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The state-of-the-art ant colony optimization (ACO) algorithm to solve large scale set covering problems
(SCP) starts by solving the Lagrangian dual (LD) problem of the SCP to obtain quasi-optimal dual values.
These values are then exploited by the ACO algorithm in the form of heuristic estimates. This article starts
by discussing the complexity of this approach where a number of new parameters are introduced to
escape local optimums and normalize the heuristic values. To avoid these complexities, we propose a
new hybrid algorithm that starts by solving the linear programming (LP) relaxation of the SCP. This
solution is used to eliminate unnecessary columns, and to estimate the heuristic information. To generate
solutions, we use a Max–Min Ant System (MMAS) algorithm that employs a novel mechanism to update
the pheromone trail limits to maintain a predetermined exploration rate. Computational experiments on
different sets of benchmark instances prove that our proposed algorithm can be considered the new
state-of-the-art meta-heuristic to solve the SCP.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

The set covering problem (SCP) is a classical NP-hard problem
that has been addressed by numerous researchers. It is about
choosing a subset of columns that have the least sum of costs to
cover a set of rows. This problem is represented through the
following Integer Program (IP) (1):

SCP : minZ ¼
X

j2N

cjxj; ð1Þ

subject to,
X

j2N

aijxj P 1; i 2 M;

xj 2 f0;1g; j 2 N:

where cj is the cost of column j, while aij ¼ 1, if row i is covered by
column j and 0, otherwise. The number of columns is jNj, and the
number of rows is jMj. Ji represents the set of columns covering
row i, and Ij shows the set of rows covered by column j. Many indus-
trial engineering problems have been modeled as SCP; examples of
such problems include the facility location problem (Vasko &
Wilson, 1984), steel production (Vasko & Wolf, 1987), ship schedul-
ing (Fisher & Rosenwein, 1989), vehicle routing problem (Foster &
Rayan, 1976), and most recently multi-depot train driver scheduling
(Yaghini, Karimi, & Rahbar, 2015).
Solving large SCP instances to optimality using exact methods is
not practical due to the significant time needed. For this reason,
researchers depended on heuristic and meta-heuristic techniques
to solve this problem, and these techniques are often coupled with
information obtained from solving the Lagrangian relaxation (LR)
problem and its associated Lagrangian dual (LD) problem
(Caparara, Fischetti, & Toth, 1999).

The meta-heuristics used to solve this problem include: simu-
lated annealing (SA)(Brusco, Jacobs, & Thompson, 1999), tabu
search (TS) (Caserta, 2007), artificial bee colony (ABC) (Sundar &
Singh, 2012), genetic algorithm (GA) (Beasely & Chu, 1996;
Aickelin, 2002), and ant colony optimization (ACO) (Ren, Feng,
Ke, & Zhang, 2010; Crawford & Castro, 2006; Lessing,
Dumitrescu, & Stützle, 2004). As shown in Sundar and Singh
(2012), the best meta-heuristics to solve the SCP are the ACO
algorithms of Lessing et al. (2004) and Ren et al. (2010), and the
ABC algorithm of Sundar and Singh (2012).

Due to their inferior results, the TS and SA approaches are not
discussed here; on the other hand and despite their slightly bad
performance compared to ACO algorithms, we discuss the GA
solution approaches as they have some resemblance to the ACO
algorithms with respect to problem representation.

To solve the SCP using GA algorithm, researchers had different
ideas about what the chromosomes represent. In Beasely and
Chu (1996), binary chromosomes represent the columns such that
a 1 means that a column is included and a 0 means that it is
excluded. On the other hand, in Aickelin (2002), chromosomes
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Table 1
Characteristics of the different SCP sets. For each set, we show the number of
instances making up the set followed by the parameters of these instances: the
number of rows, number of columns, and density.

Set Number of
instance

Number of
rows

Number of
columns

Density
(%)

4 10 200 1000 2
5 10 200 2000 2
6 5 200 1000 5
A 5 300 3000 2
B 5 300 3000 5
C 5 400 4000 2
D 5 400 4000 5
NRE 5 500 5000 10
NRF 5 500 5000 20
NRG 5 1000 10,000 2
NRH 5 1000 10,000 5
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represent rows. A decoder is then used to translate the sequence of
rows into a solution of selected columns covering all rows.

