

W
A

R
E

Y
EA

R
PE

R
F.

1

C
O

M
M

EN
TS

G
R

O
U

P
CPU

COLLINEAR

SI
M

IL
.

N
M

L
PO

W
EL

L
2
3

SU
N

 E
N

T.
 5

00
0

(2

3

 8
 U

LT
RA

SP
A

RC

I 1
67

 M
H

Z)

19
98

–
SM

P
C

LU
ST

ER
, F

EA
TU

RE
 B

A
SE

D

W
A

RF
IE

LD
 [2

0]

A
FF

IN
E

M
I

G
EN

ET
IC

PC

 C
LU

ST
ER

 (1
0
3

 2
 P

EN
TI

U
M

 II
I

55
0

M
H

Z)

20
01

–
D

M
, M

I I
S

G
RA

D
IE

N
T

BA
SE

D

BU
TZ

 [1
8]

RI
G

ID

LL
C

?

PC
 C

LU
ST

ER
 (1

0
3

 2
 P

EN
TI

U
M

 II
I

93
3

M
H

Z)

20
02

–
BL

O
C

K
 M

A
TC

H
IN

G
 W

IT
H

 L
O

C
A

L
LI

N
EA

R
C

O
RR

EL
A

TI
O

N
 M

EA
SU

RE
 (L

LC
)

O
U

RS
EL

IN
 [2

7]

RI
G

ID

M
I,

N
M

I
D

IR
EC

T,
 M

D
S

SG
I A

LT
IX

 3
00

0
(2

0
IT

A
N

IU
M

 II
 1

.3
 G

H
Z)

20

06
–

D
M

S
(N

U
M

A
FL

EX
)

W
A

C
H

O
W

IA
K

 [1
9]

RI

G
ID

M

I
PO

W
EL

L
SU

N
 S

PA
RC

 T
51

20
 (8

3

 U
LT

RA
SP

A
RC

 T
2

1.
2

G
H

Z)

20
09

47
.7

SM
P,

 S
O

LA
RI

S
SH

A
M

S2

RI
G

ID

M
I

PO
W

EL
L

IN
TE

L
Q

66
00

 (P
EN

TU
IM

 C
O

RE
 2

 Q
U

A
D

2.

4
G

H
Z,

 F
O

U
R

C
O

RE
S)

20

09
15

.8
SM

P,
 6

4-
B

LI
N

U
X

SH

A
M

S2

RI
G

ID

M
I

PO
W

EL
L

IN
TE

L
C

O
RE

 I7
 9

20
 (Q

U
A

D
 2

.6
6

G
H

Z,

EI
G

H
T

TH
RE

A
D

S)

20
09

13
.2

SM
P,

 6
4-

B
W

IN
D

O
W

S
V

IS
TA

SH

A
M

S2

RI
G

ID

M
I

PO
W

EL
L

SU
N

FI
RE

 X
46

00
 M

2
(8

3

 2
 O

PT
ER

O
N

2.

6
G

H
Z)

20

09
10

.5
N

U
M

A
, 6

4-
B

LI
N

U
X

SH
A

M
S2

DEF.

B-
SP

LI
N

E
N

M
I

G
RA

D
. D

ES
C

. (
D

)
SG

I O
RI

G
IN

 3
80

0
(1

28
 M

PI
S

12
K

)
20

03
–

SM
P,

 M
A

X
. C

PU
S

U
SE

D
: 6

4
RO

H
LF

IN
G

 [2
4]

B-
SP

LI
N

E
N

M
I

G
RA

D
. D

ES
C

. (
D

)
PC

 C
LU

ST
ER

 (6
4
3

 2
 P

EN
TI

U
M

 II
I 1

G
H

Z)

20
05

–
D

M
 (M

Y
RI

N
ET

)
IN

O
 [2

6]

GPU

COLLINEAR

RI
G

ID

SS
D

SI

M
PL

EX

G
EF

O
RC

E
68

00

20
06

98
.0

C
O

D
ED

 IN
 O

PE
N

G
L

A
N

D
 G

LS
L

K
Ö

H
N

 [5
1]

RI

G
ID

SS

D

G
RA

D
. D

ES
C

. (
B)

G

EF
O

RC
E

68
00

20

06
85

8
C

O
D

ED
 IN

 O
PE

N
G

L
A

N
D

 G
LS

L
K

Ö
H

N
3 [5

1]

RI
G

ID

G
C

?

