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Abstract

Least Squares with QR-factorization (LSQR) method is a widely used Krylov subspace algorithm to solve sparse rectangu-

lar linear systems for tomographic problems. Traditional parallel implementations of LSQR have the potential, depending on

the non-zero structure of the matrix, to have significant communication cost. The communication cost can dramatically limit

the scalability of the algorithm at large core counts. We describe a scalable parallel LSQR algorithm that utilizes the particular

non-zero structure of matrices that occurs in tomographic problems. In particular, we specially treat the kernel component of

the matrix, which is relatively dense with a random structure, and the damping component, which is very sparse and highly

structured separately. The resulting algorithm has a scalable communication volume with a bounded number of communica-

tion neighbors regardless of core count. We present scaling studies from real seismic tomography datasets that illustrate good

scalability up to O(10, 000) cores on a Cray XT cluster.

Keywords: tomographic problems; seismic tomography; structural seismology; parallel scientific computing; LSQR; matrix

vector multiplication; scalable communication; MPI

1. Introduction

Least Squares with QR factorization (LSQR) algorithm [1] is a member of the Conjugate Gradients (CG) fam-

ily of iterative Krylov algorithms and is typically reliable when a matrix is ill-conditioned. The LSQR algorithm,

which uses a Lanczos iteration to construct orthonormal basis vectors in both the model and data spaces, has been

shown to converge faster than other algorithms in synthetic tomographic experiments [2].

Noninvasive tomographic problems that focuses on determining characteristics of an object (its shape, inter-

nal constitution, etc.) based on observations made on the boundary of the object is an important subject in the

broad mathematical field known as inverse problems. Each observation d made on the boundary can usually

be expressed as a projection of the unknown image m(x) onto an integration kernel K(x), whose form is highly

problem-dependent. In mathematical form, this type of problems can often be expressed as
∫

K(x)m(x) dV(x).

This integration equation can be transformed to a linear algebraic equation of the unknown image by discretizing

x. The resulting inverse problem can be highly under-determined, as the number of observations can be much less
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than the total number of unknown parameters. Under such conditions, the inverse problem needs to be regularized

and a regularization matrix, which is usually highly sparse with diagonal or block-diagonal structure, is appended

below the kernel matrix.

Unfortunately, it can be computationally very challenging to apply LSQR to such tomographic matrix with a

relatively dense kernel component appended by a highly sparse damping component, because it is simultaneously

compute-, memory-, and communication-intensive. The coefficient matrix is typically very large and sparse.

For example, a modest-sized dataset of the Los Angeles Basin (ANGF) for structural seismology has a physical

domain of 496 × 768 × 50 grid points. The corresponding coefficient matrix has 261 million rows, 38 million

columns, and 5 billion non-zero values. The number of non-zeros in kernel is nearly 90% of the total while

damping takes approximately 10%. The nearly dense rows within the coefficient matrix can generate excessive

communication volume for a traditional row-based partitioning approach. Advances in structural seismology will

likely increase the order of the design matrix by a factor of three. Clearly, an algorithm that scales with both

problem size and core count is necessary.

In this paper, we address the computational challenges of using LSQR in seismic tomography which is made as

a representative of tomographic problems. We propose a partitioning strategy and a computational algorithm that

is based on the special structure of the matrix. Specially, SPLSQR contains a novel data decomposition strategy

that treats different components of the matrix separately. SPLSQR algorithm results in an algorithm with scalable

communication volume between a fixed and modest number of communication neighbors. SPLSQR algorithm

enables scalability to O(10, 000) cores for the ANGF dataset in seismic tomography.

2. Related Work

LSQR is applied in a wide range of fields that involve reconstruction of images from a series of projections. It

has been widely used in geophysical tomography to image subsurface geological structures using seismic waves,

electromagnetic waves, or Bouguer gravity anomalies, etc. In structural seismology, the coefficient matrix is

usually composed of kernel and damping component. For ray-theoretical travel-time seismic tomography, each

row of the kernel component is computed from the geometry of the ray path that connects the seismic source

and the seismic receiver, which usually results in a very sparse kernel component [3]. For full-wave seismic

tomography, each row of the kernel which represents Frechet derivative of each misfit measurement vector is

nearly dense [4, 5, 6]. The purpose of the damping is to regularize the solution of the linear system. The damping

can be computed from the inverse of the model covariance. In practice, to penalize the roughness and the norm

of the solution, a combination of the Laplacian operator implemented through finite-differencing and the identity

operator can be used as the damping component.

