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Abstract

This paper presents a hybrid algorithm that combines a metaheuristic and

an exact method to solve the Probabilistic Maximal Covering Location-

Allocation Problem. A linear programming formulation for the problem

presents variables that can be partitioned into location and allocation de-

cisions. This model is solved to optimality for small and medium-size in-

stances. To tackle larger instances, a flexible adaptive large neighborhood

search heuristic was developed to obtain location solutions, whereas the al-

location subproblems are solved to optimality. An improvement procedure
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based on an integer programming method is also applied. Extensive com-

putational experiments on benchmark instances from the literature confirm

the efficiency of the proposed method. The exact approach found new best

solutions for 19 instances, proving the optimality for 18 of them. The hybrid

method performed consistently, finding the best known solutions for 94.5%

of the instances and 17 new best solutions (15 of them optimal) for a larger

dataset in one third of the time of a state-of-the-art solver.

Keywords: Facility location, congested systems, hybrid algorithm,

adaptive large neighborhood search, exact method, queueing maximal

covering location-allocation model, PMCLAP.

1. Introduction

Facility location plays an important role in logistic decisions. Each day, many

enterprises resort to quantitative methods to estimate the best or the more

economical way to meet clients’ demand for goods or services. In some cases,

the availability of the service can be associated with a time or distance to an

existing facility. In this case, the decision maker has to find the best location

to open the facilities in order to satisfy most of the demand.

The Maximal Covering Location Problem (MCLP) is a facility location prob-

lem which aims to select some location candidates to install facilities, in order

to maximize the total demand of clients that are located within a covering

distance from an existing facility [6]. Examples of this problem appear, for

instance, in the public sector to determine the location of emergency ser-

vices such as fire stations, ambulances, etc. Private companies solve this

problem to locate ATMs or vending machines, branches of a bank, stores of
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fast food chains, cellular telephony antennae, etc. A more extensive list of

applications can be found in [13], [15] and [27]. Variations of this problem,

including negative weights and travel time uncertainty, can be found in [4]

and [5]. Solution approaches to the MCLP include greedy heuristics [6, 12],

linear programming relaxation [6], lagrangean relaxation [14], genetic algo-

rithm [1], lagrangean/surrogate heuristic [19] and column generation [23].

In some applications, the number of clients and their associated demand

allocated to a facility may have an impact on the behavior of the system.

Depending on the nature of the service, clients may have to wait to be served.

In such congested systems, the service quality is measured not only by the

proximity to an open facility, but also by a service level, such as the number

of clients in a queue or the waiting times. Under the assumption that the

service requests are constant over time, this aspect can be modeled by simply

adding capacity constraints to the MCLP model. However, this deterministic

approach may yield idle or overloaded servers.

To deal with more realistic scenarios, Marianov and Serra [21] proposed a

model considering the arrival of clients to a facility as a stochastic process de-

pending on the clients’ demands. The authors define a minimum limit on the

quality of service based on the number of clients in the queue or on the max-

imum waiting time. This yields an extension of the MCLP called Queueing

Maximal Covering Location-Allocation Model (QM-CLAM) or Probabilis-

tic Maximal Covering Location-Allocation Problem (PMCLAP). Due to the

complexity of the problem and to the size of real world instances, most re-

search is devoted to the development of heuristic methods [10, 11].
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Location-allocation models contain, at least, two types of decision variables:

where to install a facility (location decision) and which clients to serve by the

opened facility (allocation decision). Traditional solution approaches, such

as branch-and-bound algorithms, deal with location and allocation decisions

simultaneously: clients are allocated to a candidate location that is still being

considered for the installation of a facility. However, a hierarchical approach

appears as a natural heuristic algorithm: locate facilities first and, in a second

step, allocate clients to them.

To explore this characteristic of the problem, a new iterative hybrid method

is developed. The location part of the problem is dealt with by an Adaptive

Large Neighborhood Search (ALNS) metaheuristic, and the corresponding

allocation solution is obtained by solving an integer subproblem to optimality.