Q
U

A
D

RO
 F

X
 1

40
0,

 F
X

 3
40

0,
 G

TX
 7

80
0

20
06

–
2-

D
/3

-D
 R

EG
IS

TR
A

TI
O

N

IN
O

 [3
8]

RI

G
ID

VA

RI
O

U
S

C
U

ST
O

M

G
EF

O
RC

E
68

00
 G

T
20

06
–

VA
RI

O
U

S
M

EA
SU

RE
S

(E
.G

.,
SS

D
, C

C
, G

C
)

K
H

A
M

EN
E3 [3

7]
RI

G
ID

VA

RI
O

U
S

A
RS

 +
 B

N

G
EF

O
RC

E
78

00
 G

S
20

08
–

2-
D

/3
-D

, V
A

RI
O

U
S

M
EA

SU
RE

S
(E

.G
.,

SS
D

, C
C

, G
C

),
A

D
A

PT
IV

E
RA

N
D

O
M

 S
EA

RC
H

 +
 B

ES
T

N
EI

G
H

BO
R

K
U

BI
A

S
[4

2]

RI
G

ID

M
I

SI
M

PL
EX

G

TX
 8

80
0

(1
6

M
P/

 1
28

 C
O

RE
S)

20

07
6.

17
C

U
D

A
 1

.0
 (N

O
 S

U
PP

O
RT

 F
O

R
3-

D
 T

EX
TU

RE
S)

,
M

I E
ST

IM
A

TE
D

 B
Y

 B
IN

 S
A

M
PL

IN
G

SH

A
M

S
[2

9]

RI
G

ID

SS
D

SI

M
PL

EX

G
TX

 8
80

0
(1

6
M

P/
 1

28
 C

O
RE

S)

20
08

6.
05

C
U

D
A

 2
.0

PL

IS
H

K
ER

3 [3
1]

A

FF
IN

E
M

I
G

RA
D

. D
ES

C
. (

A
)

G
TX

 8
80

0
(1

6
M

P/
 1

28
 C

O
RE

S)

20
08

–
M

I E
ST

IM
A

TE
D

 B
Y

 S
A

M
PL

IN
G

LI

N
 [3

0]

RI
G

ID

M
I

PO
W

EL
L

G
TX

 2
80

 (3
0

M
P/

 2
40

 C
O

RE
S)

20

09
4.

06
C

U
D

A
 2

.0
, U

SI
N

G
 3

-D
 T

EX
TU

RE
S,

 M
I C

O
M

PU
TE

D

U
SI

N
G

 B
IT

O
N

IC
 S

O
RT

 A
N

D
 C

O
U

N
T

SH
A

M
S

[3
3]

DEFORMABLE

BE
ZI

ER

M
I

PO
W

EL
L

G
EF

O
RC

E3
 6

4
M

B
20

02
–

SO
ZA

 [3
5]

N

O
N

-P
A

R.

SS
D

G

RA
D

. D
ES

C
.

G
EF

O
RC

E
FX

 5
80

0
U

LT
RA

20

04
–

2-
D

/2
-D

, M
U

LT
IG

RI
D

 S
O

LV
ER

 U
SE

D

ST
RZ

O
D

K
A

 [3
6]

N

O
N

-P
A

R.