Three ACO algorithms were published in the literature to solve
the SCP. The quality of results presented in Crawford and Castro
(2006) is inferior to other ACO algorithms; therefore, we exclude
it from the current summary. Similar to the GA algorithms, ACO
algorithms used two different construction graphs. In Lessing
et al. (2004), the nodes of the construction graphs represent col-
umns and two arcs are connected to each node such that these
two arcs represent the inclusion and exclusion of the preceding
column, node. In Ren et al. (2010), however, the nodes of the con-
struction graph represents the sequence of rows. An ant would
jump from an uncovered row to the other, and at each node it
needs to select one of the arcs that represent the columns that
cover the row.

In both (Lessing et al., 2004; Ren et al., 2010), the LR and its
associated LD problems are solved before initiating the ACO
algorithms. The LR problem of the SCP is represented through the
following program (2), which shows how the constraints are added
to the objective function after multiplying them by their associated
dual values ui.

LR : min LðuÞ
x2f0;1gn

¼
X

j2N

cjðuÞxj þ
X

i2M

ui: ð2Þ

The value of xj ¼ 1 if cjðuÞ ¼ cj �
P

k2Ik
uk 6 0, and xj ¼ 0, other-

wise. The (LD) is about finding the best set of u that will maximize
LðuÞ.

LD : max LðuÞ
u2Rn

: ð3Þ

The above problem is solved using the steepest descent algorithm
as described in Caparara et al. (1999). The set of dual variables
u 2 Rn that maximizes the function shown in program (3) are used
to develop heuristic information by the ACO algorithms.

Different combinations of ACO frameworks, such as Max–Min
Ants System (Stützle & Hoos, 2000) (MMAS) and Ant Colony
System (ACS) (Lessing et al., 2004), in combination with different
heuristic information were tested in Lessing et al. (2004). Among
the different heuristics compared, the best ones found were based
on the column’s reduced cost that in turn depends on the dual
information found from solving the LD problem. The successful
heuristics are dynamic; meaning that when an ant constructs a
solution, the values of the heuristics changes are based on the rows
that have already been covered. The ACO framework used had a
minor effect on the quality of results obtained, compared to the
heuristics used. A number of the studied combinations succeeded
in finding the best known solutions for all benchmark instances
tested in the literature; however, the 3-flip (Yagiura, Kishida, &
Ibaraki, 2006) local search algorithm, which is capable of finding
the optimal solutions alone as shown in Yagiura et al. (2006) and
Sundar and Singh (2012), was used to improve the ants solutions.
Consequently, the excellent results found in Lessing et al. (2004)
cannot be attributed to the ACO algorithms tested as discussed in
Sundar and Singh (2012). Therefore, the ACO algorithm of Ren
et al. (2010) can be considered as the state-of-the-art ACO
algorithm to solve the SCP.

In Ren et al. (2010), the algorithm implements three optimiza-
tion techniques: exact method, represented by solving the LD
problem; a meta-heuristics, represented by the ACO algorithm;
and a local search to improve solutions. The authors of Ren et al.
(2010) use ACO–LS to denote their algorithm while in this paper,
we denote this algorithm by LD–ACO–LS. Similar to Lessing et al.
(2004), they use the dual values to assess their heuristic informa-
tion. To guarantee results of high quality, the authors needed to
introduce a set of new parameters to escape local optimums and
normalize the heuristic information. The introduction and tuning
of these parameters complicates the LD–ACO–LS algorithm which
we discuss in this paper.

Like any ABC algorithm, the algorithm of Sundar and Singh
(2012) divides the colony of bees into three types: employed,
onlookers, and scouts. The employed bees find high quality solu-
tions to attract onlookers to search the vicinity of these solutions.
After searching the vicinity, if the employed bee solution is not
improved, the employed bee becomes a scout that finds a new ran-
domly generated solution. To generate high quality solutions in
Sundar and Singh (2012), onlooker bees mutate the solutions of
the chosen employed bee solution with other employed bees that
generated good solutions. It also implements an improved version
of the local search implemented in Ren et al. (2010). Moreover,
Sundar and Singh (2012) did not allow employed bees to have
the same solution. Excellent results were obtained using this
algorithm; however, it had high computational time compared to
the ACO algorithms as shown in Sundar and Singh (2012).