The LSQR method is one of the most efficient algorithms so far for solving very large linear tomography

systems, whether they are under-determined, over-determined or both [7, 2, 8]. There are several existing imple-

mentations of parallelized LSQR. Baur and Austen [9] presented a parallel implementation of LSQR by means of

repeated vector-vector operations. PETSc [10] has an optimized parallel LSQR solver. PETSc is a well-optimized

and widely-used scientific library, but it does suffer performance issues when using sparse matrices with random

non-zero structure [11]. Liu et al. [12] proposed a parallel LSQR approach for seismic tomography. They par-

titioned the matrix into blocks by row and gave an approach to compute matrix-vector multiplication in parallel

based on distributed memory. Their approach requires reduction on both vector x and y in each iteration. An MPI-

CUDA implementation of LSQR (PLSQR) is described in [13]. The matrix vector multiplication uses a transpose

free approach and requires only one reduction on the relative smaller vector x. Its major computation portions

have been ported to GPU, and considerable speedup has been achieved.

3. Algorithm Overview

Figure 1 summarizes the idea of SPLSQR algorithm based on Message Passing Interface (MPI) programming

model. The pseudo code describes the behavior of each MPI task. In particular, we describe the necessary matrix

reordering, i.e., line (01) to (04) in Section 4, data partitioning strategy, i.e., line (05) to (08) in Section 5, and the

calculation of the sparse matrix-vector multiplication, i.e., line (10) to (26), in Section 6. Communication, i.e.,
line (16) and (22), incurred during matrix-vector multiplication is detailed in Section 7.
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(01) Reorder Ad ∈ Rnd×m to minimize bandwidth

(02) Obtain reduced B from Ad
(03) p← symrcm(BBT ) (Calculate row permutation)

(04) Ad ← Ad(p, :) (Apply row permutation to Ad)

(05) Partition matrices: Ak, Ad and Adt:
(06) Aki ← Ak (Partitioning across columns)

(07) Adi ← Ad (Partitioning across rows)

(08) Adti ← Adt (Partitioning across columns)

(09) Initialize Krylov vectors

(10) Iterate until converged

(11) Calculate: y← A × x + y
(12) Kernel component:

(13) yki ← Aki × xi, (partial results)

(14) yk ← ∑i yki (sum up partial results) [global sum]

(15) Damping component:

(16) Communicate with neighbors, reconstruct ex-

tended x′i
(17) ydi ← Adi × x′i
(18) Calculate: x← AT × y + x
(19) Kernel component:

(20) xki ← AkT
i × yk

(21) Damping component:

(22) Communicate with neighbors, reconstruct ex-

tended yd′i
(23) xdi ← Adti × yd′i
(24) Construct xi ← xki + xdi
(25) Construct and apply next orthogonal transformation

(26) Test convergence

where:

nk: The number of rows of kernel submatrix.

nd: The number of rows of damping submatrix.

n: The number of rows of the matrix. n← nk+nd , nk � n, nd ≈ n.

m: The number of columns of the matrix.

Ak: The kernel submatrix. Ak ∈ Rnk×m,

Ad: The damping submatrix. Ad ∈ Rnd×m,

B: The derived matrix by keeping the first non-zero in each row

of Ad.

Adt: The transpose of Ad.

Aki: The piece of the kernel submatrix on task i.
Adi: The piece of the damping submatrix on task i.
AkT

i : The transpose of Aki.

Adti: The piece of the transposed damping submatrix on task i.
xi: The x ∈ Rm vector on task i.
x′i : The extended vector of xi on task i from vector reconstruction.

xki: The x ∈ Rm vector on task i from AkT
i × yk.

xdi: The x ∈ Rm vector on task i from Adti × yd′i .
yki: The kernel component of vector y ∈ Rnk on task i from Aki ×

xi.

yk: The reduced kernel component of vector y ∈ Rnk .

ydi: The damping component of vector y ∈ Rnd on task i from

Adi × x′i .
yd′i : The extended vector of ydi on task i from vector reconstruc-

tion.

symrcm(): Calculates a permutation based on reverse Cuthill-

McKee (RCM) algorithm.

