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Abstract

This paper presents a hybrid algorithm that combines a metaheuristic and
an exact method to solve the Probabilistic Maximal Covering Location-
Allocation Problem. A linear programming formulation for the problem
presents variables that can be partitioned into location and allocation de-
cisions. This model is solved to optimality for small and medium-size in-
stances. To tackle larger instances, a flexible adaptive large neighborhood
search heuristic was developed to obtain location solutions, whereas the al-

location subproblems are solved to optimality. An improvement procedure
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based on an integer programming method is also applied. Extensive com-
putational experiments on benchmark instances from the literature confirm
the efficiency of the proposed method. The exact approach found new best
solutions for 19 instances, proving the optimality for 18 of them. The hybrid
method performed consistently, finding the best known solutions for 94.5%
of the instances and 17 new best solutions (15 of them optimal) for a larger

dataset in one third of the time of a state-of-the-art solver.

Keywords: Facility location, congested systems, hybrid algorithm,
adaptive large neighborhood search, exact method, queueing maximal

covering location-allocation model, PMCLAP.

1. Introduction

Facility location plays an important role in logistic decisions. Each day, many
enterprises resort to quantitative methods to estimate the best or the more
economical way to meet clients” demand for goods or services. In some cases,
the availability of the service can be associated with a time or distance to an
existing facility. In this case, the decision maker has to find the best location

to open the facilities in order to satisfy most of the demand.

The Maximal Covering Location Problem (MCLP) is a facility location prob-
lem which aims to select some location candidates to install facilities, in order
to maximize the total demand of clients that are located within a covering
distance from an existing facility [6]. Examples of this problem appear, for
instance, in the public sector to determine the location of emergency ser-
vices such as fire stations, ambulances, etc. Private companies solve this

problem to locate ATMs or vending machines, branches of a bank, stores of



fast food chains, cellular telephony antennae, etc. A more extensive list of
applications can be found in [13], [15] and [27]. Variations of this problem,
including negative weights and travel time uncertainty, can be found in [4]
and [5]. Solution approaches to the MCLP include greedy heuristics [6, 12],
linear programming relaxation [6], lagrangean relaxation [14], genetic algo-

rithm [1], lagrangean /surrogate heuristic [19] and column generation [23].

In some applications, the number of clients and their associated demand
allocated to a facility may have an impact on the behavior of the system.
Depending on the nature of the service, clients may have to wait to be served.
In such congested systems, the service quality is measured not only by the
proximity to an open facility, but also by a service level, such as the number
of clients in a queue or the waiting times. Under the assumption that the
service requests are constant over time, this aspect can be modeled by simply
adding capacity constraints to the MCLP model. However, this deterministic

approach may yield idle or overloaded servers.

To deal with more realistic scenarios, Marianov and Serra [21] proposed a
model considering the arrival of clients to a facility as a stochastic process de-
pending on the clients’ demands. The authors define a minimum limit on the
quality of service based on the number of clients in the queue or on the max-
imum waiting time. This yields an extension of the MCLP called Queueing
Maximal Covering Location-Allocation Model (QM-CLAM) or Probabilis-
tic Maximal Covering Location-Allocation Problem (PMCLAP). Due to the
complexity of the problem and to the size of real world instances, most re-

search is devoted to the development of heuristic methods [10, 11].



Location-allocation models contain, at least, two types of decision variables:
where to install a facility (location decision) and which clients to serve by the
opened facility (allocation decision). Traditional solution approaches, such
as branch-and-bound algorithms, deal with location and allocation decisions
simultaneously: clients are allocated to a candidate location that is still being
considered for the installation of a facility. However, a hierarchical approach
appears as a natural heuristic algorithm: locate facilities first and, in a second

step, allocate clients to them.