This paper is organized as follows. In Section 2 we review the
LD–ACO–LS algorithm (Ren et al., 2010) and discuss the robustness
of this algorithm. In Section 3 we present a new MMAS to solve the
SCP where we introduce a new mechanism to control the phero-
mone trails limits. Moreover, we exploit the solution of the LP
relaxation to reduce the size of the problem. In Section 4, we com-
pare the best meta-heuristics to solve the SCP in terms of solution
quality and time. Conclusions and future work are then discussed.

2. Ant colony optimization algorithms for the set covering
problem

A generic framework for the ACO algorithms can be represented
by Algorithm 1 where m represent the size of the ant colony and k
is the number of solutions improved by the local search.

Algorithm 1. A generic pseudo-code for the ant colony optimiza-
tion algorithms

As discussed earlier, in the LD–ACO–LS algorithm, the nodes of
the construction graph represent the rows and an ant moves from
an uncovered row to the other and at each row; it selects a column
that covers this row. The local search algorithm is used to improve
every generated solution m ¼ k. To improve solution S, this local
search can be described by Algorithm 2.



Table 2
The performance of the LP–MMAS–LS, ACO–LS, and ABC algorithms with respect to the benchmark instances. For each algorithm and instance, the table shows the best and
average solutions, in addition to the average computational time in seconds.

Instance Best Known LP–MMAS–LS ACO–LS ABC

Best Avg. Time Best Avg. Time Best Avg. Time

4.1 429 429 429.0 1.0 429 429.0 1.74 429 429.0 5.03
4.2 512 512 512.0 1.0 512 512.0 2.26 512 512.0 4.82
4.3 516 516 516.0 1.0 516 516.0 2.31 516 516.0 4.87
4.4 494 494 494.0 1.0 494 494.0 2.12 494 494.0 5.40
4.5 512 512 512.0 1.0 512 512.0 2.17 512 512.0 5.57
4.6 560 560 560.0 1.0 560 560.0 2.41 560 560.0 5.07
4.7 430 430 430.0 1.0 430 430.0 1.87 430 430.0 4.97
4.8 492 492 492.0 1.0 492 492.0 2.17 492 492.0 5.40
4.9 641 641 641.0 1.0 641 641.0 2.38 641 641.0 4.30
4.10 514 514 514.0 1.0 514 514.0 1.99 514 514.0 5.55
5.1 253 253 253.0 1.0 253 253.0 2.29 253 253.0 6.99
5.2 302 302 302.0 1.6 302 302.0 2.42 302 302.0 6.06
5.3 226 226 226.0 1.0 226 226.0 2.17 226 226.0 7.41
5.4 242 242 242.0 1.0 242 242.0 2.28 242 242.0 6.16
5.5 211 211 211.0 1.0 211 211.0 1.70 211 211.0 6.56
5.6 213 213 213.0 1.0 213 213.0 1.97 213 213.0 6.67
5.7 293 293 293.0 1.0 293 293.0 2.22 293 293.0 7.29
5.8 288 288 288.0 1.0 288 288.0 2.43 288 288.0 6.12
5.9 279 279 279.0 1.0 279 279.0 2.30 279 279.0 6.12
5.10 265 265 265.0 1.0 265 265.0 2.14 265 265.0 6.13
6.1 138 138 138.0 <1.0 138 138.0 2.75 138 138.0 11.60
6.2 146 146 146.0 <1.0 146 146.0 3.06 146 146.0 10.69
6.3 145 145 145.0 <1.0 145 145.0 3.00 145 145.0 10.26
6.4 131 131 131.0 <1.0 131 131.0 2.70 131 1310 9.10
6.5 161 161 161.0 <1.0 161 161.0 3.02 161 161.0 13.11
A.1 253 253 253.4 2.8 253 253.0 4.04 253 253.0 11.85
A.2 252 252 252.0 2.0 252 252.0 4.23 252 252.0 11.14
A.3 232 232 232.8 2.5 232 232.8 4.14 232 232.0 10.73
A.4 234 234 234.0 1.8 234 234.0 4.13 234 234.0 11.61
A.5 236 236 236.8 1.6 236 236.0 4.13 236 236.0 10.72
B.1 69 69 69.0 1.0 69 69.0 6.11 69 69.0 39.41
B.2 76 76 76.0 1.0 76 76.0 6.42 76 76.0 37.63
B.3 80 80 80.0 1.0 80 80.0 6.72 80 80.0 34.80
B.4 79 79 79.0 1.0 79 79.0 6.63 79 79.0 41.69
B.5 72 72 72.0 1.0 72 72.0 6.20 72 72.0 35.94
C.1 227 227 227.0 3.8 227 227.0 6.10 227 227.0 17.18
C.2 219 219 219.2 3.1 219 219.0 6.35 219 219.0 17.27
C.3 243 243 243.1 3.8 243 2430 6.36 243 243.0 18.77
C.4 219 219 219.0 2.5 219 219.0 6.11 219 219.0 17.54
C.5 215 215 215.0 3.3 215 215.0 6.23 215 215.0 17.63
D.1 60 60 60.0 1.0 60 60.0 9.85 60 60.0 78.57
D.2 66 66 66.0 1.0 66 66.0 10.32 66 66.0 74.27
D.3 72 72 72.0 1.0 72 72.0 10.47 72 72.0 74.56
D.4 62 62 62.0 1.6 62 60.2 10.35 62 62.0 66.14
D.5 61 61 61.0 1.0 60 60.0 9.72 61 61.0 67.42
NRE.1 29 29 29.0 1.0 29 29.0 21.12 29 29 89.05
NRE.2 30 30 30.0 1.8 30 30.0 23.49 30 30.0 98.82
NRE.3 27 27 27.0 1.2 27 27.0 21.50 27 27.0 104.09
NRE.4 28 28 28.0 1.5 28 28.0 23.27 28 28.8 93.18
NRE.5 28 28 28.0 1.0 28 28.0 23.72 28 28.0 97.71
NRF.1 14 14 14.0 1.0 14 14.0 30.13 14 14.0 330.41
NRF.2 15 15 15.0 1.0 15 15.0 28.23 15 15.0 282.54
NRF.3 14 14 14.0 1.4 14 14.0 30.70 14 14.0 308.46
NRF.4 14 14 14.0 1.2 14 14.0 29.94 14 14.0 325.11
NRF.5 13 13 13.3 1.7 13 13.5 27.13 13 13.7 324.23
NRG.1 176 176 176.0 11.9 176 176.0 31.16 176 176.0 97.54
NRG.2 154 154 155.0 11.9 154 155.1 29.03 155 155.0 96.89

