
ARTICLE IN PRESS

Solar Energy Materials & Solar Cells 94 (2010) 1441–1447
Contents lists available at ScienceDirect
Solar Energy Materials & Solar Cells
0927-02

doi:10.1

n Corr

E-m

(S. Roy
journal homepage: www.elsevier.com/locate/solmat
Maximum power point tracking of partially shaded solar photovoltaic arrays
Shubhajit Roy Chowdhury, Hiranmay Saha n

IC Design and Fabrication Centre, Department of Electronics and Telecommunication Engineering, Jadavpur University, India
a r t i c l e i n f o

Article history:

Received 6 July 2009

Received in revised form

27 March 2010

Accepted 12 April 2010
Available online 23 May 2010

Keywords:

Maximum power point tracking

Adaptive perceptive particle swarm

optimization

Solar photovoltaic array
48/$ - see front matter & 2010 Elsevier B.V. A

016/j.solmat.2010.04.011

esponding author. Tel.: +91 3324146833; fax

ail addresses: shubhajit@juiccentre.res.in, sah

Chowdhury), hsaha@juiccentre.res.in (H. Sah
a b s t r a c t

The paper presents the simulation and hardware implementation of maximum power point (MPP)

tracking of a partially shaded solar photovoltaic (PV) array using a variant of Particle Swarm

Optimization known as Adaptive Perceptive Particle Swarm Optimization (APPSO). Under partially

shaded conditions, the photovoltaic (PV) array characteristics get more complex with multiple maxima

in the power–voltage characteristic. The paper presents an algorithmic technique to accurately track

the maximum power point (MPP) of a PV array using an APPSO. The APPSO algorithm has also been

validated in the current work. The proposed technique uses only one pair of sensors to control multiple

PV arrays. This result in lower cost and higher accuracy of 97.7% compared to earlier obtained accuracy

of 96.41% using Particle Swarm Optimization. The proposed tracking technique has been mapped onto a

MSP430FG4618 microcontroller for tracking and control purposes. The whole system based on the

proposed has been realized on a standard two stage power electronic system configuration.

& 2010 Elsevier B.V. All rights reserved.
1. Introduction

Solar photovoltaic systems (SPV) are being increasingly
employed in grid connected, hybrid and stand-alone systems.
However, a major challenge in using a PV source is to tackle its
nonlinear output characteristics, which vary with temperature
and solar insolation. The characteristics get more complicated if
the entire array does not receive uniform solar insolation, as in
partially shaded conditions, due to passing by clouds, neighboring
buildings, towers, trees and telephone poles, resulting in multiple
peaks in the P–V characteristics. The presence of multiple peaks
reduces the effectiveness of the existing maximum power point
tracking (MPPT) schemes, due to their inability to effectively
discriminate between the local and global maxima in the P–V

characteristics [1–3]. It is pertinent to track and find the optimal
operating voltage of PV arrays in order to increase the efficiency of
PV generators.

Over the years, several researchers have studied the char-
acteristics of partially shaded PV modules and the external factors
that affect them [4–6]. Walker has proposed a MATLAB based
model of a PV module in [4] to simulate its characteristics for
studying the effect of temperature, insolation and load variation
on available power. Alonso-Gracia et al. have experimentally
obtained the I–V characteristics of PV module and the constituent
cells to study the effect of partial shading in [5]. Kawamura et al.
proposed a computer simulation model in [6] to investigate the
ll rights reserved.
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relation between the output lowering due to shaded PV cells and
the change of I–V characteristics. However, the I–V and P–V

characteristics of a single module considered in [4–6] do not
predict the presence of multiple steps and peaks, which are
common in P–V characteristics of large PV arrays that receive non-
uniform insolation.

Few researchers have studied the effects of fluctuations of PV
power on the utility and connected systems. Kern et al. have
studied the consequences of shading of PV due to passing by clouds
on the PV power generation in [7]. Giraud et al. used an artificial
neural network (ANN) based model in [8] to investigate the effects
of passing by clouds on a grid connected PV system with battery
storage. It is customary to select a proper size of PV array in such
systems [9]. Otherwise, a large change in PV power because of
insolation variation caused by shading may lead to instability.

Various maximum power point tracking methods have been
proposed and used to extract maximum power from PV arrays under
varying atmospheric conditions [10–16]. However, most of the
schemes available in literature are suitable under ideal conditions
under uniform illumination and are not able to track the maximum
power point under partially shaded conditions, where more than one
maximum peak are obtained in the PV array characteristics
depending upon the series–parallel connections of the series strings
of the array experiencing different levels of solar insolation.