To explore this characteristic of the problem, a new iterative hybrid method
is developed. The location part of the problem is dealt with by an Adaptive
Large Neighborhood Search (ALNS) metaheuristic, and the corresponding
allocation solution is obtained by solving an integer subproblem to optimality.
The ALNS was proposed by Ropke and Pisinger [25] for a class of the vehicle
routing problem, and has since then been employed for a myriad of other
problems, including the vehicle scheduling problem [3, 22], the fixed charged
network flow problem [17]; the stochastic arc routing problem [18], several
classes of vehicle routing problems [26], the inventory-routing problem [7, 8],
and train timetabling [2]. We are aware of only one application of the ALNS
to a problem with a facility location component [16], which is significantly

different from the problem at hand.

The remainder of this paper is organized as follows. Section 2 provides a
formal description and a mathematical formulation for the PMCLAP. The
hybrid ALNS metaheuristic is described in Section 3. The results of extensive
computational results on benchmark instances are presented in Section 4.

Conclusions follow in Section 5.



2. Problem description and mathematical formulation

The MCLP, introduced by Church and ReVelle [6], aims at locating p facilities
among n possible candidates, such that the maximal possible population is
served. However, this problem does not consider capacities or congestion
issues. To overcome this limitation, Marianov and Serra [21] introduced the
PMCLAP, an extension of the MCLP in which a minimum quality on the
service level is imposed, assuming that clients arrive to the facilities according
to a Poisson distribution. The way to measure the demand at a facility is
either counting the number of people waiting for the service, or by measuring

the waiting time for the service.

Formally, the problem is defined on a graph with a set A/ of n nodes. Each
node is associated with a demand d; and a service radius (or covering dis-
tance) S; in case a facility is located at the facility candidate i. Without loss
of generality, a service radius equal to S is considered for all facilities. Let
N be a subset containing the list of nodes within S units of distance from
node i, i.e., the set of location candidates j that can serve client 7. In the
PMCLAP, f; represents the contribution of client ¢ to the system congestion.
This value is calculated as a fraction of the client’s demand. It is assumed
that clients will arrive to a facility according to a Poisson distribution with
parameter rate pu. The parameter o defines the minimum probability of, at

most:

e a queue with b clients, or;

e a waiting time of 7 minutes.



To model the PMCLAP, we define two sets of binary variables: one for
location and another for allocation decisions. Variables y; are equal to one
if and only if location j € N is opened, and variables x;; are equal to one if
and only if the demand of node 7 is associated with facility j, 7,7 € N. The

problem can be formulated as follows:

maximize Z Z d;;j (1)

ieEN jeN;
subject to
JEN;
> yi=p (3)
JEN
xwgy] ieN ]EN (4)
ZfﬂijSMH\/Ql—Oé JjeEN (5)
ieEN
or
1 .
A T
iEN
y],iUUE{O,l} ZGN ]GN (7)

The objective function (1) maximizes the total served demand. Constraints
(2) guarantee that each client is served by at most one facility. Constraint (3)
defines the number of facilities to be opened. Constraints (4) link location
to allocation variables, only allowing clients to be allocated to an opened

facility. Constraints (5) ensure that facility j has less than b clients in the
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queue with at least probability «, and constraints (6) ensure that the waiting
time for service at facility j is at most 7 minutes with probability of at least
a. Constraints (7) define the binary nature of the variables. Obviously, z;;

equals zero for all j ¢ N;.

Constraints (5) and (6) are related to the probabilistic nature of the problem.
For these constraints, Marianov and Serra [21] assume an M /M /1/oo/F1FO
queueing system with service requests occurring at each demand node 7 ac-
cording to a Poisson process with intensity f;. As customers arrive at a
facility 7 from different demand nodes, the request for service at this facility

is the sum of several Poisson processes with intensity \; calculated as:

A= 0 i (8)

eN
According to equation (8), if variable z;; is one, then client 7 is allocated to
facility 7 and the corresponding intensity will be included in the calculation
of A;. In order to maintain the equilibrium of the system, an exponentially
distributed service time with average rate p, where o > A;, is assumed for

all the facilities.

The PMCLAP is NP-hard [24], being harder to solve by exact methods in
reasonable computation times as the size of the instance increases. We eval-

uate the performance of a state-of-the-art solver in Section 4.