NRG.3 166 166 167.5 11.7 166 167.3 30.24 166 166.0 94.41
NRG.4 168 168 168.9 10.1 168 168.9 29.73 168 168.0 92.51
NRG.5 168 168 168.7 9.7 168 168.1 30.85 168 168.0 92.80
NRH.1 63 63 63.8 7.4 64 64.0 71.47 63 63.9 532.36

NRH.2 63 63 64.0 7.7 63 63.9 71.04 63 63.9 533.91
NRH.3 59 59 60.2 7.2 59 59.4 69.66 59 59.0 557.13
NRH.4 58 58 58.8 6.2 58 58.7 70.38 58 58.0 565.78
NRH.5 55 55 55.0 5.3 55 55.0 68.23 55 55.0 539.07

The bold numbers show the best-known solutions while the underline values show the instances that each algorithm missed to obtain the best-known solution.
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Algorithm 2. A pseudo-code for the local search algorithm used in
Sundar and Singh (2012)

The local search tries to remove redundant columns first, and
then it tries to replace columns covering one or two rows only
by less expensive ones. In their ABC algorithm, Sundar and Singh
(2012) extends this local search such that columns covering three
rows, jojj ¼ 3, are also checked. It was argued by Sundar and Singh
(2012) that this step improves the local search.

After this quick review of the LD–ACO–LS algorithm, we review
in details how the dual information obtained from solving the LD
problem is used to develop heuristics to be used by ants when
generating solutions. We, however, shed some lights into a number
of problems associated with this approach.

2.1. Dynamic reduced cost-based heuristics

In Ren et al. (2010), the set of duals u ¼ fu1;u2; . . . umgRm

are
obtained from solving the LD problem using the subgradient
method, before starting the ACO algorithm.