SS
D

G

RA
D

. D
ES

C
. (

B)

G
EF

O
RC

E
68

00

20
06

46
5

C
O

D
ED

 IN
 O

PE
N

G
L

A
N

D
 G

LS
L

K
Ö

H
N

3 [5
1]

N

O
N

-P
A

R.

M
I +

 K
L

G
RA

D
. D

ES
C

. (
C

)
G

TX
 7

80
0

20
07

28
60

C
O

M
BI

N
ED

 M
I A

N
D

 K
U

LL
BA

C
K

-L
EI

BL
ER

 M
EA

SU
RE

,
C

O
D

ED
 IN

 O
PE

N
G

L
A

N
D

 G
LS

L
V

ET
TE

R3 [3
9]

N
O

N
-P

A
R.

M

I +
 K

L
G

RA
D

. D
ES

C
. (

C
)

G
TX

 8
80

0
U

LT
RA

 (1
6

M
P/

12
8

C
O

RE
S)

20

08
32

4
C

O
M

BI
N

ED
 M

I A
N

D
 K

U
LL

BA
C

K
-L

EI
BL

ER
 M

EA
SU

RE
,

C
O

D
ED

 IN
 O

PE
N

G
L

A
N

D
 G

LS
L

FA
N

3 [4
0]

D
EM

O
N

S
SS

D

IT
ER

A
TI

V
E

Q
U

A
D

RO
 F

X
 1

40
0

20
07

10
50

C
O

D
ED

 IN
 C

G
, P

U
BL

IS
H

ED
 IN

 2
00

8
C

O
U

RT
Y

 [4
1]

D

EM
O

N
S

SS
D

IT

ER
A

TI
V

E
G

TS
 8

80
0

(1
2

M
P/

96
 C

O
RE

S)

20
07

11
.7

C
O

D
ED

 IN
 B

RO
O

K
, S

SD
 E

X
C

LU
D

ED
 IN

PE

RF
O

RM
A

N
C

E
RE

SU
LT

S
SH

A
RP

3 [2
8]

D
EM

O
N

S
C

C

IT
ER

A
TI

V
E

Q
U

A
D

RO
 F

X
 5

60
0

(1
6

M
P/

12
8

C
O

RE
S)

20

08
9.

25
C

U
D

A
 0

.9

Ö
ZÇ

EL
IK

 [3
2]

B-

SP
LI

N
E

SS
D

G

RA
D

. D
ES

C
. (

C
)

G
TX

 8
80

0
(1

6
M

P/
 1

28
 C

O
RE

S)

20
08

37
10

C
U

D
A

 2
.0

PL

IS
H

K
ER

3 [3
1]

PO

LY
N

O
M

.
M

I
EX

H
A

U
ST

IV
E

Q
U

A
D

RO
 F

X
 5

60
0

(1
6

M
P/

12
8

C
O

RE
S)

20

09
–

2-
D

/2
-D

, U
LT

RA
 L

A
RG

E
2-

D
 IM

A
G

ES

RU
IZ

 [3
4]

OTHER
 ACCELERATORS

COLLINEAR

RI
G

ID

M
I

N
/A

FP

G
A

 (2

3

 A
LT

ER
A

 1
K

10
0

80
 M

H
Z)

20

03
10

1
M

I P
A

RT
IA

LL
Y

 C
O

M
PU

TE
D

 IN
 H

/W

PA
RE

JA
 [7

]
RI

G
ID

M

I
N

/A

FP
G

A
 (1

3

 A
LT

ER
A

 E
P1

S4
0

20
0

M
H

Z)

20
04

20
.0

M
I F

U
LL

Y
 C

O
M

PU
TE

D
 IN

 H
/W

PA

RE
JA

 [4
9]

A
FF

IN
E

M
I

G
RA

D
. D

ES
C

.
Q

S2
0

(2

3

 C
EL

L/
BE

.:
2
3

 1
 P

PE
 A

N
D

EI

G
H

T
SP

E S
)

20
07

98
.8

M
I E

ST
IM

A
TE

D
 B

Y
 S

A
M

PL
IN

G

O
H

A
RA

3 [4
7]

DEF.