Several researchers have attempted in the global MPPT
realization by evolving different algorithms. However, most of
them [17–20] use lengthy calculations, on-line sensed data or
special circuit configurations. Miyatake et al. attempted to
approach the global MPP using Particle Swarm Optimization
algorithm [21]. However, the conventional particle swarm
optimization suffers from some drawbacks. In a standard PSO,

www.elsevier.com/locate/solmat
dx.doi.org/10.1016/j.solmat.2010.04.011
mailto:shubhajit@juiccentre.res.in
mailto:sahahiran@gmail.com
mailto:sahahiran@gmail.com
mailto:hsaha@juiccentre.res.in


ARTICLE IN PRESS

S. Roy Chowdhury, H. Saha / Solar Energy Materials & Solar Cells 94 (2010) 1441–14471442
the farther the particle is from the best position based on its own
experience and its neighbor, the larger a change in velocity is to
be made in order to return to that best position. The acceleration
limits the trajectory of particle oscillation. The smaller the
acceleration, the smoother the trajectory of the particle is.
However, too small an acceleration can lead to slow convergence,
whereas too large an acceleration drives the particles towards
infinity. The updated velocity is limited by the maximum velocity
to prevent particles from moving too fast in space [22].
Kaekawkamnerdpong and Bentley proposed a Perceptive Particle
Swarm Optimization (PPSO) algorithm in [22] with the objective
of further closely approaching the global optimum in the search
space. However, the perception radius, number of sample points
and the number of sampling directions are kept constant in PPSO.
This has a serious drawback. If the number of sample points per
direction and the number of sampling directions are kept
sufficiently low, then the algorithm runs quite fast, but we may
miss the global optimum position. On the other hand, increasing
the number of sampling points per direction and the number of
sampling directions, we may reach the global optimum very
closely, but we shall have to pay considerably for the computation
time of the algorithm. The authors in their previous work [23]
have established a variant of Particle Swarm Optimization known
as Adaptive Perceptive Particle Swarm Optimization, using which
the global optimum can be approached more closely.

The paper presents the simulation and hardware implementa-
tion of maximum power point (MPP) tracking of a partially
shaded solar photovoltaic (PV) array using a variant of Particle
Swarm Optimization known as an Adaptive Perceptive Particle
Swarm Optimization (APPSO). The authors aim to realize a power
tracking scheme that can find the global MPP to maximize the
generated power from the PV source. It should be applicable to
large scale PV system, resulting from series–parallel combination
of solar cells. The proposed tracking technique has been mapped
onto a MSP430FG4618 microcontroller for tracking and control
purposes. The whole system based on the proposed has been
realized on a standard two stage power electronic system
configuration.

The whole paper is organized as follows. Section 2 focuses on
the power output of a partially shaded PV array. Section 3
presents the APPSO algorithm and its validation. Section 4
presents the application of an APPSO to MPP tracking of a solar
PV array and its simulation results. Section 5 presents the two
stage power electronic system configuration for MPPT.
2. Power output of partially shaded PV array

Fig. 1 shows M series–parallel connected PV modules and their
power–voltage characteristics. Each module consists of an n series
connected PV cells. The PV array 1 in Fig. 1(a) is totally illuminated
by solar radiation. The graph is Fig. 1(c) clearly indicates that
there exists only one maximum in the power–voltage (P–V)
characteristics of PV array 1 under totally illuminated condition.
However, the PV array 2 shown in Fig. 1(b) is partially illuminated
by solar radiation. If the modules with different optimal current,
caused by uneven solar insolation are connected in series–parallel,
local maximum power points (MPPs) often appear in the power vs.
voltage (P–V) characteristics. This is due to the fact that the optimal
current of each PV module is nearly proportional to the insolation
falling on it. Hence, corresponding to n series connections, there
exists n maxima in the P–V characteristics of P–V array 2 under
partially shaded condition as shown in Fig. 1(c). Under these
conditions, the conventional MPPT controller may track to a local
MPP instead of a global MPP. Hence, the generated power may
reduce and the PV system efficiency will decrease.
We have ignored the effect of protection diodes across the
modules, which are sometimes used for protecting the solar
modules from lightning discharge. The voltage across the modules,
even under the partially shaded conditions is not expected to be
affected by the presence of protection diodes under reverse bias
conditions. Sometimes, bypass diodes are used across the cells/
modules to avoid hotspot breakdown. However, the effects of these
bypass diodes can be neglected when the cells/modules are
partially shaded with the level of illumination not less than 20%
for all practical purposes.
3. Adaptive perceptive particle swarm optimization