3. Hybrid adaptive large neighborhood search algorithm

Considering the location and allocation decisions of the problem separately,
an iterative hybrid method was developed. At each iteration, the location
solution values are obtained by a powerful and flexible ALNS heuristic, in
which an integer subproblem was embedded. This subproblem is then solved
exactly by mathematical programming at each iteration, in order to deter-

mine the optimal allocation solution values and the solution cost.

Figure 1 shows a representation of a location solution for a network with

n = 10 location candidates and p = 3 open facilities.

y+10{1{0(0/1{0|0(0|1]|0

1 2 3 4 5 6 7 8 9 10

Figure 1: Representation of the location variable y.

In general terms, the idea of the ALNS is to iteratively destroy and repair
parts of a solution with the aim of finding better solutions. There are a
number of destroy and repair operators, and they compete to be used at
each iteration. Operators that have performed better in the past have a
higher probability of being used. In our implementation, destroy and repair
mechanisms have been created with the aim of closing and opening facilities,
exploring our knowledge of the problem. As a result, allocation decisions are
not made by the heuristic, which yields an integer problem in which location
decisions are already fixed. This problem is then solved to optimality by
mathematical programming at each iteration. The algorithm can therefore
be described as a matheuristic [20], i.e., as a hybridization of a heuristic and

of a mathematical programming algorithm.
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The hybrid method aims to maximize the demand satisfaction. Facilities are
removed and inserted in the solution at each iteration by means of destroy
and repair operators. A roulette wheel mechanism controls the choice of
the operators, with a probability that depends on their past performance.
More concretely, to each operator r are associated a score 7, and a weight w,
whose values depend on the past performance of the operator. Then, given h

h
operators, operator 7 will be selected with probability wy/ > w,. Initially, all

weights are set to one and all scores are set to zero. The se;éh is divided into
segments of # iterations each, and the weights are computed by taking into
account the performance of the operators during the last segment. At each
iteration, the score of the selected operator is increased by oy if the operator
identifies a new best solution, by o, if it identifies a solution better than the
incumbent, and by o3 if the solution is not better but is still accepted. After
0 iterations, the weights are updated by considering the scores obtained in

the last segment as follows: let 0., be the number of times operator r has

been used in the last segment s. The updated weights are then

Wy if 0, =0
Wy = 9)

(1 =n)w, +nm,./ops if 0,5 # 0,
where 1 € [0,1] is called the reaction factor and controls how quickly the
weight adjustment reacts to changes in the operator performance. The scores

are reset to zero at the end of each segment.

As in other ALNS implementations [8, 25, 26], an acceptance criterion based

on simulated annealing is used. Let z(-) be the cost of solution -. Given a



solution s, a neighbor solution ¢ is always accepted if z(s') > z(s), and is
accepted with probability e*()=2()D/T gtherwise, where T > 0 is the current
temperature. The temperature starts at Ty, and is decreased by a cooling

rate factor ¢ at each iteration, where 0 < ¢ < 1.

The main features of the algorithm are described in the next subsections.
Optional initial solutions are described in Section 3.1. The list of destroy
and repair operators is provided in Section 3.2. The subproblem resulting
from each ALNS iteration and its solution procedure is described in Section
3.3, and an improvement procedure is described in Section 3.4. Finally, the
parameters of the implementation and a pseudocode are provided in Section

3.5.

3.1. Initial solution

The algorithm can be initialized from an empty solution or from an arbitrary
solution, e.g., randomly selecting p facilities to be opened. If the solution
is empty, then no destroy operator can be applied at the first iteration, and
only repair operators are used to open p facilities. This implementation starts
with a random solution. Several papers have already demonstrated that the
quality of the initial solution does not influence the overall performance of

the ALNS algorithm [2, 7, 8].

3.2. List of operators

When designing the operators, the characteristics of the problem have been
carefully considered. Given a solution, destroy and repair operators will

close and open facilities, taking advantage of the problem’s characteristics
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to conveniently exploit different neighborhoods. The list of the developed

destroy and repair operators follows.

3.2.1. Destroy operators
1. Randomly close p facilities

This operator randomly selects p facilities and closes them. Here, p is a ran-
dom number following a semi-triangular distribution with a negative slope,

bounded at [1,p], as shown in Figure 2.