The ALNS was proposed by Ropke and Pisinger [25] for a class of the vehicle

routing problem, and has since then been employed for a myriad of other

problems, including the vehicle scheduling problem [3, 22], the fixed charged

network flow problem [17], the stochastic arc routing problem [18], several

classes of vehicle routing problems [26], the inventory-routing problem [7, 8],

and train timetabling [2]. We are aware of only one application of the ALNS

to a problem with a facility location component [16], which is significantly

different from the problem at hand.

The remainder of this paper is organized as follows. Section 2 provides a

formal description and a mathematical formulation for the PMCLAP. The

hybrid ALNS metaheuristic is described in Section 3. The results of extensive

computational results on benchmark instances are presented in Section 4.

Conclusions follow in Section 5.
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2. Problem description and mathematical formulation

The MCLP, introduced by Church and ReVelle [6], aims at locating p facilities

among n possible candidates, such that the maximal possible population is

served. However, this problem does not consider capacities or congestion

issues. To overcome this limitation, Marianov and Serra [21] introduced the

PMCLAP, an extension of the MCLP in which a minimum quality on the

service level is imposed, assuming that clients arrive to the facilities according

to a Poisson distribution. The way to measure the demand at a facility is

either counting the number of people waiting for the service, or by measuring

the waiting time for the service.

Formally, the problem is defined on a graph with a set N of n nodes. Each

node is associated with a demand di and a service radius (or covering dis-

tance) Si in case a facility is located at the facility candidate i. Without loss

of generality, a service radius equal to S is considered for all facilities. Let

Ni be a subset containing the list of nodes within S units of distance from

node i, i.e., the set of location candidates j that can serve client i. In the

PMCLAP, fi represents the contribution of client i to the system congestion.

This value is calculated as a fraction of the client’s demand. It is assumed

that clients will arrive to a facility according to a Poisson distribution with

parameter rate µ. The parameter α defines the minimum probability of, at

most:

� a queue with b clients, or;

� a waiting time of τ minutes.
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To model the PMCLAP, we define two sets of binary variables: one for

location and another for allocation decisions. Variables yj are equal to one

if and only if location j ∈ N is opened, and variables xij are equal to one if

and only if the demand of node i is associated with facility j, i, j ∈ N . The

problem can be formulated as follows:

maximize
∑
i∈N

∑
j∈Ni

dixij (1)

subject to

∑
j∈Ni

xij ≤ 1 i ∈ N (2)

∑
j∈N

yj = p (3)

xij ≤ yj i ∈ N j ∈ N (4)∑
i∈N

fixij ≤ µ b+2
√

1− α j ∈ N (5)

or ∑
i∈N

fixij ≤ µ+
1

τ
ln (1− α) j ∈ N (6)

yj, xij ∈ {0, 1} i ∈ N j ∈ N . (7)

The objective function (1) maximizes the total served demand. Constraints

(2) guarantee that each client is served by at most one facility. Constraint (3)

defines the number of facilities to be opened. Constraints (4) link location

to allocation variables, only allowing clients to be allocated to an opened

facility. Constraints (5) ensure that facility j has less than b clients in the
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queue with at least probability α, and constraints (6) ensure that the waiting

time for service at facility j is at most τ minutes with probability of at least

α. Constraints (7) define the binary nature of the variables. Obviously, xij

equals zero for all j /∈ Ni.

Constraints (5) and (6) are related to the probabilistic nature of the problem.

For these constraints, Marianov and Serra [21] assume an M/M/1/∞/FIFO

queueing system with service requests occurring at each demand node i ac-

cording to a Poisson process with intensity fi. As customers arrive at a

facility j from different demand nodes, the request for service at this facility

is the sum of several Poisson processes with intensity λj calculated as:

λj =
∑
i∈N

fixij (8)

According to equation (8), if variable xij is one, then client i is allocated to

facility j and the corresponding intensity will be included in the calculation

of λj. In order to maintain the equilibrium of the system, an exponentially

distributed service time with average rate µ, where µ > λj, is assumed for

all the facilities.

The PMCLAP is NP-hard [24], being harder to solve by exact methods in

reasonable computation times as the size of the instance increases. We eval-

uate the performance of a state-of-the-art solver in Section 4.
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3. Hybrid adaptive large neighborhood search algorithm

Considering the location and allocation decisions of the problem separately,

an iterative hybrid method was developed. At each iteration, the location

solution values are obtained by a powerful and flexible ALNS heuristic, in

which an integer subproblem was embedded. This subproblem is then solved

exactly by mathematical programming at each iteration, in order to deter-

mine the optimal allocation solution values and the solution cost.