The proposed adaptive perceptive particle swarm optimization
algorithm is relatively similar to the perceptive swarm
optimization algorithm [22] and the conventional particle swarm
optimization algorithm. In conventional PSO, for an n-dimensional
optimization problem, an n-dimensional search space is consid-
ered. However, in PPSO and in the proposed APPSO, the algorithm
operates in (n+1) dimensional search space. The added dimension
represents the underlying performance of particles at their
positions in an n-dimensional space. As in the PPSO algorithm, in
an APPSO also, the particles fly around (n+1) dimensional search
space. In effect, the particles fly over a physical fitness landscape
observing its crests and trough from a far. Particles observe the
search space within their perception ranges by sampling a fixed
number of directions to observe and sampling a finite number of
points along those directions. The particles attempt to observe the
search space for landscape at several sampled distances from its
position, in each direction. If the sampled point is within the
landscape, the particle perceives the height of the landscape at that
point. The particles can observe neighboring particles in their
perception range. The particle randomly chooses the neighboring
particles, which will influence the particle to move towards them.
The position of the chosen neighbor will be used as the local best
position of the particle. However, unlike the PPSO algorithm, in an
APPSO algorithm, if the local best position of the particle at the
current iteration does improve the performance of the particle,
then its personal best position is updated in the next iteration.
Apart from that, the spacing between the sample points along any
direction within the perception radius is minimized and/or the
number of sampling directions is increased and/or the perception
radius is minimized. This encourages more social interaction of
the particles. Conversely, if the local best position of the particle at
the current iteration deteriorates the performance of the particle,
the spacing between the sample points along any direction within
the perception radius is minimized and/or the number of sampling
directions and/or perception radius is increased. The basic idea
behind such modification is to explore the landscape more
exhaustively near the local maxima, so that the global maximum
is very closely reached which means that the results will be more
optimized in an APPSO than in case of PPSO. The presence of
neighboring particles influences the calculation of new velocity for
the next iteration in the same way as the local social interaction in
the conventional particle swarm optimization. As in PPSO, in an
APPSO also the fitness function is the average of the height of the
landscape observed from all observation directions minus distance
between the particle and the point of observation in the landscape.
A detailed discussion of an APPSO is given in [23].

3.1. Validation of the APPSO algorithm

The performance of the conventional PSO algorithm is compared
with the APPSO algorithm applied on the same problems. The fitness
function for the experiment with the conventional PSO algorithm is
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Fig. 1. (a) PV array configuration of module PV1 (under total illumination). (b) PV array configuration of module PV2 (under partial shading). (c) Power – vs. – voltage

characteristics of modules PV1 and PV2.
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the function to optimize, while the fitness function for the APPSO
algorithm experiment is the average of the height of the landscape
observed from all observation directions minus the distance
between the particle and observed landscape. The reason for having
different fitness functions for each algorithm is that the APPSO
algorithm has no communication and no knowledge of the function
to optimize available to the swarm. Apart from the fitness function,
both algorithms are experimented on the same settings. The
performance of the algorithms has been compared using MATLAB
simulations. The performance of each algorithm is presented in
terms of the optimization errors, which is the minimum distance
between the maxima of the landscape and the final personal best
position of each algorithm over all runs.

The functions used in the experiments are the following:

f1ðxÞ ¼ 20e�x2=20 ð1Þ
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f2ðxÞ ¼ 18e�ðxþ10Þ2=10þ20e�ðx�10Þ2 ð2Þ

f3ðxÞ ¼ 16e�ðxþ19Þ2=0:25�16e�ðxþ18Þ2=0:25þ4e�ðxþ17Þ2=0:25

�4e�ðxþ16Þ2=0:25þ6e�ðxþ15Þ2=0:25�6e�ðxþ14Þ2=0:25

þ8e�ðxþ13Þ2=0:25�8e�ðxþ12Þ2=0:25þ18e�ðxþ11Þ2=0:25

þ20eðx�19Þ2=0:01 ð3Þ

The first function, shown in Fig. 2a, is a simple function
optimization problem, where there is one optimum with
symmetrical slopes of moderate gradient. Using this function,
the first experiment aims to investigate the performance of the
PPSO algorithm on a simple task. In Fig. 2b, the second function
consists of two optima. The local optimum peak expands in a
larger area compared to the steeper global optimum peak; thus it
is easier to find the local one. The second experiment uses this
Fig. 2. Three functions in one dimension used in the experiments.
function to examine the ability of PPSO to find the global optimal
solution, when a local optimal solution is nearby. The third and
last function, shown in Fig. 2c, has several local optimum peaks on
one side and a global optimum spike at the other side, and is used
in the third experiment.