As discussed earlier, a row-based construction graph is used
such that when an ant generates a solution, it randomly selects
an uncovered row i, then it calculates the reduced costs of column
j 2 Ji according to Eq. (4):

pjðu; i;RÞ ¼ cj �
X

i2Ij\R

ui ð4Þ

The set R represents the set of uncovered rows. Before generating a
solution, pjðu; i;RÞ ¼ pjðuÞ, then the values of pjðu; i;RÞ change based
on the row selected and the rows that have already been covered by
the solution. To avoid the problem of having positive and negative
pjðu; i;RÞ, a new term r is defined as shown in Eq. (5). This terms
is added to pjðu; i;RÞ when calculating the heuristic information as
shown in Eq. (7).

r ¼ 2: minfcjðuÞg
�� �� ð5Þ

In addition to the reduced cost pjðu; i;RÞ of column j, the heuristic
information gj of the column depends on the number of rows that
are still uncovered and can be covered by column j, which is found
based on Eq. (6).

/j ¼ R \ Ij

�� �� ð6Þ

The heuristic information gj is calculated according to Eq. (7),
and the probability of selecting column j 2 Ji is given by Eq. (8)
gj ¼
/j

pjðuÞ þ r
: ð7Þ

Pj ¼
sa

j � g
b
jP

q2Iq
sa

q � g
b
q

; ð8Þ

where sj represents the amount of the pheromone trails left by the
ants along arc j- column j for the SCP. After selecting a column to
cover the randomly chosen row i, an ant randomly chooses another
uncovered row. It selects a new column according to Eq. (8) and
keeps randomly moving to new uncovered rows, until all the rows
are covered.

2.2. Problems in using the dynamic reduced cost-based heuristics

To guarantee high quality solutions, Ren et al. (2010) compli-
cate their algorithm by adding still new parameters and proce-
dures to their algorithm. One such procedure is that if the
solution of the problem does not improve for 50 consecutive runs,
each component of the best u found, before starting the ACO
algorithm, is perturbed by a random number d, which is uniformly
distributed between �0.2 and 0.2. The new components of u
become

ui ¼ ð1þ dÞui; ð9Þ
and the subgradient optimization technique is applied again to
reach a new set of quasi-optimal u.

In Ren et al. (2010), it was not shown how the different param-
eters used to calculate pj are chosen; these parameters are the 2
factor in Eq. (5), the 50 runs after which u needs to be perturbed,
and the amount of perturbation that is controlled by
d ¼ uniformð�0:2;0:2Þ. Thus, a valid question that can be asked
here: are these parameters valid for any SCP or are they specific
for the set of benchmark problems used in Ren et al. (2010)? We,
therefore, try to find a simpler ACO algorithm that has less
parameters and can still produce high quality results.

3. A new hybrid max–min ant system for the set covering
problem

We present here a hybrid of LP-relaxation and MMAS to solve
large scale SCP. Hereafter, we will refer to this new algorithm as
LP–MMAS–LS. We use the same construction graph and local
search used by Ren et al. (2010); however, we exploit the LP-relax-
ation solution to reduce the size of the problem. This idea is not
new for ACO algorithms. For example, to solve large scale traveling
salesman problems (TSP), candidate lists are used to minimize the
selection choices for ants (Stützle & Hoos, 2000). Moreover, using
candidate lists to minimize the search space is used in a number
of meta-heuristics to solve the SCP. Both Sundar and Singh
(2012) and Beasely and Chu (1996) used such candidate lists in
their ABC and GA algorithms, respectively. Lastly, in the pioneering
work of Caparara et al. (1999), a heuristic is suggested to find
feasible solutions and this heuristic is applied over a set of core
columns after reducing the problem size. In this work, we adopt
the idea of reducing the problem size instead of using candidate
lists.

In the LP–MMAS–LS algorithm, we use a dynamic heuristic sim-
ilar to Ren et al. (2010) and Lessing et al. (2004); however, we sug-
gest a new methodology to normalize the heuristics that does not
depend on any external factor like the r factor in Eq. (5). We also
propose a new pheromone updating mechanism such that the
lower limits of the pheromone trails are dynamically calculated
when choosing columns.

3.1. Reducing the problem size

We exploit the information obtained from solving the LP-relax-
ation of the problem such that we keep the columns having one of
the following two characteristics:
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1. Have pj 6 1:0.
2. Be one of the five least expensive columns covering a row.

The percent of columns kept out of the original instances ranged
from 55.7% to 2.2% for the set of benchmark instances solved in this
work. The average percent of columns kept is 13.6%. We use the
notation Ncore to represent the set of columns found after the
reduction step; moreover, Jcore

i represents the set of core columns
that covers row i.