Figure 1 shows a representation of a location solution for a network with

n = 10 location candidates and p = 3 open facilities.
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Figure 1: Representation of the location variable y.

In general terms, the idea of the ALNS is to iteratively destroy and repair

parts of a solution with the aim of finding better solutions. There are a

number of destroy and repair operators, and they compete to be used at

each iteration. Operators that have performed better in the past have a

higher probability of being used. In our implementation, destroy and repair

mechanisms have been created with the aim of closing and opening facilities,

exploring our knowledge of the problem. As a result, allocation decisions are

not made by the heuristic, which yields an integer problem in which location

decisions are already fixed. This problem is then solved to optimality by

mathematical programming at each iteration. The algorithm can therefore

be described as a matheuristic [20], i.e., as a hybridization of a heuristic and

of a mathematical programming algorithm.
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The hybrid method aims to maximize the demand satisfaction. Facilities are

removed and inserted in the solution at each iteration by means of destroy

and repair operators. A roulette wheel mechanism controls the choice of

the operators, with a probability that depends on their past performance.

More concretely, to each operator r are associated a score πr and a weight ωr

whose values depend on the past performance of the operator. Then, given h

operators, operator r̄ will be selected with probability ωr̄/
h∑

r=1

ωr. Initially, all

weights are set to one and all scores are set to zero. The search is divided into

segments of θ iterations each, and the weights are computed by taking into

account the performance of the operators during the last segment. At each

iteration, the score of the selected operator is increased by σ1 if the operator

identifies a new best solution, by σ2 if it identifies a solution better than the

incumbent, and by σ3 if the solution is not better but is still accepted. After

θ iterations, the weights are updated by considering the scores obtained in

the last segment as follows: let ors be the number of times operator r has

been used in the last segment s. The updated weights are then

ωr :=

ωr if ors = 0

(1− η)ωr + ηπr/ors if ors 6= 0,

(9)

where η ∈ [0, 1] is called the reaction factor and controls how quickly the

weight adjustment reacts to changes in the operator performance. The scores

are reset to zero at the end of each segment.

As in other ALNS implementations [8, 25, 26], an acceptance criterion based

on simulated annealing is used. Let z(·) be the cost of solution ·. Given a
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solution s, a neighbor solution s′ is always accepted if z(s′) > z(s), and is

accepted with probability e(z(s)−z(s′))/T otherwise, where T > 0 is the current

temperature. The temperature starts at Tstart and is decreased by a cooling

rate factor φ at each iteration, where 0 < φ < 1.

The main features of the algorithm are described in the next subsections.

Optional initial solutions are described in Section 3.1. The list of destroy

and repair operators is provided in Section 3.2. The subproblem resulting

from each ALNS iteration and its solution procedure is described in Section

3.3, and an improvement procedure is described in Section 3.4. Finally, the

parameters of the implementation and a pseudocode are provided in Section

3.5.

3.1. Initial solution

The algorithm can be initialized from an empty solution or from an arbitrary

solution, e.g., randomly selecting p facilities to be opened. If the solution

is empty, then no destroy operator can be applied at the first iteration, and

only repair operators are used to open p facilities. This implementation starts

with a random solution. Several papers have already demonstrated that the

quality of the initial solution does not influence the overall performance of

the ALNS algorithm [2, 7, 8].

3.2. List of operators

When designing the operators, the characteristics of the problem have been

carefully considered. Given a solution, destroy and repair operators will

close and open facilities, taking advantage of the problem’s characteristics
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to conveniently exploit different neighborhoods. The list of the developed

destroy and repair operators follows.

3.2.1. Destroy operators

1. Randomly close ρ facilities

This operator randomly selects ρ facilities and closes them. Here, ρ is a ran-

dom number following a semi-triangular distribution with a negative slope,

bounded at [1, p], as shown in Figure 2.

P(ρ)$

ρ$p$1$

Figure 2: Probability density function of the semi-triangular random variable ρ.

