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This paper details an improved modeling technique for a photovoltaic (PV) module; utilizing the optimi-
zation ability of a genetic algorithm, with different parameters of the PV module being computed via this
approach. The accurate modeling of any PV module is incumbent upon the values of these parameters, as
it is imperative in the context of any further studies concerning different PV applications. Simulation,
optimization and the design of the hybrid systems that include PV are examples of these applications.
The global optimization of the parameters and the applicability for the entire range of the solar radiation
and a wide range of temperatures are achievable via this approach. The Manufacturer’s Data Sheet infor-
mation is used as a basis for the purpose of parameter optimization, with an average absolute error fit-
ness function formulated; and a numerical iterative method used to solve the voltage-current relation of
the PV module. The results of single-diode and two-diode models are evaluated in order to ascertain
which of them are more accurate. Other cases are also analyzed in this paper for the purpose of compar-
ison. The Matlab–Simulink environment is used to simulate the operation of the PV module, depending
on the extracted parameters. The results of the simulation are compared with the Data Sheet information,
which is obtained via experimentation in order to validate the reliability of the approach. Three types of
PV modules, using different technologies, are tested for the purpose of this validation, and the results
confirm the accuracy and reliability of the approach developed in this study. The effectiveness of the
model developed by this approach to predict the performance of the PV system under partial shading
conditions was also validated.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Photovoltaic systems are one of the most popular renewable en-
ergy sources in today’s world. There are ubiquitous in numerous set-
tings, be it urban or rural [1–3]. Due to the many factors and benefits,
both the public and private sectors are showing a tremendous
amount of interest in the potential and capability of energy genera-
tion from these devices [4–7]. One of the major advantages of PV
technology is its long lifecycle time, with low operation and mainte-
nance costs, due to the fact that it does not rely on a minimal number
of moving parts. Furthermore, this technology heralds a clean and
environmentally-friendly energy source. Another salient feature of
the PV technology is its modularity, where instead of installing a
whole new system whenever required; a current system can be up-
graded accordingly within a short period of time [8–17]. Its benefits
and flexibility makes it ideal for space and earth applications [16,18],
and it is expected to grow in the near future, from small PV stand-
alone site applications, to large PV grid connected systems [19–21].

As previously mentioned, a PV power system is one of the more
important renewable energy sources. Due to its importance, large
PV power systems have been installed in multiple countries. How-
ever, due to the high initial capital needed for this technology, the
optimal utilization of the solar energy should be insured, and pre-
cise studies and simulation of the PV power system shall be per-
formed prior to its installation [22–24]. The modeling of the PV
module represents the important task in the whole PV system
pre-installation procedure.

Modeling of the PV cell is a mathematical description of the PV
output current–voltage (I–V), and power–voltage (P–V) relations. A
general equivalent circuit (model) that represents the operation of
the PV cell is illustrated in Fig. 1. This model is called a single-diode
model. A more detailed model is a two-diode model, which uses
two diodes to express the P–N junction effect, and this model is
shown in Fig. 2.
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Nomenclatures

a ideality factor
a1 ideality factor of diode 1
a2 ideality factor of diode 2
DV decision vector
DV1d decision vector-single-diode model
DV2d decision vector-two-diode model
DV1d-m decision vector-modified single-diode model
DV2d-m decision vector-modified two-diode model
Errorave average absolute error
G solar radiation (W/m2)
Gj solar radiation (W/m2) at point j
GSTC solar radiation (W/m2) at standard test conditions
ID1 current of diode 1 (A)
ID2 current of diode 2 (A)
Ij (curve) current (A) read from curve at point j
Imp current (A) at maximum power point
Imp-STC current (A) at maximum power point at standard test

conditions
I0 saturation current (A)
I01 saturation current (A) of diode 1
I02 saturation current (A) of diode 2
Iph photon current (A)
IPh-STC photon current at standard test conditions
IPV output PV current (A)
Ipvn present value of output PV current (A)
Ipvn + 1 next value of output PV current (A)

ISC�STC short circuit current at standard test conditions (A)
I–V current–voltage
K Boltzmann constant (=1.38065 � 10�23 J/K)
KI current temperature coefficient (A/�C)
KV voltage temperature coefficient (V/�C)
Ns number of series cells in one PV panel
p number of points
PV photovoltaic
P-V power–voltage
Q electron charge (=1.6021765 � 10�19 C)
Rp shunt resistance (O)
RS series resistance (O)
T P–N junction temperature (K)
Tj ambient temperature at point j (K)
TSTC temperature at standard test conditions