P(p)

1 p p

Figure 2: Probability density function of the semi-triangular random variable p.

According to this distribution, the value of p is calculated as in (10), where

u is a random variable with uniform distribution in the interval [0, 1]:

p=1p— V{0 -u)p—1)+05] (10)

This operator is useful for refining the solution since it does not change the
solution much when p is small, which happens frequently due to the shape of
its probability distribution. However, it still yields a major transformation

of the solution when p is large.
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2. Close the facility with the fewest potential clients

This operator identifies the opened facility with the fewest potential clients
and closes it. Here, each opened facility j is evaluated and the number of
clients within S units of distance from it is counted. It is useful for closing a
facility which has few clients, allowing for a facility with a greater potential

to be opened.
3. Close the facility with the smallest potential total demand

This operator closes the facility with the smallest potential demand allocated
toit. It is similar to the previous removal heuristic, but here the total demand

within S units of distance from each opened facility j is considered.
4. Close one of the two closest facilities

This operator identifies the two closest facilities opened in the current solu-
tion and randomly closes one of them. The rationale behind this operator is
to avoid too much overlapping and to allow a facility to be opened such that

more clients are served.

3.2.2. Repair operators

All repair operators identify the number of open facilities in the solution and
are repeated as many times as necessary such that at the end of the repairing

procedure the solution contains exactly p open facilities.
1. Randomly open one facility

This operator randomly opens one facility in the current solution. It is useful

to diversify the search towards a good solution.
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2. Open a facility located at, at least, 2S5 units from all open facilities

This operator opens a facility at the first candidate that is located more than
2S5 units from all open facilities. If no such facility exists, the one located
the farthest away from all open facilities is inserted. The motivation for this
operator is to open a facility to serve clients not yet served by any of the

opened facilities.
3. Open a facility with the highest service potential (clients)

This operator evaluates all closed facilities and identifies the one that could
serve the highest number of clients not yet served by any of the opened
facilities. The idea is to serve clients not yet covered by any other facility,
but this time overlapping is allowed, which helps increasing the service level.
This is useful for the probabilistic part of the problem. In the event where

all clients are already covered,; a random facility is opened.
4. Open a facility with the highest service potential (demand)

This operator evaluates all closed facilities and identifies the one that could
serve the highest demand not yet covered by any of the opened facilities. The
idea is to serve the demand not yet covered by any other facility, but this
time overlapping is allowed, which helps increasing the service level, useful
for the probabilistic part of the problem. In the event where all the demand

is already covered, a random facility is opened.

3.3. Subproblem solution

Once the ALNS heuristic has destroyed and repaired the solution, one needs

to make all allocation decisions taking into account the probabilistic con-
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straints in order to obtain the solution value. This is done efficiently by
mathematical programming by solving the following IP, in which variables y;
are updated to their values ; obtained from the ALNS heuristic. In this for-
mulation, the bounds on ¥; are already defined, implying that the constraint

on the number of open facilities is automatically respected:

maximize Z Z d;;j (11)

ieN jeN
subject to
Y ay<1l ieN (12)
JEN
vy <y PEN, JEN (13)
Zfiflfijﬁﬂb+\/21—04 jEN (14)
1EN;
or
1 .
ZfiwijSMjJr—ln(l—a) jeEN (15)
iEN; T
xwe{O,l} ieN ]EN (16)

This problem is significantly easier to solve than the problem defined by
(1)—(7). Here, at each iteration one just needs to update the bounds on
variables z;; in constraints (13). Solving this subproblem by mathematical
programming is relatively simple, given that one can take advantage of the
fact that only a small portion of the problem changes at each iteration,
thus the reoptimization is rather fast. Indeed, one can solve several of these

problems per second.
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3.4. Improvement procedure

An improvement procedure to polish a given good solution and try to locally
improve it was also developed. This is done whenever the ALNS algorithm
finds a new best solution, and at every 6 iterations. In the improvement
procedure, a mathematical programming model with the best known solution
is defined, allowing two facilities to be closed and other two facilities to be
opened. This can be seen as a neighborhood search in which all combinations
of two opened facilities are closed and all combinations of two closed facilities
are opened. If this yields an improved solution, the ALNS is updated with
it. The improvement procedure consists of solving the following IP, in which
y; is a binary vector indicating whether facility j is opened (one) or closed