According to this distribution, the value of ρ is calculated as in (10), where

u is a random variable with uniform distribution in the interval [0, 1]:

ρ = bp−
√

(1− u)(p− 1)2 + 0.5c (10)

This operator is useful for refining the solution since it does not change the

solution much when ρ is small, which happens frequently due to the shape of

its probability distribution. However, it still yields a major transformation

of the solution when ρ is large.
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2. Close the facility with the fewest potential clients

This operator identifies the opened facility with the fewest potential clients

and closes it. Here, each opened facility j is evaluated and the number of

clients within S units of distance from it is counted. It is useful for closing a

facility which has few clients, allowing for a facility with a greater potential

to be opened.

3. Close the facility with the smallest potential total demand

This operator closes the facility with the smallest potential demand allocated

to it. It is similar to the previous removal heuristic, but here the total demand

within S units of distance from each opened facility j is considered.

4. Close one of the two closest facilities

This operator identifies the two closest facilities opened in the current solu-

tion and randomly closes one of them. The rationale behind this operator is

to avoid too much overlapping and to allow a facility to be opened such that

more clients are served.

3.2.2. Repair operators

All repair operators identify the number of open facilities in the solution and

are repeated as many times as necessary such that at the end of the repairing

procedure the solution contains exactly p open facilities.

1. Randomly open one facility

This operator randomly opens one facility in the current solution. It is useful

to diversify the search towards a good solution.
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2. Open a facility located at, at least, 2S units from all open facilities

This operator opens a facility at the first candidate that is located more than

2S units from all open facilities. If no such facility exists, the one located

the farthest away from all open facilities is inserted. The motivation for this

operator is to open a facility to serve clients not yet served by any of the

opened facilities.

3. Open a facility with the highest service potential (clients)

This operator evaluates all closed facilities and identifies the one that could

serve the highest number of clients not yet served by any of the opened

facilities. The idea is to serve clients not yet covered by any other facility,

but this time overlapping is allowed, which helps increasing the service level.

This is useful for the probabilistic part of the problem. In the event where

all clients are already covered, a random facility is opened.

4. Open a facility with the highest service potential (demand)

This operator evaluates all closed facilities and identifies the one that could

serve the highest demand not yet covered by any of the opened facilities. The

idea is to serve the demand not yet covered by any other facility, but this

time overlapping is allowed, which helps increasing the service level, useful

for the probabilistic part of the problem. In the event where all the demand

is already covered, a random facility is opened.

3.3. Subproblem solution

Once the ALNS heuristic has destroyed and repaired the solution, one needs

to make all allocation decisions taking into account the probabilistic con-
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straints in order to obtain the solution value. This is done efficiently by

mathematical programming by solving the following IP, in which variables yj

are updated to their values ȳj obtained from the ALNS heuristic. In this for-

mulation, the bounds on ȳj are already defined, implying that the constraint

on the number of open facilities is automatically respected:

maximize
∑
i∈N

∑
j∈N

dixij (11)

subject to

∑
j∈N

xij ≤ 1 i ∈ N (12)

xij ≤ ȳj i ∈ Nj j ∈ N (13)∑
i∈Nj

fixij ≤ µ b+2
√

1− α j ∈ N (14)

or∑
i∈Nj

fixij ≤ µj +
1

τ
ln (1− α) j ∈ N (15)

xij ∈ {0, 1} i ∈ N j ∈ N . (16)

This problem is significantly easier to solve than the problem defined by

(1)–(7). Here, at each iteration one just needs to update the bounds on

variables xij in constraints (13). Solving this subproblem by mathematical

programming is relatively simple, given that one can take advantage of the

fact that only a small portion of the problem changes at each iteration,

thus the reoptimization is rather fast. Indeed, one can solve several of these

problems per second.
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3.4. Improvement procedure

An improvement procedure to polish a given good solution and try to locally

improve it was also developed. This is done whenever the ALNS algorithm

finds a new best solution, and at every θ iterations. In the improvement

procedure, a mathematical programming model with the best known solution

is defined, allowing two facilities to be closed and other two facilities to be

opened. This can be seen as a neighborhood search in which all combinations

of two opened facilities are closed and all combinations of two closed facilities

are opened. If this yields an improved solution, the ALNS is updated with

it. The improvement procedure consists of solving the following IP, in which

ȳj is a binary vector indicating whether facility j is opened (one) or closed

(zero).