(=25 �C or 298.15 K)
Vj voltage at point j (V)
Vmp voltage at maximum power point (V)
Vmp-STC voltage at maximum power point (V) at standard test

conditions
VOC-STC voltage at open circuit (V) at standard test conditions
VPV output PV voltage (V)
VT thermal voltage (V)
VT1 thermal voltage of diode 1
VT2 thermal voltage of diode 2
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The PV technology is readily available in the current market.
Due to the sheer number of the different types of PV technology
available, the precise evaluation of different parameters of the
equivalent circuit in real conditions of operation is imperative for
an accurate and reliable modeling and simulation of PV systems
[19,22,25].

Chouder et al. [19] and Sera et al. [26] used a single-diode mod-
el to simulate the operation of a PV module. The authors depended
on the manufacturer’s data to initially determine the values of both
the series and shunt resistances. Moreover, the ideality factor, sat-
uration current and photon current are also needed for this evalu-
ation, in accordance to the relations they used. Most of the
manufacturers do not provide values for these parameters, so an
assumption for each of these parameters or iterative method shall
Fig. 1. Single-diode PV equivalent circuit.

Fig. 2. Two-diode PV equivalent circuit.
be made. In the proposed genetic algorithm approach, part of these
variables and quantities are included in the decision vector of the
genetic algorithm, while others are computed according to differ-
ent equations, which will be discussed at a later stage of this paper.

Ishaque et al. [22] used a two-diode model for the purpose of
modeling a PV cell. This model computes more parameters, which
necessitates certain assumption in the effort to simplify computa-
tions. The iterative method was also used to calculate both the ser-
ies and shunt resistances.

Ishaque and Salam [27] used a differential evolution method to
determine the model parameters of the PV modules. The effects of
temperature and irradiance were included, and the values for the
different parameters were calculated for each temperature or irra-
diance. The global optimization of these parameters fitting any
irradiance or temperature is not calculated in the presented ap-
proach in this reference. Furthermore, ways to calculate the mod-
el’s parameters when simultaneous change of temperature and
irradiance occurs were also not discussed in this reference.

Shahat [28] developed a model for PV in order for it to be used
for maximum power point identification. In this approach, the
author depended on the assumed values for the ideality factor,
and also on the assumption that the datasheet curve of the PV pa-
nel is provided by the manufacturer to graphically calculate the
series resistance. The genetic algorithm used in the approach in
this reference is utilized only to determine the maximum power
point.

Zagrouba et al. [29] presented a method to identify the electri-
cal parameters of PV solar cells and modules. A single-diode model
was used in this study. Results produced by the Pasan cell tester
software were used to validate the values obtained for the PV cell’s
parameters. This software does not provide values for all parame-
ters. Furthermore, the temperature and radiation variations were
not taken into account while using this approach, and as men-
tioned earlier; the values of these parameters are influenced by
variations in temperature and radiation.
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Weidong et al. [30] used a simplified single-diode model to
determine the parameters of a PV module. The shunt resistance
was neglected in their approach. The graphical relationships be-
tween both series resistance and ideality factor with temperature
changes were also presented. These relations were used for the
evaluation of the parameters. For validation purposes, the authors
took into account the maximum power point at certain radiation
only as the temperature changes; and as proven by authors of
Ref. [27] , the values of these parameters vary with the variation
of the radiation. As previously mentioned, not only the maximum
power point is taken into account in our approach; other points on
the I–V curve at different temperatures and radiation levels are ta-
ken into account as well.

Villalva et al. [31] suggested and developed an approach to find
the parameters of a single-diode model of a PV module. An effec-
tive method was proposed to fit the mathematical I–V curve to
the three characterizing points of any PV module (Isc point, Voc
point and maximum power point). The model was validated by
comparison of simulation results with two practical PV arrays. In
order to calculate the saturation current, a value for the ideality
factor was assumed, and remains unmodified later in the model.
Furthermore, an iterative method was used to calculate both the
series and shunt resistances. The iteration is performed until cer-
tain values of the series or shunt resistances render the power gen-
erated by PV matches the maximum power at certain
temperatures and radiation. As it is known, the values of these
resistances depend on both temperature and radiation [27], so
the values obtained may not fit the model, especially at low values
of radiation (less than 400 W/m2). In the developed approach in
this paper, the ideality factor, series and shunt resistances are part
of the decision vector that are to be computed using genetic algo-
rithm. Furthermore, different points at different radiation levels
and temperatures were used in calculations, and is not only limited
to the maximum power point at certain radiation or temperatures.