Fig. 1: SPLSQR algorithm

4. Matrix Reordering

We next describe the necessary matrix reordering to prepare the original matrix used by SPLSQR algorithm.

Note that this section represents lines (01) - (04) in Figure 1. The original damping submatrix with big bandwidth

results in huge communication volume because there are large overlaps between MPI tasks after decomposition.

Matrix reordering has long been used to reduce matrix bandwidth. The reverse Cuthill-McKee algorithm (RCM)

[14] is a commonly used algorithm to reduce the bandwidth of sparse symmetric matrices. We want to utilize

RCM reordering to restructure the non-zero pattern of matrix Ad. However, we cannot apply RCM directly to our

matrix because of the following reasons:

• RCM only works on square matrix, while our matrix is a rectangular matrix.

• RCM requires applying both row and column permutation. Applying row permutation to damping does

not require reordering kernel submatrix. But applying column permutation to damping submatrix requires

applying the same column permutation to kernel submatrix as well in order to keep the final solution correct.

Moving columns of kernel certainly introduces significantly additional overhead.

• RCM often offers one large band near the diagonal area, which introduces large volume of communication

after matrix vector multiplication when computed in parallel because there are overlaps between MPI tasks.

We create a new square matrix M = B·BT ∈ Rnd×nd , where B ∈ Rnd×m for which we calculate a row permutation

that will be used to reorder Ad ∈ Rnd×m. Thus, column permutation is avoided. Such reordering of Ad has a small

number of bands, where each band has its bandwidth minimized. The matrix B is derived using the first non-zero

in each row of Ad, and ignoring any remaining non-zero elements in the row. By using only the first non-zero in

each row of Ad, we preserve the banded structure while minimizing the bandwidth of each band.

Figure 2 illustrates procedures of reordering. The original damping matrix Ad, shown in panel(a), is inherently

derived from Tikhonov regularization in three dimensions. The reduced matrix B in panel(b) is constructed from

the first non-zero value in each row of (a). Panel(c) is the resulting reordered matrix obtained by applying the

row permutation to the original matrix Ad. Panel(d) is an enlargement of the top part of the reordered matrix
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Fig. 2: The impact of RCM-based reordering algorithm. (a): original Ad; (b): reduced B; (c): reordered Ad; (d):

enlargement of (c)

in panel(c). The desired multi-band structure is apparent in both panel(c) and panel(d). Reordering significantly

reduces the bandwidth of each band.

In seismic experiment, for a specific geological region corresponding to a kernel dataset, researchers often try

different weights of damping matrix. Weights refer to the values of non-zeros in damping matrix. For the same

kernel data, the non-zeros’ positions in different damping submatrices are the same, but weights vary. Using RCM

to calculate row permutation is both memory and calculation intensive, while applying permutation to matrix only

moves the data in memory. The RCM algorithm is only sensitive to the position of non-zeros, but not sensitive

to the non-zeros’ values (weights). So the relative expensive row permutation (RCM reordering) only needs to be

calculated once for the same geological region. For difference damping sbumatrices with different weights, we

can reuse the same row permutation.

5. Data Decomposition

This section describes the partitioning of our data structures that correspond to lines (05) - (08) of our algorithm

in Figure 1. We use compressed sparse row (CSR) format and compressed sparse column (CSC) format as matrix

storage. Both formats preserve the values of non-zeros as well as their positions. Our partitioning approach

is based on the particular structure of the coefficient matrix A. Recall that the number of rows in the kernel

component nk and the number of rows in the damping component nd, we have nk � nd. For our ANGF dataset

nk ≈ 0.00001nd. The number of non-zeros in kernel submatrix Ak ∈ Rnk×m is nearly 90% of the total. The

damping matrix Ad contains approximately 10% non-zeros while there are a maximum of four non-zeros per

row. The kernel component is nearly dense while the damping component is extremely sparse. Therefore, we

use different approaches on partitioning the two different components. In particular, Ak is partitioned by columns

while Ad is partitioned by rows.