M
U

LT
IR

IG
ID

M
I

SI
M

PL
EX

FP

G
A

 (1
 X

 A
LT

ER
A

 E
P2

S1
80

 2
00

 M
H

Z)

20
07

13
.4

M
I F

U
LL

Y
 C

O
M

PU
TE

D
 IN

 H
/W

D

A
N

D
EK

A
R3 [5

0]
B-

SP
LI

N
E

M
I

G
RA

D
. D

ES
C

.
Q

S2
0

(2

3

 C
EL

L/
BE

.:
2
3

 1
 P

PE
 A

N
D

EI

G
H

T
SP

E)

20
08

66
.9

M
I E

ST
IM

A
TE

D
 B

Y
 S

A
M

PL
IN

G

RO
H

RE
R

[4
8]

1 N
or

m
al

iz
ed

 p
er

fo
rm

an
ce

 in
 m

ill
is

ec
on

ds
 p

er
 m

eg
a

vo
xe

l p
er

 it
er

at
io

n
(m

s/
M

Vo
xe

l/i
tr

).
2 P

re
vi

ou
sl

y
un

pu
bl

is
he

d
re

su
lt.

 3 A
dd

iti
on

al
 in

fo
rm

at
io

n
pr

ov
id

ed
 b

y
th

e
au

th
or

s
us

ed
 t

o
co

m
pl

et
e

th
e

ta
bl

e
or

 t
o

co
m

pu
te

 n
or

m
al

iz
ed

 p
er

fo
rm

an
ce

 r
es

ul
ts

.

IEEE SIGNAL PROCESSING MAGAZINE [59] MARCH 2010

We have given normalized performance results in Table 4
where possible. The word “performance” is ambiguous in the
context of registration. It is sometimes used to refer to the
degree of success for a registration algorithm based on accuracy
of the registration results. In this article, we use “performance”
in its computational capacity referring to execution efficiency of
the registration algorithm. The purpose of normalizing the
reported results is to give the reader an indication of the speed-
ups expected from a method without dependence on the size of
images involved, convergence criteria, use of a multiresolution
scheme, and to some extent the type of optimization algorithm.
Normalized results are given in terms of average execution time
in milliseconds for a single iteration of the optimization algo-
rithm and for processing 1,000,000 voxel pairs (ms/MVoxel/itr).

Many authors have used gradient descent as their optimiza-
tion algorithm, largely due to its simple structure and ease of
implementation. Once the gradient is computed, the choices
include taking a single step in a direction opposite to the gradi-
ent where the step size may be adjusted over time, or use of a
line minimization algorithm such as Brent’s [12]. Line minimi-
zation usually involves several computations of the cost func-
tion alone without its derivatives.

When comparing results it is important to identify which
variation of the gradient descent is used. We have come across
four different implementations:

Type A: closed-form differentiation with a single step. ■

Type B: closed-form differentiation with line minimization. ■

Type C: numerical differentiation with a single step. ■

Type D: numerical differentiation with line minimization. ■

Most authors exclude initialization time, including disk IO
and loading data from host memory to GPU memory. This is a
reasonable practice since initialization time is typically a small
fraction of the registration task. Initialization occurs at the
beginning of the registration algorithm whereas the optimiza-
tion loop is executed several times.

Some of the information presented in Table 4 were not
immediately available in the original manuscripts and were pro-
vided by the authors of the respective papers. Unless specifically
specified, listed methods are for 3-D/3-D registration.

FINAL WORDS
Over the last decade, a rich and diverse literature on HPC of
medical image registration has emerged. Research in this area
continues to be motivated by the need to minimize the overhead
of image registration that is used as an integral part of image-
guided intervention and IGT systems. The continued research in
this area will also facilitate the adaption of existing preoperative
tools to real-time intraoperative environments.