Jervase et al. [32] proposed a technique for improving the accu-
racy of the solar cell’s parameters. The developed approach hinged
on the fact that the specified values of these parameters were given
or calculated using one of the known extraction methods at certain
conditions. The proposed genetic algorithm was then used to refine
these values. This may be applicable from a physical point of view,
but it is inapplicable for PV applications, where other data are usu-
ally provided by the manufacturer. Furthermore, the variations of
temperature and radiation were not taken into account in this
context.

Almonacid et al. [33] developed an artificial neural network ap-
proach to generate V-I curves of silicon-crystalline PV modules for
any radiation or temperature values. This approach is capable of
predicting the performance of the PV module, but a mathematical
model involving the different parameters is not provided by this
approach.

The ability of the PV model to predict the performance of the PV
system under partial shading should also be fulfilled. Several re-
searches have studied the performance of the PV panel under par-
tial shading [22,34,35]. The effectiveness of the two diode model
developed in Ref. [22] was also validated under partial shading
conditions. The performance was checked under different shading
patterns. Shaiek et al. [34] used a single-diode to express the oper-
ation of the PV module, and the genetic algorithm was utilized to
search for the global maximum power point under the shading ef-
fect. In this work, the simulations were conducted with two panels
connected in series, where one of them was assumed to be par-
tially shaded. The simulations showed the ability of the genetic
algorithm to realize the global maximum power point. A way to
obtain values of the PV model was not mentioned in this study,
which prompted the authors to use typical values for these
parameters.
The previous works discussed above indicated that the ideality
factor is one of the parameters that require major analysis for esti-
mation. According to Ref. [28], a more accurate value for this
parameter can be obtained by curve fitting, or by trial and error.
This value estimation is inaccurate, due to the fact that it may fit
a certain I–V curve only at certain temperatures or radiation, but
is not inclusive of all temperatures and radiation levels.

In this study, the global optimization ability of the genetic algo-
rithm was utilized in order to obtain the parameters of the PV
model. Obtaining values for these parameters that are applicable
for the entire range of the solar radiation and a wide range of tem-
peratures forms the purpose of this study. In order to achieve this,
different points on the I–V curve at different temperatures and dif-
ferent radiation levels were used to calculate the optimized error
function, and Matlab–Simulink was used to build the simulation
model, depending on the values of the parameters obtained by
the optimization algorithm. The results of the simulation were
compared with real data obtained from the manufacturer’s data-
sheet(s) for validation purposes. Different cases were also studied
in this paper for comparison purposes.

In a nutshell, the approach developed in this study realized the
global optimization of the parameters of the PV model, with the
variation of temperature and radiation, which affects these values
that are being taken into consideration.
2. Materials and methods

2.1. Genetic algorithms

The genetic algorithms are methods used to solve constrained
and unconstrained optimization problems. They have been used
to solve optimization problems in engineering and the sciences
[32,36], and are considered global methods for the purpose of
optimization.

The population of individual solutions is repeatedly modified by
genetic algorithm. Individuals are randomly selected at each step
from the current population, and these individuals are used as par-
ents to generate the children of the next generation [28,37].

Three main rules are used by genetic algorithm at each step to
form the next generation from the present population, and these
rules are: selection rules to select the individuals (parents) that
is considered the source for the next generation, crossover rules
that combine two parents to produce children for the next gener-
ation, and mutation rules that randomly apply changes to individ-
ual parents to produce children [28].

In this paper, the genetic algorithm was programmed in two
ways: MATLAB optimization Toolbox, and developed MATLAB
code. This was done for the purpose of comparison.