We illustrate our partitioning of the coefficient matrix A in Figure 3a. Different colors represent different MPI

tasks for both kernel Ak and damping Ad components. Note that Ad is already reordered into multi-band form. For

simplicity and clarity, we do not include the multi-band structure in Figure 3a but rather just view Ad as having a

single band. For the kernel component Ak, an equal number of columns are assigned to each MPI task. For the

damping component Ad, an equal number of rows are allocated to each MPI task.

The partitioning of matrix AT is illustrated in Figure 4a. While AkT maintains the same partitioning for Ak, the

partitioning for Adt is different, where Adt ∈ Rm×nd is partitioned across columns, the same partitioning approach

as AkT . Note that for consistency we will refer to any partitioning of AT with respect to the original matrix A.

Because AkT maintains the same partitioning, we are able to use a single copy of matrix Ak stored in CSC format

in memory. Unlike the kernel component, we maintain two copies of the damping component, i.e., one partitioned

by rows Ad and one partitioned by columns Adt. The duplicate copy of the damping component simplifies the
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Matrix A Vector x Vector y Vector y

+ + + +Ak

Ad

(a) A partitioning of the sparse matrix vector product A × x
for five MPI tasks. The colors correspond to different MPI

tasks. Note that the kernel rows at the top of matrix A are

partitioned across columns, while the damping rows are par-

titioned across rows. The corresponding partitions of vectors

x and y are also included. Note that the piece of vector y that

corresponds to the kernel rows is replicated across all tasks.

Matrix A Vector x Vector y

Extended Vector xi'

Aki

Adi

xi

yki

ydi

yk

ydi

(b) Vector reconstruction and A× x ( Aki × xi and Adi × x′i ) in

one MPI task. Yellow represents local task.

Fig. 3: Illustration matrix vector multiplication: A × x

algorithm and does not represent an excessive overhead because only 10% of the memory storage for the entire

matrix A is a result of the damping component. Note that we do not use a superscript T for the transposed damping

component but rather Adt to reflect that it is a separate copy of matrix within our algorithm. Ad is stored in CSR

format and Adt is stored in CSC format.

The vector x is partitioned across columns and is illustrated in Figures 3a and 4a. Vector y has two parts in

each task, a replicated kernel piece and a partitioned damping piece corresponding to the damping matrix. The

length of kernel part of yki is the same as the number of rows in kernel Ak. The damping part of ydi is partitioned

according to the number of rows of damping Adi in each task.

6. Parallel Computation

We next describe the most computationally expensive and complex section of SPLSQR algorithm, i.e., the

calculations of y ← A × x + y and x ← AT × y + x. The calculation of y ← A × x + y represents lines (11) - (17)

in Figure 1, while x ← AT × y + x represents lines (18) - (24). Both calculations require the reconstruction of

the necessary pieces of vectors x and y by communicating with other MPI tasks. However they also differ in key

characteristics due to the particular partitioning of matrices Ad and Ak.

6.1. y← A × x + y

Figure 3b illustrates the matrix vector multiplication y ← A × x from the perspective of the yellow task. We

begin with a description of calculating yk that involves the kernel matrix. Each task multiplies its local piece of

kernel Aki with local piece of xi and yields its kernel part of vector, yki, as indicated by the top part of vector y in

Figure 3b. Note that because of the column-based partitioning of Ak, yki is a partial result. Due to Ak’s random

and nearly dense feature, the resulting yki has overlap with all the other tasks. Hence a reduction across all tasks

is performed on yki to combine the partial results. The final result is illustrated in black in Figure 3b. Because the

number of rows in the kernel nk is very small relative to the entire number of rows n, the total cost of the reduction

only has a modest impact.