maximize
∑
i∈N

∑
j∈N

dixij (17)

subject to

∑
j∈N

yj = p (18)

∑
j∈N

xij ≤ 1 i ∈ N (19)

xij ≤ yj i ∈ Nj j ∈ N (20)∑
i∈Nj

fixij ≤ µ b+2
√

1− α j ∈ N (21)

or∑
i∈Nj

fixij ≤ µj +
1

τ
ln (1− α) j ∈ N (22)
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∑
j∈N

ȳjyj = p− 2 (23)

yj, xij ∈ {0, 1} i ∈ N j ∈ N . (24)

In this problem, (17)–(22) are equal to (1)–(6). The added constraint (23)

ensures that p−2 of the opened facilities need to remain open. The algorithm

needs to open two closed facilities to respect constraint (18). This local search

heuristic is not added as an operator of the ALNS because it is significantly

more complex than the remaining operators.

3.5. Parameter settings and pseudocode

The parameter settings used in the ALNS implementation are now described.

These were set after an early tuning phase. The maximum number of itera-

tions imax depends on the starting temperature Tstart and on the cooling rate

φ. These parameters were set as follows:

Tstart = 30000 (25)

φ = (0.01/Tstart)
1/imax . (26)

This makes the cooling rate a function of the desired number of iterations,

adjusting accordingly the probability that the ALNS mechanism will accept

worsening solutions. The stopping criterion is satisfied when the temperature

reaches 0.01. In this implementation, the maximum number of iterations imax

was set to 1000 for instances with less than 100 clients, 2000 for instances

with less than 500 clients, and 3000 for instances with more than 500 clients.

The segment length θ was set to 200 iterations, and the reaction factor η was
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set to 0.7, thus defining the new weights by 70% of the performance on the

last segment and 30% of the last weight value. The scores are updated with

σ1 = 10, σ2 = 5 and σ3 = 2. Algorithm 1 shows the pseudocode of the ALNS

implementation.

4. Computational experiments

This section provides details and results of the extensive computational ex-

periments carried out to assess the quality of the ALNS matheuristic. The

algorithm was coded in C++ and the subproblems were solved by CPLEX

using Concert Technology version 12.6. All computations were performed on

machines equipped with an Intel Xeon� processor running at 2.66 GHz. The

ALNS algorithm needed less than 1 GB of RAM memory. The model de-

scribed in Section 2 was implemented in CPLEX and executed on machines

with up to 48 GB of RAM. All the machines run under the Scientific Linux

6.0 operating system.

A large dataset of benchmark instances with three classes of instances was

solved: 26 instances contain 30 nodes, 24 instances contain 324 nodes, and

24 instances contain 818 nodes. The number p of facilities to open varies

from two to 50. The service radius is equal to 1.5 miles for the instances

with 30 nodes, 250 meters for instances with 324 nodes, and 750 meters for

instances with 818 nodes. The 30-node dataset was proposed by Marianov

and Serra [21] and the 324 and 818-node datasets were proposed by Corrêa

et al. [10]. These datasets have since then been used to evaluate the heuristic

of Marianov and Serra [21], the constructive genetic algorithm of Corrêa and
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Algorithm 1: Hybrid ALNS matheuristic - part 1

1: Initialize: set all weights equal to 1 and all scores equal to 0.

2: sbest ← s← initial solution, T ← Tstart.

3: while T > 0.01 do

4: s′ ← s;

5: select a destroy and a repair operator using the roulette-wheel mecha-

nism based on the current weights. Apply the operators to s′ and update

the number of times they are used;

6: solve subproblem defined by (11)–(16), obtaining z(s′).

7: if z(s′) > z(s) then

8: s← s′;

9: if z(s) > z(sbest) then

10: sbest ← s;

11: update the score for the operators used with σ1;

12: apply the improvement procedure to sbest.

13: else

14: update the score for the operators used with σ2.

15: end if

16: else

17: if s′ is accepted by the simulated annealing criterion then

18: s← s′;

19: update the scores for the operators used with σ3.