From a technical perspective, there has been a gradual shift
away from expensive SMP supercomputers to less expensive
clusters of commodity computers and more recently inexpen-
sive massively multiprocessing GPUs. This trend has the poten-
tial to lead to more widespread use of medical imaging tools in
everyday clinical practice by making them affordable outside of
research facilities and expensive operating theaters.

ACKNOWLEDGMENTS
We would like to thank Prof. Alistair Rendell for making staff
and computational resources available for our experiments. We
would also like to thank Ahmed El Zein and Benjamin Murphy
for their efforts in porting the original code to Solaris, Linux,
and its adaptation to Brook+.

We also thank many authors, whose work we have referred
in this article, for providing additional information and for
clarification of their results.

AUTHORS
Ramtin Shams (ramtin.shams@anu.edu.au) is an Australian
postdoctoral Fellow in the College of Engineering and
Computer Science at the Australian National University (ANU).
He received his B.E. and M.E. degrees in electrical engineering
from Sharif University of Technology, Tehran, and completed
his Ph.D. degree at ANU in 2009 with a thesis in medical image
registration. He was the recipient of a Fulbright scholarship in
2008. He has more than ten years of industry experience in the
ICT sector and worked as the CTO of GPayments Pty. Ltd
between 2001 to 2007. His research interests include medical
image analysis, HPC, and wireless communications.

Parastoo Sadeghi (parastoo.sadeghi@anu.edu.au) is a
Fellow (senior lecturer) at the Research School of Information
Sciences and Engineering at ANU. She received her B.E. and
M.E. degrees in electrical engineering from Sharif University
of Technology, Tehran, and her Ph.D. degree in electrical engi-
neering from The University of New South Wales in Sydney, in
2006. In 2003 and 2005, she received two IEEE Region 10
Paper Awards for her research in the information theory of
time-varying fading channels. Her research interests include
applications of signal processing, information theory, and HPC
in telecommunications and medical image analysis.

Rodney A. Kennedy (rodney.kennedy@anu.edu.au) received
his B.E. degree from the University of New South Wales,
Australia, his M.E degree from the University of Newcastle, and
his Ph.D. degree from ANU. For three years, he worked for the
Commonwealth Scientific and Industrial Research
Organization on the Australia Telescope Project. He is cur-
rently a professor and director of research at the College of
Engineering and Computer Science at the ANU. His research
interests are in the fields of signal processing, digital and wire-
less communications, and acoustical signal processing.

Richard I. Hartley (richard.hartley@anu.edu.au) is a mem-
ber of the computer vision group in the College of Computer
Science and Engineering at ANU. He also belongs to the
Vision Science Technology and Applications Program in
National ICT Australia. He graduated from the University of
Toronto in 1976 with a thesis in knot theory and worked in
this area for several years before joining the General Electric
Research and Development Center, where he worked from
1985 to 2001. In 1991, he was awarded GE’s Dushman Award
for this work. In 2000, he coauthored a book on multiple view
geometry. He has authored close to 200 scholarly papers and
holds 32 U.S. patents.

IEEE SIGNAL PROCESSING MAGAZINE [60] MARCH 2010

REFERENCES
[1] L. G. Brown, “A survey of image registration techniques,” ACM Comput. Surv.,
vol. 24, no. 4, pp. 325–376, Dec. 1992.

[2] J. B. A. Maintz and M. A. Viergever, “A survey of medical image registration,”
Med. Image Anal., vol. 2, no. 1, pp. 1–36, 1998.

[3] J. P. W. Pluim, J. B. A. Maintz, and M. A. Viergever, “Mutual-information-based
registration of medical images: A survey,” IEEE Trans. Med. Imag., vol. 22, no. 8,
pp. 986–1004, Aug. 2003.

[4] J. Modersitzki, Numerical Methods for Image Registration. New York: Oxford
Univ. Press, 2004.