3.2. Pheromones updating

Ren et al. (2010) pointed out that many local optimum solutions
might exist for this problem but in their algorithm, only one of
these solutions is selected to update the pheromone trails. We
believe that by using one solution, information about good
columns that are not part of the updating solution will be lost. In
our work, we randomly choose one of these solutions to update
the pheromone trails. Columns that are part of many incumbent
solutions will have higher probabilities to be selected to update
the pheromone trails. Moreover, a column that is included in one
incumbent solution needs to have a higher pheromone trail value
than columns that are not selected by any solution. The set of
incumbent solutions will be denoted by IS. Denoting the updating

solution by Supdating 2 IS, the pheromone trails are updated accord-
ing to Eq. (10)

sjðtÞ ¼ qsjðt � 1Þ þ ð1� qÞ:1fj 2 Supdatingg ð10Þ

In a typical MMAS, the pheromone values are checked against
an upper and a lower s limits, smax and smin, respectively. We only
check the s values against their upper limits, such that if
sjðtÞP smax then sjðtÞ ¼ smax. For smin, we make it a function of
the row selected, sminðiÞ; thus, it will be calculated dynamically
when generating solutions. The reason behind this is that the
different rows have different number of columns to cover them.

To calculate sminðiÞ, we define a new parameter Q to represent

the probability of regenerating the Supdating solution. As a selection

problem, Q depends on selecting the Supdating
���

��� columns included

in Supdating . Therefore, the probability of selecting one of these
columns is

Pcorrect ¼ Q jS
u j: ð11Þ

The value of sminðiÞ will depend on Pcorrect and Jcore
i

�� �� as shown in
Eq. (12)

sminðiÞ ¼
smaxð1� PcorrectÞ

Jcore
i

�� ��� 1
: ð12Þ

We check the values of s against sminðiÞ when constructing
solutions. If sjðtÞ 6 sminðiÞ then sjðtÞ ¼ sminðiÞ.

3.3. Column selection probabilities

Similar to Ren et al. (2010), the heuristic used is based on the
dynamic reduced costs and the number of rows that can be
covered by selecting this column. We use Eq. (4) above to calculate
the reduced costs; however, we select j 2 Jcore

i instead of j 2 Ji. To
normalize the values of the heuristics, we use a max–min normal-
ization procedure rather than adding the r term as shown in
Eq. (6). After finding the minimum and maximum values of the
reduced costs, pmin

j ðiÞ and pmax
j ðiÞ, we normalize the values of

pjðu; i;RÞ using Eq. (13)

pjðiÞ ¼ 0:1þ
pjðu; i;RÞ � pmin

j ðiÞ
pmax

j ðiÞ � pmin
j ðiÞ

: ð13Þ
The 0.1 is needed to have finite values of gj. Having these values, we
calculate the initial values of the heuristic information gj

gj ¼
/j

pjðu; i;RÞ
: ð14Þ

We, however, normalize the values of gj again by finding their min-

imum and maximum values gmin
j ðiÞ and gmax

j ðiÞ respectively, and
similar to pj, we use a max–min normalization procedure as shown
in Eq. (15)

gjðiÞ ¼ 0:1þ
gjðiÞ � gmin

j ðiÞ
gmax

j ðiÞ � gmin
j ðiÞ

: ð15Þ

Selecting a column to cover row i is found using Eq. (8).

3.4. Algorithm summary

Trying to put all the ideas discussed earlier together, we present
here the pseudo-code that summarizes the proposed algorithm in
addition to the solution generation procedure. Algorithm 3 repre-
sents the whole LP–MMAS–LS algorithm. It starts by relaxing the
constraints and solving the resulting LP-relaxation problem. The
reduced costs are then used to find Ncore. The MMAS is executed
as long as a termination criteria is not met.

At each iteration, we generate m solutions as shown in
Algorithm 3. These solutions are then improved using the local
search algorithm. After improving the solutions, if one of these
solutions is found to be better than the incumbent one, then this
solutions becomes the new incumbent; otherwise, it is added to
the set of incumbent solutions if it is not already included. One
of the incumbent solutions is then chosen randomly to update
the pheromone trails.

We present the function used to generate solutions in
Algorithm 4. As stated earlier, row i that is not covered yet is ran-
domly selected. The sminðiÞ value of this row is then calculated and
if for any j 2 Ji, the value of sj is less than sminðiÞ then sj ¼ sminðiÞ. To
calculate the heuristic information, we conduct two normalizing
procedures, one for the reduced costs and the other for the heuris-
tic information itself. A column is then chosen based on the values
of sj and gj.