(zero).

maximize Z Z d;ij (17)

ieN jeN
subject to
D U= P (18)
JEN
Yz <1l ieN (19)
JEN
vy <y 1€EN; JEN (20)
Zfi%jﬁﬂﬂél_@ jeN (21)
1EN;
or
1 .
S fau<ptm(-a) jEN (22)
ieN; T
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> gy =p—2 (23)

JEN
yJ,CL’ZJE{O,l} ieN ]GN (24)

In this problem, (17)-(22) are equal to (1)-(6). The added constraint (23)
ensures that p—2 of the opened facilities need to remain open. The algorithm
needs to open two closed facilities to respect constraint (18). This local search
heuristic is not added as an operator of the ALNS because it is significantly

more complex than the remaining operators.

3.5. Parameter settings and pseudocode

The parameter settings used in the ALNS implementation are now described.
These were set after an early tuning phase. The maximum number of itera-
tions 4,4, depends on the starting temperature Ty,,+ and on the cooling rate

¢. These parameters were set as follows:

Tytare = 30000 (25)

¢ = (0.01/Tytare) /" . (26)

This makes the cooling rate a function of the desired number of iterations,
adjusting accordingly the probability that the ALNS mechanism will accept
worsening solutions. The stopping criterion is satisfied when the temperature
reaches 0.01. In this implementation, the maximum number of iterations 7,,,,
was set to 1000 for instances with less than 100 clients, 2000 for instances
with less than 500 clients, and 3000 for instances with more than 500 clients.

The segment length 6 was set to 200 iterations, and the reaction factor n was

16



set to 0.7, thus defining the new weights by 70% of the performance on the
last segment and 30% of the last weight value. The scores are updated with
o1 = 10, 05 = 5 and o3 = 2. Algorithm 1 shows the pseudocode of the ALNS

implementation.

4. Computational experiments

This section provides details and results of the extensive computational ex-
periments carried out to assess the quality of the ALNS matheuristic. The
algorithm was coded in C++ and the subproblems were solved by CPLEX
using Concert Technology version 12.6. All computations were performed on
machines equipped with an Intel Xeon™ processor running at 2.66 GHz. The
ALNS algorithm needed less than 1 GB of RAM memory. The model de-
scribed in Section 2 was implemented in CPLEX and executed on machines
with up to 48 GB of RAM. All the machines run under the Scientific Linux

6.0 operating system.

A large dataset of benchmark instances with three classes of instances was
solved: 26 instances contain 30 nodes, 24 instances contain 324 nodes, and
24 instances contain 818 nodes. The number p of facilities to open varies
from two to 50. The service radius is equal to 1.5 miles for the instances
with 30 nodes, 250 meters for instances with 324 nodes, and 750 meters for
instances with 818 nodes. The 30-node dataset was proposed by Marianov
and Serra [21] and the 324 and 818-node datasets were proposed by Corréa
et al. [10]. These datasets have since then been used to evaluate the heuristic

of Marianov and Serra [21], the constructive genetic algorithm of Corréa and
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Algorithm 1: Hybrid ALNS matheuristic - part 1

1:

2:

3:

4.

10:

11:

12:

13:

14:

15:

16:

17:

18:

19:

20:

21:

Initialize: set all weights equal to 1 and all scores equal to 0.
Spest <— S < initial solution, T < Ty
while 7" > 0.01 do
s+ s;
select a destroy and a repair operator using the roulette-wheel mecha-
nism based on the current weights. Apply the operators to s and update
the number of times they are used;
solve subproblem defined by (11)—(16), obtaining z(s').
if 2(s") > z(s) then
s <« s,
if 2(s) > 2z(Spest) then
Shest < S,
update the score for the operators used with oq;
apply the improvement procedure to Spes:-
else
update the score for the operators used with o».
end if
else
if s’ is accepted by the simulated annealing criterion then
s« s,
update the scores for the operators used with os.
end if
end if

18



Algorithm 1: Hybrid ALNS matheuristic - part 2 (continued)

22: if the iteration count is a multiple of 6 then

23: update the weights of all operators and reset their scores;
24: apply the improvement procedure to Spes:-

25: end if

26: T < T

27: end while

28: return Spey;

Lorena [9], the clustering search algorithm of Corréa et al. [10], and the

column generation heuristic of Corréa et al. [11].