2.1.1. Genetic algorithm using MATLAB global optimization Toolbox
This method involves a MATLAB code that is developed in order

to form the optimization fitness function; the optimization Tool-
box utilizes this file to run the genetic algorithm solver. Different
terminologies shall be specified for the purpose of optimization.
Before specifying certain values for each of these terminologies,
all of them were tested with regards to the accuracy of the results
and their corresponding computation time. The following MATLAB
prescribed terminologies are selected in the genetic algorithm
Toolbox for the purpose of optimization in this paper:

� Population type: double vector with populations size = 20.
� Fitness scaling: rank.
� Selection function: stochastic uniform reproduction.
� Reproduction: elite count: default (2), crossover fraction:

default (0.8).
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� Mutation function: adaptive feasible.
� Crossover function: scattered migration.
� Migration: direction: forward, fraction: default (0.2), interval:

default (20).
� Algorithm settings: as default.
� Stopping criteria (defaults): generations: 100.

2.1.2. Genetic algorithm using developed MATLAB code
As an alternative to the optimization Toolbox, a MATLAB code is

duly developed. This code includes both the genetic algorithm pro-
gramming and the programming of the optimization fitness func-
tion. In this code, the initial population generation is formed by
randomly generating population members (possible solutions).
Each possible solution is a code of the decision vector, taking into
account the upper and lower constraints. This initial generation
evolves through successive iterations, and members of each gener-
ation are evaluated in order to calculate the fitness average error
Fig. 3. Flow chart of the

Fig. 4. Numerical mode
function, with the member possessing the least error being se-
lected. Fig. 3 details the flowchart of the genetic algorithm process.

In this method, and after performing many executions, it was
discovered that a population size of 30 is adequate for the purpose
of this paper, while the number of generations required to give the
most optimal solution is 100. In most cases, the number of required
generations is less than 60. It is also found that 0.9 is an appropri-
ate rate for both cross-over and mutation.
2.2. Simulation

After using the genetic algorithm to obtain the optimized values
for the different PV model parameters that is needed to construct
the decision vector, Matlab–Simulink is the simulation environ-
ment that is used to simulate the operation of this PV module.
The basic numerical model for the PV module used in the simula-
tion is shown in Fig. 4. If a single-diode model is used, then the
genetic algorithm.

l of the PV module.
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contents of the numerical solution box in the figure become
Iph � IDI.

Fig. 5 shows the details of a Matlab–Simulink model of a PV-
equivalent circuit. This block forms part of a whole PV system, and
is illustrated in Fig. 6. In this study, the purpose of this system is
to calculate the I–V and P–V characteristics of a typical PV panel
for validation purposes. This simulation model can be considered
part of a total system, and in addition to the PV panel, this system
may include a charge regulator, inverter, or any conditioning circuit.

Fig. 5 represents the inside details of the block called PV panel
in Fig. 6. The other details of Fig. 6 are for measuring and displaying
signals, where the two external outputs of this block are called
(V + PV and V � PV), and are actually used for both voltage and cur-
rent sensing in the simulation block, while the two additional out-
puts appearing in Fig. 5 are internal outputs used for the
calculation of the PV panel current (Ipv = Iph � ID1).

Different constants, variables and parameters of the model are
defined through the MATLAB code executed in parallel with the
Simulink model.
Fig. 5. Main block of Mat

Fig. 6. The PV system simula
3. Theory and calculations

3.1. Mathematical modeling

Any model that is adopted to characterize the PV panel involves
several parameters that need to be calculated, depending on the
experimental data. The number of these parameters differs in
accordance to the adopted model. A single-diode model provides
a good compromise between accuracy and simplicity [31], and it
has been used by several authors in previous research works
[31,34]. Its effectiveness is proven, especially in the simulation of
PV modules with power converters. A two-diode model that takes
into account different conditions of the operation of a PV panel is
also used by different researchers for the purpose of modeling PV
panels.

The approach to calculate different parameters characterizing
the I–V curve is as follows:

IPV ¼ IPh � ID1 � ID2 �
VPV þ IPV Rs

RP

� �
ð1Þ
lab–Simulink model.

ted by Matlab–Simulink.
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where [31,38]

ID1 ¼ Io1 exp
VPV þ IPV Rs

a1VT1

� �
� 1

� �
;

ID2 ¼ Io2 exp
VPIo1V þ IPV Rs

a2VT2

� �
� 1

� �
ð2Þ

and IPh is the photon current generated by the incident light, and Io2

are the reverse saturation currents of diode 1 and diode 2, a1 and a2

are the diode ideality constants , VT1 and VT2 are the thermal volt-
ages, considering one module and given as follows [31]:

VT1 ¼ VT2 ¼ Ns
KT
q

ð3Þ

where Ns is number of series cells per module, q is the electron
charge (1.6021765 � 10�19 C), K is the Boltzmann constant
(1.38065 � 10�23 J/K) and T is the P–N junction temperature in Kel-
vin (K).