[5] D. Rueckert, L. I. Sonoda, C. Hayes, D. L. G. Hill, M. O. Leach, and D. J.
Hawkes, “Nonrigid registration using free-form deformations: Application to breast
MR images,” IEEE Trans. Med. Imag., vol. 18, no. 8, pp. 712–721, Aug. 1999.

[6] T. M. Lehmann, C. Gönner, and K. Spitzer, “Survey: Interpolation methods
in medical image processing,” IEEE Trans. Med. Imag., vol. 18, no. 11, pp. 1049–
1075, Nov. 1999.

[7] C. R. Castro-Pareja, J. M. Jagadeesh, and R. Shekhar, “FAIR: A hardware ar-
chitecture for real-time 3-D image registration,” IEEE Trans. Inform. Technol.
Biomed., vol. 7, no. 4, pp. 426–434, Dec. 2003.

[8] P. Viola and W. M. Wells, III, “Alignment by maximization of mutual informa-
tion,” in Proc. Int. Conf. Computer Vision (ICCV), June 1995, pp. 16–23.

[9] A. Collignon, F. Maes, D. Delaere, D. Vandermeulen, P. Suetens, and G. Mar-
chal, “Automated multimodality medical image registration using information
theory,” in Proc. Int. Conf. Information Processing in Medical Imaging: Com-
putational Imaging and Vision 3, Apr. 1995, pp. 263–274.

[10] C. Studholme, D. L. G. Hill, and D. J. Hawkes, “An overlap invariant entropy
measure of 3D medical image alignment,” Pattern Recognit., vol. 32, no. 1, pp.
71–86, 1999.

[11] A. Roche, G. Malandain, X. Pennec, and N. Ayache, “The correlation ratio
as a new similarity measure for multimodal image registration,” in Proc. Medical
Image Computing and Computer Assisted Intervention (MICCAI), Oct. 1998,
pp. 1115–1124.

[12] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical
Recipes: The Art of Scientific Computing, 3rd ed. Cambridge, U.K.: Cambridge
Univ. Press, 2007.

[13] J. A. Nedler and R. Mead, “A simplex method for function minimization,” Com-
put. J., vol. 7, no. 4, pp. 308–331, 1965.

[14] R. Shams, R. A. Kennedy, P. Sadeghi, and R. Hartley, “Gradient intensity-
based registration of multi-modal images of the brain,” in Proc. IEEE Int. Conf.
Computer Vision (ICCV), Rio de Janeiro, Brazil, Oct. 2007.

[15] J. E. Dennis, Jr. and V. Torczon, “Direct search methods on parallel machines,”
SIAM J. Optim., vol. 1, no. 4, pp. 448–474, 1991.

[16] D. R. Jones, C. D. Perttunen, and B. E. Stuckman, “Lipschitzian optimiza-
tion without the Lipschitz constant,” J. Optim. Theory Appl., vol. 79, no. 1, pp.
157–181, 1993.

[17] E. Cantú-Paz, “A survey of parallel genetic algorithms,” Calculateurs Paral-
leles, vol. 10, no. 2, pp. 141–171, 1998.

[18] T. Butz and J-P. Thiran, “Affine registration with feature space mutual infor-
mation,” in Proc. Medical Image Computing and Computer Assisted Interven-
tion (MICCAI), 2001, pp. 549–556.

[19] M. P. Wachowiak and T. M. Peters, “High-performance medical image registra-
tion using new optimization techniques,” IEEE Trans. Inform. Technol. Biomed.,
vol. 10, no. 2, pp. 344–353, Apr. 2006.

[20] S. Warfield, F. Jolesz, and R. Kikinis, “A high performance computing ap-
proach to the registration of medical imaging data,” Parallel Comput., vol. 24, no.
9-10, pp. 1345–1368, Sept. 1998.

[21] R. Shams and R. A. Kennedy, “Efficient histogram algorithms for NVIDIA
CUDA compatible devices,” in Proc. Int. Conf. Signal Processing and Communi-
cations Systems (ICSPCS), Gold Coast, Australia, Dec. 2007, pp. 418–422.