The name of the instances in tables 1-3 contains the values of the parameters
used in each run. For example, instance 30_2_0_0_85 refers to a 30-node prob-
lem with two facilities, the congestion type based on the number of clients
(0 for queue size, 1 for waiting time), the congestion parameter (number of
clients b on the queue, or the waiting time 7 in minutes) and the minimum
probability «, in percentage value. The rate parameter p is fixed at 72 for
the 30-node network, and at 96 for the 324 and 818-node networks. The
parameter f; that appears in formulations (1)—(7), (11)—(16) and (17)—(24)
is calculated as fd;, with f = 0.01 for the 324 and 818-node network. For
the 30-node network, f = 0.015 (queue size type constraints) or f = 0.006

(waiting time type constraints).

Tables 1-3 contain, for each instance, the best and the average solutions
(when available) and the respective solution times obtained from six different

methods. The best solution value for each instance is presented in boldface.
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In the CPLEX section of each table, an asterisk denotes a new best known
solution obtained by an exact method. For the column generation heuristic,
the column Gap (%) contains the percentage difference between the solution
and a heuristic upper bound. Notice that some of the values are non-zero
even when the corresponding instance is solved to optimality, which is an
indication that this algorithm may be using the value of the best known

solution to terminate the execution.

For the ALNS results, each instance was executed 3 times. The Average
column in the ALNS section shows the consistency of the proposed method.

The figures presented in the Time (s) columns are also averages.

As presented in Table 1, the proposed exact method proved optimality for
all 26 instances. The ALNS algorithm obtained the optimal solution for
all instances, performing better than all the methods of the literature as
highlighted in the Average row at the bottom of the table, being 10 times
faster than CPLEX.

In Table 2, using the proposed exact method, CPLEX proved optimality for
23 out of 24 instances. The ALNS algorithm was able to find the optimal
solution for 19 instances and performed better than the literature in all other

five instances.

In Table 3, CPLEX proved optimality for all instances. The ALNS algorithm
finds 19 of them and performed better than the previous state-of-the-art

heuristic for one instance.

Due to the probabilistic constraints, the PMCLAP can be considered a ca-

pacitated facility location problem, a class of problems that are hard to be
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solved by exact methods. To test this assumption, a new network with 1177
nodes was tested in order to evaluate the performance of CPLEX and ALNS
on a larger problem. These instances used the same set of parameters of the
818-node network but with a service radius of 950 meters. Table 4 presents
the results for an one-hour and a three-hour run of CPLEX and three one-
hour runs for ALNS. As shown on Table 4, the ALNS heuristic is capable
of providing consistently good results even for larger instances. In fact, in
two of them the heuristic was capable of finding better solution values than
CPLEX, even with only one third of the running time. This study also shows
the difficulties for CPLEX to obtain good solution values for more restricted

instances, i.e., those with fewer facilities.

5. Conclusion

This study presented a hybrid method for solving the probabilistic maximal
covering location-allocation problem. The algorithm is based on an adaptive
large neighborhood search heuristic to determine the location decisions of the
problem. Allocation subproblems are solved exactly by mathematical pro-
gramming at each iteration. A flexible improvement procedure polishes good
solutions obtained by the metaheuristic. A high performance solver has been
employed to obtain bounds and prove optimality for some instances. This
exact approach has found new best known solutions for 19 instances, proving
optimality for 18 of them. The hybrid method performed very consistently,
finding the best known solutions for 94,5% of the instances, outperforming
the state-of-the-art heuristic method from the literature. A new dataset was

tested and confirmed the superiority of the heuristic in instances that are
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difficult to solve by exact methods.
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