The value of photon current (IPh) depends on the temperature
and solar radiation, and can be found using the following equation
[31,39]:

IPh ¼ ðIPh�STC þ KIðT � TSTCÞÞ
G

GSTC
ð4Þ

where IPh-STC is the photon current at standard test conditions (solar
radiation at standard test conditions (GSTC) = 1000 W/m2, tempera-
ture at standard test conditions (TSTC) = 25 �C), and KI is the current
temperature coefficient in (A/�C), normally provided by the manu-
facturer). IPh-STC can be found using the following equation:

IPh�STC ¼ ISC�STC
RP þ RS

RP
ð5Þ

where ISC-STC is the short circuit current at standard test conditions
(given by manufacture).

The reverse saturation current of any of the diodes (Io) can be
found using the following equation [31]:

Io ¼
ISC�STC þ KIðT � TSTCÞ

exp VOC�STCþKV ðT�TSTC Þ
aVT

� �
� 1

ð6Þ

where VOC-STC is the open circuit voltage at standard test conditions
(provided by the manufacturer), and KV is the voltage temperature
coefficient (V/�C). This is a modified relation that is used to calculate
the reverse saturation current, while taking into account the depen-
dency of this current on temperature variations through short cir-
cuit current and the open circuit voltage, and their respective
dependence on temperature. If dependency of open circuit voltage
on solar radiation variation is taken into account, Eq. (6) becomes
[27]

Io ¼
ISC�STC þ KIðT � TSTCÞ

exp VOC�STCþKV ðT�TSTC ÞþaV�T lnðG=GSTC Þ
aVT

� �
� 1

ð7Þ

The PV module output voltage (VPV) and output current (IPV) are
interdependent, so a numerical approach shall be used to calculate
the I–V characteristic and the P–V characteristic of the module for
the entire range of currents (from 0 to ISC), and for the entire range
of voltages (from 0 to VOC). As surmised from Eq. (1), no direct solu-
tion exists for this equation, since IPV is a function of (VPV and IPV),
and VPV is function of (VPV and IPV). This interdependent relation
shall appear in the developed algorithm.

3.2. Genetic algorithm implementation to evaluate PV module
parameters

According to Eqs. (1) and (2), which are used to represent the
two-diode model, seven parameters are required to calculate
either the current or voltage output from the PV module. These
parameters are Iph, Io1, Io2, a1, a2, RS, and Rp. Actually, if a1, a2,
RS, and Rp are known, then according to Eqs. (4)–(6), the values
of Iph, Io1, and Io2 can be calculated. Therefore, there are two pos-
sibilities in determining the values of Iph, Io1, and Io2 using the ap-
proach developed in this paper. The first possibility is by
considering them to be within the decision vector, as they form
the specifications of the PV module, and the genetic algorithm
specifies values for each of them alongside other parameters. The
other possibility depends on the fact that their values can be calcu-
lated if the ideality factor, the series and the shunt resistances are
known. In this case, values for the other parameters are specified
by the genetic algorithm, and their corresponding values are
accordingly calculated.

For a single-diode model, five parameters are required to be cal-
culated. As previously mentioned, if a1, RS, and Rp are known, then
Iph and Io1 can be determined.

Different cases are tested for each model for comparison pur-
poses, in order to find the best case that accurately and precisely
models the PV panel. Taking into account previous considerations,
the decision vector used in the genetic algorithm for a two-diode
model DV2d is given as:

DV2d ¼ ½a1; a2;Rs;Rp� ð8Þ

While the decision vector for a single-diode model DV1d is given as:

DV1d ¼ ½a1;Rs;Rp� ð9Þ

If the reverse saturation currents and the photon current are consid-
ered within the decision vector, the modified decision vector for a
two-diode model DV2d-m is given as:

DV2d�m ¼ ½Iph; Io1;Io2;a1; a2;Rs;Rp� ð10Þ

and the modified decision vector for a single-diode model DV1d-m is
given as:

DV1d�m ¼ ½Iph; Io1; a1;Rs;Rp� ð11Þ

The objective function is the average of absolute errors between the
actual current (measured or from manufacturer datasheet) and the
calculated current. This error is calculated at different values of
voltage, solar radiation and temperature. So

Errorave ¼
Xp

j¼1

absðIjðcurveÞ � IjðVj;Gj; Tj;DVÞÞ=p ð12Þ

where p is the number of points taken into account, Ij(curve) is the
current measured or read from the manufacturer datasheet, Ij(Vj, -
Gj, Tj, DV) is the current calculated at the voltage Vj, the solar radia-
tion Gj, the temperature Tj, and the corresponding decision vector
DV values specified by the genetic algorithm.