[22] (2009). OpenMP application programming interface, version 3.0, OpenMP
[Online]. Available: http://openmp.org/wp/openmp-specifications/

[23] B. Chapman, G. Jost, and R. van der Pas, Using OpenMP: Portable Shared
Memory Parallel Programming. Cambridge, MA: MIT Press, 2008.

[24] T. Rohlfing and C. R. Maurer, Jr., “Nonrigid image registration in shared-
memory multiprocessor environments with application to brains, breasts, and
bees,” IEEE Trans. Inform. Technol. Biomed., vol. 7, no. 1, pp. 16–25, Mar. 2003.

[25] E. Lusk W. Gropp, and A. Skjellum, Using MPI: Portable Parallel
Programming with the Message Passing Interface, 2nd ed. Cambridge, MA: MIT
Press, 1999.

[26] F. Ino, K. Ooyama, and K. Hagihara, “A data distributed parallel algorithm
for nonrigid image registration,” Parallel Comput., vol. 31, no. 1, pp. 19–43, Jan.
2005.

[27] S. Ourselin, R. Stefanescu, and X. Pennec, “Robust registration of multi-
modal images: Towards real-time clinical applications,” in Proc. Medical Image
Computing and Computer Assisted Intervention (MICCAI), 2002, pp. 140–147.

[28] G. C. Sharp, N. Kandasamy, H. Singh, and M. Folkert, “GPU-based streaming
architectures for fast cone-beam CT image reconstruction and demons deformable
registration,” Phys. Med. Biol., vol. 52, no. 19, pp. 5771–5783, 2007.

[29] R. Shams and N. Barnes, “Speeding up mutual information computation
using NVIDIA CUDA hardware,” in Proc. Digital Image Computing: Techniques
and Applications (DICTA), Adelaide, Australia, Dec. 2007, pp. 555–560.

[30] Y. Lin and G. Medioni, “Mutual information computation and maximization
using GPU,” in Proc. IEEE Computer Vision and Pattern Recognition (CVPR)
Workshops, June 2008, pp. 1–6.

[31] W. Plishker, O. Dandekar, S. S. Bhattacharyya, and R. Shekhar, “Towards
systematic exploration of tradeoffs for medical image registration on heteroge-
neous platforms,” in Proc. IEEE Biomedical Circuits and Systems Conf., Nov.
2008, pp. 53–56.

[32] P. Muyan-Özçelik, J. D. Owens, J. Xia, and S. S. Samant, “Fast deformable
registration on the GPU: A CUDA implementation of demons,” in Proc. Int. Conf.
Computational Science and Its Applications (ICCSA), 2008, pp. 5–8.

[33] R. Shams, P. Sadeghi, R. A. Kennedy, and R. Hartley, “Parallel computation
of mutual information on the GPU with application to real-time registration of 3D
medical images,” Comput. Meth. Programs Biomed., to be published.

[34] A. Ruiz, M. Ujaldon, L. Cooper, and K. Huang, “Non-rigid registration for
large sets of microscopic images on graphics processors,” J. Signal Process. Syst.,
vol. 55, no. 1-3, pp. 229–250, Apr. 2009.

[35] G. Soza, M. Bauer, P. Hastreiter, C. Nimsky, and G. Greiner, “Non-rigid
registration with use of hardware-based 3D Bézier functions,” in Proc. Medical
Image Computing and Computer Assisted Intervention (MICCAI), 2002, pp.
549–556.

[36] R. Strzodka, M. Droske, and M. Rumpf, “Image registration by a regularized
gradient flow. A streaming implementation in DX9 graphics hardware,” Comput-
ing, vol. 73, no. 4, pp. 373–389, Nov. 2004.