Next we describe the calculation of the damping component of ydi. Unlike the calculation of yki, the calcu-

lation of ydi requires additional pieces of x that the yellow task does not currently own. Note that in Figure 3b,

the width of the Adi matrix is greater than xi. The required additional pieces of x are owned by its neighboring
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Matrix 
transpose(A) Vector xVector y

AkT Adt

(a) A partitioning of the sparse matrix vector product AT × y
for five MPI tasks. The color corresponds to different MPI

tasks. The damping component of matrix AT uses the same

partitioning as the kernel component.

yk

Matrix 
transpose(A) Vector xVector y

Extended Vector ydi'
AkT

i Adti

yk ydi

xi

(b) Vector reconstruction and AT × y (AkT
i × yk and Adti × yd′i

) in one MPI task. Yellow represents local task.

Fig. 4: Illustration of matrix vector multiplication: AT × y

red and blue tasks. Therefore, the yellow task needs to gather multiple pieces of data from its neighboring tasks

to reconstruct an extended vector x′i . The extended x′i is multiplied with local damping Adi and yields local vector

ydi. No reduction is required for ydi because of the row-based partitioning of Ad. In practice, communication

with more than two neighbors may be necessary. The creation of both yk and ydi completes the calculation of

y← A × x + y.

6.2. x← AT × y + x

Figure 4b illustrates the multiplication of transposed matrix AT with vector y for the yellow task from Figure

4a. We first multiply the transposed kernel AkT with yk. Here we utilize the original kernel matrix AkT
i stored

in CSC format. We multiply a column of the matrix with kernel part of yk, which is equivalent to multiplying a

row of the transposed matrix with yk. This technique is preferable to either explicitly transposing Ak or storing a

duplicate copy of Ak. We have now constructed xki.

Next, each MPI task multiplies its local damping Adti matrix with local ydi. Like vector x, vector reconstruc-

tion is necessary for vector y because local yi is not sufficient to complete the multiplication for Adti. As Figure

4b illustrates, the data must be gathered by the yellow task from the red and blue tasks. The reconstructed vector

yd′i is multiplied with local damping Adti and yields xdi. A local sum of xki and xdi generates xi to complete the

calculation of x← AT × y + x.

7. Communication

As a result of the data decomposition discussed in Section 5, communication cost is reduced in the vector

reconstruction operations. Because x and y are partitioned (no overlap) among tasks, the resulting pieces of vector

x and y after the matrix-vector multiplication in each iteration do not overlap with those owned by other MPI tasks.

Another benefit is that data at a specific offset is located in only one of the MPI tasks. This avoids retrieving data

from multiple neighbors during the vector reconstruction phase, and therefore simplifies communication. Also,

decomposing the damping submatrix by row guarantees that there is no overlap in ydi from Adi × x′i . Similarly,

decomposing the transposed damping matrix by column, which is the same as the kernel submatrix, ensures that

the resulting xki and xdi have the same length on each task, with no overlap.

The multi-band structure of the reordered damping matrix helps reduce the amount of data that must be com-

municated with neighbors. Because the bandwidth of each band is very small, the gaps between bands are large,

and therefore the required communication is low. Figures 5a and 5b illustrate vector reconstruction phase. Figure

5a (1) shows the multi-band structure of damping matrix after reordering. In this case, we assume that it has three

bands, as seen in the simplified form of Figure 2 (c). More bands are possible depending on the internal structure
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zoom in

(1) (2)

Extended Vector xi'

(a) Reconstruction of extended vector x′i . (1) Blue is the orig-

inal reordered damping matrix with multi-band. (2) Green is

decomposed damping submatrix in one MPI task, and violet

is the required extended vector x′i .

zoom in

(1) (2)

Extended Vector ydi'

(b) Reconstruction of extended vector yd′i . (1) Blue is the

transposed damping matrix with multi-band. (2) Green is

decomposed damping submatrix in one MPI task, and violet

is the required extended vector yd′i .

Fig. 5: Reconstruction of extended vector

of the damping matrix. Figure 5a (2) is the decomposed submatrix of Figure 5a (1) on one MPI task, as shown in

green. Then we project the matrix to the x-axis to obtain the required extended vector x′i . The local task compares

the required extended vector x′i to its local xi, and decides which MPI tasks it needs to communicate with. Note

that there are gaps in the extended vector, which means that it only needs to gather three small pieces of vector x,

as shown in violet color. The gap helps reduce the number of communication neighbors. Figure 5b (1) (blue) is

the transpose form of Figure 5a (1). Figure 5b (2) (green) is the decomposed of Figure 5b (1) in one MPI task. We

project the local submatrix to the x-axis to obtain the desired extended vector yd′i shown in violet. The following

actions are similar to the reconstruction of vector x′i . The extended vector yd′i also has gaps.