In the experiments, the number of particles is varied to
investigate the effect of changing in the number of particles. Each
optimization problem is experimented in one, two and three
dimensions. The parameter settings for the experiments on both
algorithms are described as follows. The maximum velocity is set
as 7.0 units. The inertia weight is a random number between 0.5
and 1.0. The acceleration constants are set at 1.494. Each
experiment was run 20 times in order to obtain a reliable result.
The algorithms terminate when they reach the maximum
Fig. 3. Performance comparison of PSO and an APPSO in terms of optimization

error. X axes show the number of particles and Y axes show the optimization error.
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Table 1
Initialization of particle velocities.

Agent V1 [V] V2 [V]

1 0.2VOC 0.3VOC

2 0.5VOC 0.4VOC

3 0.6VOC 0.1VOC

4 0.8VOC 0.7VOC

5 0.9VOC 0.4VOC
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iteration of 50,000 or when all particles move less than a distance
of 0.4 units.

For the experiment on an APPSO algorithm, the particles
operate in n+1 dimension when the function to optimize is an
n-dimension. Apart from parameter settings based on the conven-
tional PSO algorithm, the parameters for an APPSO algorithm are
the minimum number of observation directions set as 3, the inner
perception radius of 3.0 units, the outer radius of 12.0 units and
minimum sample points per direction set as 3. The results shown
are representative of the other results obtained from the experi-
ments. Fig. 3 illustrates the comparison between four algorithms in
terms of the optimization error. The number of particles in the
swarm has been varied in the different sets of experiments for the
three aforementioned functions and the optimization error has
been plotted in the Y-axis against the number of particles in the
X-axis. Compared to the PSO algorithm, an APPSO algorithm
resulted in good performance in terms of an optimization error.

The results show that the greater the number of particles in
the swarm, the more the PPSO algorithm finds a good solution;
however, this is at the expense of greater computation time. In
contrast, having fewer particles might suffer from greater
optimization error, but it requires less time.
4. Application of the APPSO to MPPT tracking of PV array

In case of constant bus voltage applications, only one current
sensor is sufficient for tracking the maximum power from several
individual PV modules. It is called multidimensional MPPT
control. The terminal voltage of the individual PV systems are
grouped and represented in the form of an N-dimensional row

vector indicating the position vector of the particles x
!k

as

x
!k
¼ ½V1

k,V2
k, . . ., VN

k
� ð4Þ

where N is the size of the row vector and indicates the number of
PV strings.

The velocity vector v
!

can be represented as

v
!k
¼ ½V1

k
�V1

k�1,V2
k
�V2

k�1, . . ., VN
k
�VN

k�1
� ð5Þ

The landscape function is the generated power that is spanning
over N+1 dimensional search space. The output vector changes

and measures the powerPð x
!k
Þ.

Pð x
!k
Þ ¼ V1

kI1þV2
kI2þ � � � þVN

kIN ð6Þ

where I1, I2, y, IN refers to the string currents in the strings with

terminal voltages V1
k,V2

k, . . ., VN
k, respectively.

For obtaining the currents, the circuit model of a PV cell is
considered. The circuit model of a PV cell is shown in Fig. 4. The
shunt resistance is ignored for the sake of simplicity which is good
enough for fairly accurate models.

The current equations which describe the I–V characteristics of
the module are

I¼ IL�I0ðe
qðV þ IRSÞ=nkT�1Þ ð7Þ
Fig. 4. Circuit model of a PV cell.
IL ¼ ILðT1Þð1þK0ðT�T1ÞÞ ð8Þ

ILðT1Þ ¼ G:ISCðT1,nomÞ
=GðnomÞ ð9Þ

K0 ¼ ðISCðT2Þ
�ISCðT1Þ

Þ=ðT2�T1Þ ð10Þ

I0 ¼ I0ðT1Þ
ðT=T1Þ

3=ne�ðqVg=nkÞ:ð1=T�1=T1Þ ð11Þ

I0ðT1Þ
¼ ISCðT1Þ

=ðeqVOCðT1 Þ
=nkT1�1Þ

ð12Þ

RS ¼�dV=dIVOC
�1=XV ð13Þ

XV ¼ I0ðT1Þ
ðq=nkT1Þe

qVOCðT1 Þ
=nkT1 ð14Þ

In the above set of equations, I represents the current at the
output of a PV cell and V represents its terminal voltage.
IL represents the photocurrent. A series resistance RS has been
included, but not the shunt resistance. The photocurrent IL is
directly proportional to the irradiance G. The temperature
dependence of the diode saturation current I0 and photocurrent
IL has been incorporated in the model to make the model more
accurate. T refers to the temperature and the nominal tempera-
ture T1 has been chosen to be 25 1C. K0 refers to the temperature
coefficient of short circuit current. VOC and ISC refer to the open
circuit voltage and short circuit current, respectively. The ideality
factor n assumes a value between 1 and 2.