20: end if

21: end if
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Algorithm 1: Hybrid ALNS matheuristic - part 2 (continued)

22: if the iteration count is a multiple of θ then

23: update the weights of all operators and reset their scores;

24: apply the improvement procedure to sbest.

25: end if

26: T ← φT ;

27: end while

28: return sbest;

Lorena [9], the clustering search algorithm of Corrêa et al. [10], and the

column generation heuristic of Corrêa et al. [11].

The name of the instances in tables 1–3 contains the values of the parameters

used in each run. For example, instance 30 2 0 0 85 refers to a 30-node prob-

lem with two facilities, the congestion type based on the number of clients

(0 for queue size, 1 for waiting time), the congestion parameter (number of

clients b on the queue, or the waiting time τ in minutes) and the minimum

probability α, in percentage value. The rate parameter µ is fixed at 72 for

the 30-node network, and at 96 for the 324 and 818-node networks. The

parameter fi that appears in formulations (1)–(7), (11)–(16) and (17)–(24)

is calculated as fdi, with f = 0.01 for the 324 and 818-node network. For

the 30-node network, f = 0.015 (queue size type constraints) or f = 0.006

(waiting time type constraints).

Tables 1–3 contain, for each instance, the best and the average solutions

(when available) and the respective solution times obtained from six different

methods. The best solution value for each instance is presented in boldface.
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In the CPLEX section of each table, an asterisk denotes a new best known

solution obtained by an exact method. For the column generation heuristic,

the column Gap (%) contains the percentage difference between the solution

and a heuristic upper bound. Notice that some of the values are non-zero

even when the corresponding instance is solved to optimality, which is an

indication that this algorithm may be using the value of the best known

solution to terminate the execution.

For the ALNS results, each instance was executed 3 times. The Average

column in the ALNS section shows the consistency of the proposed method.

The figures presented in the Time (s) columns are also averages.

As presented in Table 1, the proposed exact method proved optimality for

all 26 instances. The ALNS algorithm obtained the optimal solution for

all instances, performing better than all the methods of the literature as

highlighted in the Average row at the bottom of the table, being 10 times

faster than CPLEX.

In Table 2, using the proposed exact method, CPLEX proved optimality for

23 out of 24 instances. The ALNS algorithm was able to find the optimal

solution for 19 instances and performed better than the literature in all other

five instances.

In Table 3, CPLEX proved optimality for all instances. The ALNS algorithm

finds 19 of them and performed better than the previous state-of-the-art

heuristic for one instance.

Due to the probabilistic constraints, the PMCLAP can be considered a ca-

pacitated facility location problem, a class of problems that are hard to be
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solved by exact methods. To test this assumption, a new network with 1177

nodes was tested in order to evaluate the performance of CPLEX and ALNS

on a larger problem. These instances used the same set of parameters of the

818-node network but with a service radius of 950 meters. Table 4 presents

the results for an one-hour and a three-hour run of CPLEX and three one-

hour runs for ALNS. As shown on Table 4, the ALNS heuristic is capable

of providing consistently good results even for larger instances. In fact, in

two of them the heuristic was capable of finding better solution values than

CPLEX, even with only one third of the running time. This study also shows

the difficulties for CPLEX to obtain good solution values for more restricted

instances, i.e., those with fewer facilities.

5. Conclusion

This study presented a hybrid method for solving the probabilistic maximal

covering location-allocation problem. The algorithm is based on an adaptive

large neighborhood search heuristic to determine the location decisions of the

problem. Allocation subproblems are solved exactly by mathematical pro-

gramming at each iteration. A flexible improvement procedure polishes good

solutions obtained by the metaheuristic. A high performance solver has been

employed to obtain bounds and prove optimality for some instances. This

exact approach has found new best known solutions for 19 instances, proving

optimality for 18 of them. The hybrid method performed very consistently,

finding the best known solutions for 94,5% of the instances, outperforming

the state-of-the-art heuristic method from the literature. A new dataset was

tested and confirmed the superiority of the heuristic in instances that are

24
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difficult to solve by exact methods.

Acknowledgments

The first author thanks the CIRRELT, the Department of Operations and Deci-

sion Systems and the Faculty of Administration Sciences of Université Laval for
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