The communication volume for each MPI tasks of SPLSQR and PLSQR can be expressed as Equation 1 and

Equation 2, respectively.

volume(S PLS QR) ≤ 2 · nk · (1 − 1

p
) +

m
p
· gx +

nd

p
· gy (1)

volume(PLS QR) = 2 · m · (1 − 1

p
) (2)

where p is the core count, and gx and gy indicate size of the sending list and receiving list for vector x and y,

respectively. Because m 	 nk, the non-scalable communication volume, i.e., 1st term of Equation 1, of SPLSQR

is significantly less than the volume of PLSQR. When combined with scalable communication (2nd and 3rd terms

in Equation 1) volume, the total volume of SPLSQR is still much less than that of PLSQR at large core count.

8. Performance Evaluation

Table 1: Characteristics of seismic datasets.

DEC3 ANGF

nx, ny, nz physical domain (nx × ny × nz) 165 × 256 × 16 496 × 768 × 50

m # column 1,351,680 38,092,800

nk # rows in kernel 3,543 3,543

nd # of rows in damping 8,877,544 261,330,576

nnzAk # non-zeros kernel 183,113,885 5,321,630,642

nnzAd # non-zeros damping 8,877,544 818,542,016

We examine the performance of SPLSQR algorithm on Kraken, a Cray XT5 system at the National Institute
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for Computational Sciences (NICS) located at Oak Ridge National Laboratory. 1 Table 1 lists the characteristics

of our two experimental datasets: ANGF and DEC3. We compare the performance characteristics of our SPLSQR

algorithm implemented by MPI C with PLSQR (pure MPI C implementation without CUDA interference) and

the PETSc implementation of the LSQR algorithm. Note that all three algorithms take a different parallelization

approach. The PLSQR algorithm [13] assigns one or more kernel and damping rows to each MPI task. The partial

calculation of the result x ← AT × y requires the use of a global reduction on vector x. The PETSc algorithm

uses the same partitioning of kernel and damping rows but uses vector-scatter operations to perform the vector

reconstruction described in Sections 6.1 and 6.2. We use PETSc version 3.1.05 compiled with gcc 4.6.2.

8.1. Performance analysis
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SPLSQR
total

SPLSQR
comm

PETSc
total

PETSc
comm

PLSQR
total

PLSQR
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(a) Total and communication time for 100 iterations of the

SPLSQR, PLSQR, and PETSc implementations of LSQR for

the small DEC3 dataset from 60 to 1920 cores of a Cray XT5.
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(b) Total and communication time for 100 iterations of the

SPLSQR and PETSc implementations of LSQR for the mod-

est ANGF dataset from 360 to 19,200 cores of a Cray XT5.

Fig. 6: Total and communication time on a small dataset DEC3 and a modest dataset ANGF

We provide the total execution time as well as the time spent on communication for the SPLSQR, PLSQR,

and PETSc algorithms using 8-byte floating-point values in Figure 6a. We measure the time by performing 100

iterations of LSQR using our own timers for the SPLSQR and PLSQR algorithms, and the built-in timers for

PETSc that are accessed using the flag “-log summary”. Note that for SPLSQR and PLSQR implementations, we

use barriers to delineate the various sections of the algorithm, which does lead to a minor increase in overall time.

For small core counts the PETSc algorithm has a somewhat smaller total time than for the PLSQR algorithm,

while they have nearly identical times for core counts of 600 and 720. It is noteworthy that neither algorithm

demonstrates much speedup on larger core counts. The PETSc algorithm achieves a speedup of 1.3x when core

counts are increased from 60 to 360, while the PLSQR algorithm achieves a speedup of 1.5x when core counts

are increased from 60 to 720. Neither PLSQR nor PETSc demonstrates any decrease in execution time after 360

cores. The SPLSQR algorithm demonstrates a significantly different performance profile. In particular not only

is the execution time of the SPLSQR algorithm 1.7x less than the PETSc algorithm at 60 cores, it is 7.8x less

at 720 cores. The SPLSQR algorithm achieves a speedup of 7.6x when the core counts are increased from 60

to 1920. The reason for the significantly different scaling characteristics between SPLSQR and the other two

algorithms is due to differences in the communication cost. Figure 6a also illustrates the total communication

cost associated with the sparse matrix-vector multiplication. While the communication costs for the PLSQR and