Algorithm 3. A pseudo code for the LP–MMAX–LS algorithm
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Algorithm 4. A pseudo-code representing the solution generation
function, generateSolution()
4. Benchmarking

In this section, we test our proposed algorithm using a set of
benchmark instances that can be downloaded from http://people.
brunel.ac.uk/mastjjb/jeb/info.html. The instances can be divided
into 11 sets as shown in Table 1. Instances belonging to the same
set have the same number of rows and columns, and the same
probability of having aij – 0: density. As seen from Table 1, some
sets are easier to solve than others: Set 4 only has 200 rows to
cover using 1000 columns, which is easier than set NRH, which
has 1000 rows to cover using 10,000 columns. For all of these sets,
the costs of the columns ranged between 1 and 100.

We compare our results to the LD–ACO–LS algorithm (Ren et al.,
2010) in addition to the ABC algorithm of Sundar and Singh (2012);
we do not include other meta-heuristics in our comparison since
their performances are inferior to the LD–ACO–LS and ABC
algorithms (Sundar & Singh, 2012). Readers interested in a full
comparative study, excluding our proposed algorithm, can refer
to Sundar and Singh (2012).

The parameters used in our algorithm are as follow:
Q ¼ 0:9; m ¼ 20; a ¼ 1:0; b ¼ 0:5; q ¼ 0:99 and smax ¼ 0:95. As

a termination criteria, our algorithm stops if the value of Sincumbent

does not change for 500 consecutive runs. We use CPLEX12.6 to
solve the LP-relaxation of the problem.

Table 2 shows that our proposed algorithm is the first meta-
heuristic that finds the optimum solutions for all the instances
studied. The LD–ACO–LS missed instance NRH.1 while the ABC
algorithm missed instance NRG.2. In terms of the averages
obtained, the ABC algorithm is the best algorithm in terms of the
average solutions. The averages of 55 instances out the 65
instances were equal to the optimum solutions compared to 53
instances for the ACO–LS algorithm and 51 instances for our
proposed algorithm. The better averages obtained by the ABC
algorithm can be justified by the higher computation time needed
by this algorithm.

The processor used to conduct this experiment is 2.5 GHz
Core(TM) i5-3210 M with 8 GB RAM. Other results are obtained
by running the experiment using 2.4 GHz Xeon Processor with
2 GB RAM for the LD–ACO–LS algorithm and 3.0 GHz Core 2 Duo
processor with 2 GB ram for the ABC algorithm. As stated in
Sundar and Singh (2012), the LD–ACO–LS algorithm is better than
the ABC algorithm with respect to computation time. Given the
capabilities of our processor and the one used to obtain the
LD–ACO–LS results (Ren et al., 2010), we believe that the differ-
ences in the computation times are in our favor regardless of any
possible factor needed to adjust our times. This difference is very
obvious in the big sets: NRG and NRF. Except for the NRG and
NRF instances, all other instances were solved in less than five
seconds, most of them in less than two seconds. The average
computation time did not exceed one second for 37 instances out
of the 65 instance. It took less that one second to find the optimal
answer for the scp6 set. Therefore, the computation time of our
algorithm is better than the LD–ACO–LS algorithm and much
better than the ABC algorithm. The vivid superiority of our
computational time is intuitive due to the reduction in the number
of columns.
5. Conclusion

In this work, we propose a new hybrid algorithm of a MMAS,
LP-relaxation and local search to solve large scale SCP. We exploit
the LP-relaxation solution of the problem in two ways: reducing
the size of the problem, and developing a heuristic estimate to
be used by ants. Minimizing the size of the problem had a great
impact on the solution quality and computation time. Exploiting
the dual information to develop a dynamic heuristic estimates is
neither new nor unique to ACO algorithms; however, a new nor-
malization scheme is used that is more intuitive and avoids using
new parameters. The MMAS used in this algorithm employs a new
mechanism to control the pheromone trails levels such that a
predefined level of exploration is maintained.

The comparison between our proposed algorithm and other
ACO algorithm shows that new measures to assess the complexi-
ties of algorithms are needed by the OR society. Extra parameters
were used in the previous state-of-the-art algorithm to solve the
SCP compared to our algorithm. Obviously, the introduction of
these parameters complicates the algorithm.
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