[37] A. Khamene, R. Chisu, W. Wein, N. Navab, and F. Sauer, “A novel projec-
tion based approach for medical image registration,” in Proc. 3rd Int. Workshop
Biomedical Image Registration (WBIR), Utrecht, The Netherlands, June 2006,
pp. 247–256.

[38] F. Ino, J. Gomita, Y. Kawasaki, and K. Hagihara, “A GPGPU approach for
accelerating 2-D/3-D rigid registration of medical images,” in Proc. Parallel and
Distributed Processing and Applications, Feb. 2006, pp. 939–950.

[39] C. Vetter, C. Guetter, C. Xu, and R. Westermann, “Non-rigid multi-modal
registration on the GPU,” in Proc. SPIE Medical Imaging: Image Processing,
Feb. 2007, pp. 651228-1–651228-8.

[40] Z. Fan, C. Vetter, C. Guetter, D. Yu, R. Westermann, A. Kaufman, and C.
Xu, “Optimized GPU implementation of learning-based non-rigid multi-modal
registration,” in Proc. SPIE Medical Imaging: Image Processing, 2008.

[41] N. Courty and P. Hellier, “Accelerating 3D non-rigid registration using graph-
ics hardware,” Int. J. Image Graph., vol. 8, no. 1, pp. 1–18, Jan. 2008.

[42] A. Kubias, F. Deinzer, T. Feldmann, S. Paulus, D. Paulus, B. Schreiber, and T.
Brunner, “2D/3D image registration on the GPU,” Pattern Recognit. Image Anal.,
vol. 18, no. 3, pp. 381–389, Sept. 2008.

[43] (2009). Compute unified device architecture (CUDA) programming guide,
version 2.2, NVIDIA [Online]. Available: http://developer.nvidia.com/object/
cuda.html

[44] (2009). ATI stream computing user guide, version 1.4.0.a, ATI [Online].
Available: http://developer.amd.com/

[45] W. Plishker, O. Dandekar, S. S. Bhattacharyya, and R. Shekhar, “Utilizing hi-
erarchical multiprocessing for medical image registration,” IEEE Signal Process-
ing Mag., vol. 27, no. 2, pp. 62–68, Mar. 2010.

[46] M. Ohara, H. Yeo, F. Savino, G. Iyengar, L. Gong, H. Inoue, H. Komatsu, V.
Sheinin, and S. Daijavad, “Accelerating mutual-information-based linear regis-
tration on the cell broadband engine processor,” in Proc. IEEE Int. Conf. Multi-
media and Expo, 2007, pp. 272–275.

[47] M. Ohara, H. Yeo, F. Savino, G. Iyengar, L. Gong, H. Inoue, H. Komatsu,
V. Sheinin, S. Daijavad, and B. Erickson, “Real-time mutual-informatoin-based
linear registration on the cell broadband engine processor,” in Proc. IEEE Int.
Symp. Biomedical Imaging (ISBI), 2007, pp. 33–36.

[48] J. Rohrer and L. Gong, “Accelerating mutual information based 3D non-rigid
registration using the cell/B.E. processor,” in Proc. Workshop on Cell Systems
and Applications (WCSA), 2008, pp. 32–40.

[49] C. R. Castro-Pareja, J. M. Jagadeesh, and R. Shekhar, “FPGA-based accelera-
tion of mutual information calculation for real-time 3D image registration,” in
Proc. SPIE Medical Imaging: Image Processing, 2008, pp. 212–219.

[50] O. Dandekar and R. Shekhar, “FPGA-accelerated deformable image registra-
tion for improved target-delineation during CT-guided interventions,” IEEE Trans.
Biomed. Circuits Syst., vol. 1, no. 2, pp. 116–127, June 2007.

[51] A. Köhn, J. Drexl, F. Ritter, M. König, and H. O. Peitgen, “GPU accelerated
image registration in two and three dimensions,” in Proc. Bildverarbeitung für
die Medizin, 2006, pp. 261–265. [SP]

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