1Each of the 9,408 compute nodes in the Kraken system consists of two hex-core AMD Opteron 2435 (Istanbul) processors running at 2.6

GHz, for a total of 112,896 cores. Each compute node also has 16GB of DDR2-800, and nodes are connected with Cray SeaStar 2+ routers in

a three-dimensional torus geometry.
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p # core 60 360 720

x vector reconstruction

gx # neighbor 4.6 5.7 5.9

msg length (Kbytes) 93 15 7.9

y vector reconstruction

gy # neighbor 4.6 5.7 5.9

msg length (Kbytes) 315 54 28

(b) Average number of neighbors and message length in

bytes for x and y vector reconstruction in SPLSQR.

Fig. 7: Communication on DEC3 dataset

PETSc algorithm are a significant component of overall cost, the communication cost for the SPLSQR algorithm

is, relatively speaking, insignificant. In particular, the communication cost for SPLSQR is over 50x less than either

the PLSQR or PETSc algorithm.

We next look at the scalability of the SPLSQR algorithm on large core counts. We focus on a comparison of

the PETSc and SPLSQR algorithm for the ANGF dataset based on the results on DEC3. Figure 6b illustrates the

total execution time and the communication time for the sparse matrix-vector multiplications for the SPLSQR and

PETSc implementations of LSQR algorithm using the ANGF dataset on core counts of 360 to 19,200 on Kraken.

Due to memory constraints, for the 360 and 480 core configurations we utilize 6 and 8 cores per node, respectively.

All other core counts utilize 12 cores per node. Note that due to the particular partitioning of rows across MPI

tasks, the total number of MPI tasks is limited to the total number of rows in the kernel component for PETSc. For

the ANGF dataset, this limits PETSc to a maximum of 3543 MPI tasks. SPLSQR does not have a similar limit due

to its different partitioning approach. It is apparent from Figure 6b that the SPLSQR algorithm has significantly

lower execution time for all core counts. The reduction in execution time for SPLSQR versus PETSc varies from

a low of 4.3x on 360 cores to a high of 9.9x on 2400 cores. The significant reduction in execution time achieved

by SPLSQR is a direct result of reducing the communication cost.

Figure 6b also illustrates the communication cost for the SPLSQR and PETSc implementations using the

ANGF dataset. As with the DEC3 dataset, we concentrate on the communication costs associated with the calcu-

lations of the sparse matrix-vector multiplications. It is very apparent from Figure 6b that the SPLSQR algorithm

significantly reduces communication cost versus PETSc implementations by greater than a factor of 100x.

We next examine the reason for the vastly different communication costs between the three different algo-

rithms. In Figure 7a, we provide the total amount of bytes transferred for the three different algorithms. We utilize

Equation 1 to calculate the expected amount of send volume for the SPLSQR algorithm and Equation 2 for the

PLSQR algorithm. Figure 7a also includes the amount of send volume as measured by the Cray Performance

Analysis Tools [15] for the SPLSQR and PLSQR algorithms, as well as the amount of message traffic reported

by the PETSc build-in profiling capabilities. Note that there is an excellent correlation between the measured and

expected amount of send volume for the SPLSQR and PLSQR algorithms. As expected, the amount of commu-

nication volume per task is fixed for the PLSQR algorithm and scales with core count for the SPLSQR algorithm.

The send volume increases with core count for the PETSc algorithm. Unfortunately the increase in send volume

for the PETSc algorithm is an expected result due to the nearly dense kernels rows and the necessary vector re-

construction, because PETSc is designed for non-random sparse matrices. Closer examination of the message

passing statistics for the PETSc algorithm indicates that not only does the total volume increase with core count

but the average size decreases from 18 Kbytes on 60 cores to 1 Kbyte on 720 cores. Both the increase in volume
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and decrease in message size explain why the communication cost for the PETSc algorithm increases with core

count. The PLSQR algorithm that has a fixed communication volume regardless of core and fixed message size

has a communication cost that increases very modestly with core count.