4.1. Simulation and results

For simulation, we consider two strings of PV modules. Module
PV1 is totally illuminated by solar radiation. However, module
PV2 is partly under shade. Hence, in the context of the present
problem, the number of modules M is set to 2. The number of
particles N is set to 5. The circuit parameters have been taken
same as in [22].

The particle velocities are initialized randomly as shown in
Table 1:
where VOC refers to the open circuit voltage of an array.

Using the 8 variations of an APPSO given in [23], as well as PSO
and GA, we have got the results of maximum power point
tracking as shown in Table 2:

The optimal value of power has been calculated analytically
using circuit parameters as in [21]. This has been calculated to be
391 W. An analysis of Table 2 reveals that an APPSO3 yields the
maximum power point (382 W) that is closest to the global
optimal maximum power point (391 W). Moreover we see that
while using PSO, the global optimal MPP of 377 W is reached with
96.41% accuracy, the MPP can be reached with 97.7% accuracy
using an APPSO algorithm.
5. Two stage power electronic system configuration for MPPT

Based on the proposed technique, a two stage power electronic
system architecture has been proposed as shown in Fig. 5.

The system comprises of a boost type dc–dc converter and an
inverter to feed the power generated by PV array to the grid and
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Table 2
Results of maximum power point tracking obtained using different techniques.

Algorithm PV1 voltage PV1 current (A) PV2 voltage PV2 current (A) Power Efficiency (%)

Optimal (V) MPPT (V) Optimal (V) MPPT (V) Optimal (W) MPPT (W)

APPSO1 45 45.7 4.13 45 46.8 4.06 391 379 96.93

APPSO2 45.8 4.12 46.9 4.04 378 96.67

APPSO3 45.9 4.16 46.3 4.12 382 97.70

APPSO4 45.4 4.18 46.3 4.11 381 97.44

APPSO5 45.5 4.14 46.5 4.09 379 96.93

APPSO6 45.6 4.13 46.9 4.06 378 96.67

APPSO7 45.5 4.14 46.2 4.08 377 96.41

APPSO8 45.7 4.16 46.9 4.06 381 97.44

PSO 46.1 4.06 47.1 4.03 377 96.41

GA 46.2 4.01 46.9 4.07 376 96.16

Fig. 5. System configuration for grid connected PV-based system.
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grid connected loads. The system configuration shown in Fig. 5 is
standard power system architecture available in standard litera-
tures. This also elucidates that the APPSO algorithm can be
mapped onto the standard power system architecture. We used
MSP430FG4618 to implement the MPPT algorithm. The MSP430
incorporates a 16-bit RISC CPU, peripherals, and a flexible clock
system that interconnect using a von Neumann common memory
address bus (MAB) and memory data bus (MDB). In the present
application, a square wave of varying duty cycle has been
generated using the microcontroller. This square wave drives
the dc–dc buck converter. At regular intervals, we performed the
MPPT algorithm and according to that the duty cycle of the output
is varied. In our case, the required interval was 10 s. The interrupt
capability of the timer has been used. The timer is initially started
and continues with the generation of square wave. After specified
interval CPU is interrupted by the timer and corresponding
interrupt service routine (ISR) is invoked. The ISR is actually the
MPPT algorithm based on an APPSO. After execution of the
routine, new duty cycle is established and the system operates
with the modified duty cycle. The DC–DC converter can be
realized on the TMS320F280X DC–DC buck converter. For
converting the analog current being sensed into the digital form
to be understood by the microcontroller, an A/D converter
ADS1208 has been used.
6. Conclusion

A novel MPPT algorithm using an APPSO technique was
proposed to control several PV arrays with one pair of voltage
and current sensors. The developed algorithm is simple and also
reduces cost in the data acquisition system. The proposed
technique indicates that the MPP can be tracked with greater
accuracy using an APPSO algorithm than that is possible with the
PSO algorithm. The proposed technique has been mapped onto a
two stage standard power electronic system configuration.
Further works are going on.
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