Table 7b shows the average number of communication neighbors and message length for the SPLSQR algo-

rithm using 60, 360, and 720 core counts. Note that the x vector reconstruction, which is needed for A× x+y, has a

modest number of communication neighbors (gx) and messages that are 10 times larger than the PETSc algorithm

for similar core counts. Similarly, the y vector reconstruction, which is needed for AT ×y+ x, has a similar number

of communication neighbors (gy) and even longer messages. Note that the bounded number of communication

neighbors and relatively long message size result in the very low communication cost of the SPLSQR algorithm.

9. Conclusions and Future Work

LSQR is a widely used numerical method to solve large sparse linear systems in tomographic problems.

We describe the SPLSQR algorithm that utilizes particular characteristics of coefficient matrix that include both

pseudo-dense and sparse components. We demonstrate that the SPLSQR algorithm has scalable communication

volume and significantly reduces communication cost compared with existing algorithms. We also demonstrate

that on a small seismic tomography dataset, the SPLSQR algorithm is 9.9 times faster than the PETSc algorithm

on 2,400 cores of a Cray XT5. The current implementation of the SPLSQR algorithm on 19,200 cores of a Cray

XT5 is 33 times faster than the fastest PETSc configuration on the modest ANGF dataset. In the future, we will

extend SPLSQR to utilize additional parallel programming approaches, e.g., OpenMP or CUDA.
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[4] L. Zhao, T. Jordan, K. Olsen, P. Chen, Fréchet kernels for imaging regional earth structure based on three-dimensional reference models,

Bulletin of the Seismological Society of America 95 (6) (2005) 2066–2080.

[5] P. Chen, T. Jordan, L. Zhao, Full three-dimensional tomography: a comparison between the scattering-integral and adjoint-wavefield

methods, Geophysical Journal International 170 (1) (2007) 175–181.

[6] P. Chen, L. Zhao, T. Jordan, Full 3d tomography for the crustal structure of the los angeles region, Bulletin of the Seismological Society

of America 97 (4) (2007) 1094–1120.

[7] G. Nolet, Inversion and resolution of linear tomographic systems, EOS, Trans. Am. Geophys. Union 64 (1983) 775–776.

[8] J. Scales, Tomographic inversion via the conjugate gradient method, Geophysics 52 (1987) 179–185.

[9] O. Baur, G. Austen, A parallel iterative algorithm for large-scale problems of type potential field recovery from satellite data, in: Pro-

ceedings Joint champ/grace Science Meeting, Geoforschungszentrum Potsdam, 2005.

[10] S. Balay, K. Buschelman, W. D. Gropp, D. Kaushik, M. G. Knepley, L. C. McInnes, B. F. Smith, H. Zhang, PETSc Web page,

http://www.mcs.anl.gov/petsc (2009).

[11] A. Yoo, A. H. Baker, R. Pearce, V. E. Henson, A scalable eigensolver for large scale-free graphys using 2d graph partitoining, in:

International Conference for High Performance Computing, Networking, Storage and Analysis, SC11, 2011, pp. 1–11.

[12] J. Liu, F. Liu, J. Liu, T. Hao, Parallel LSQR algorithms used in seismic tomography, Chinese Journal of Geophysics 49 (2) (2006)

540–545.

[13] H. Huang, L. Wang, E.-J. Lee, P. Chen, An MPI-CUDA implementation and optimization for parallel sparse equations and least squares

(LSQR), in: 2012 International Conference on Computational Science (ICCS) (main track), Procedia Computer Science, Elsevier, 2012.

[14] E. Cuthill, J. McKee, Reducing the bandwidth of sparse symmetric matrices, in: Proceedings of the 24th national conference, ACM

Press, New York, NY, USA, 1969, pp. 157–172.

[15] L. DeRose, B. Homer, D. Johnson, S. Kaufmann, H. Poxon, Cray performance analysis tools, Tools for High Performance Computing

(2008) 191–199.