To calculate the PV current Ij(Vj, Gj, Tj, DV), Eq. (1) or Eq. (2) shall
be used in accordance to the model used in the analysis. These
equations do not have a direct solution, due to the fact that the
PV current is a function of PV voltage and current, IPv = f(Ipv, Vpv).
Instead, numerical methods should be used to solve any of these
two equations, with the Newton–Raphson method being chosen
preferred. The PV current Ipv that satisfies this equation at certain
voltage Vpv and certain values for other variables and constants
can be calculated by numerically solving the equation

hðIpv ;VpvÞ ¼ Ipv � f ðIpv ;VpvÞ ¼ 0 ð13Þ

So, by Newton–Raphson

Ipvnþ1
¼ Ipvn

� hðIpv ;VpvÞ
dhðIpv ;VpvÞ

dIpv

0
BB@

1
CCA

atIpv¼Ipvn

ð14Þ
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where Ipvn is the present value, and Ipvnþ1 is the next value. The PV
current can be iteratively determined, and the number of iterations
is determined in such a way that the absolute error between the
present calculated value and the previous one is less than a certain
specified tolerance.
Table 1
Specifications of the analyzed three types of PV modules.

Parameter PV Type

Mono-crystalline Sanyo – HIT 215 Poly-crystalline Kyocera – KC200GT Thin-film shell solar – ST 40

Datasheet Simulation Datasheet Simulation Datasheet Simulation

Isc_stc (A) 5.61 5.61 8.21 8.209 2.68 2.68
Voc_stc (V) 51.6 51.6 32.9 32.9 23.3 23.3
Imp (A) 5.13 5.131 7.61 7.61 2.36 2.36
Vmp (V) 42 42 26.3 26.3 16.9 16.9
Pmax 215 215.5 200 200.2 39.9 39.88
kV (V/�C) �0.143 �0.123 �0.1
KI (A/�C) 0.00196 0.0032 0.00035
Ns 72 54 42
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Fig. 8. Effect of series resistan
In the following two subsections, a MATLAB code is developed
to evaluate the average error fitness function. This MATLAB code
is a function called that will be called by the optimization Toolbox
whenever the genetic algorithm Toolbox libraries is being used, or
if it is included in the genetic algorithm developed code. In this
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code function, different constants and parameters of the model are
defined.

For different voltages, mainly at Vpv = 0, Vmp, and VOC V, and at
different solar radiation levels, mainly at G = 1000, 800, 600, 400,
200 W/m2, and at different temperatures mainly at T = 25, 50,
75 �C, the PV current Ipv is calculated using Eq. (14). This current
is calculated at different points, with a number of these points
equaling p, and the corresponding average error objective function
is calculated according to Eq. (12).

The lower and upper constraints for some of the variables con-
structing the decision vector are common for the different types of
PV modules, while the remaining variables have lower and upper
constraints, according to the PV type and manufacturer. In this
study, the diode ideality constants (a1, a2) have lower and upper
constrains between 1 and 2. The series resistance RS usually has
lower and upper constraints of between 0.01O and 1.2O, while
the shunt resistance Rp usually has lower and upper constraints
Fig. 9. I–V curves for Sanyo – HIT 215 module from manufacturer at different solar
radiation levels and T = 25 �C.
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Fig. 10. Simulation I–V curves for Sanyo – HIT 215 mod
of between 50 O and 1000 O, but these values can be altered
according to the results of the genetic algorithm.

Some PV manufacturers do not provide the datasheet illustrat-
ing the I–V and P–V curves at different radiation levels or different
temperature values. They only provide KV, KI, VOC-STC, ISC-STC and
Vmp, Imp at standard test conditions. In this case, Eq. (15)–(18)
can be used to calculate the open circuit voltage and the short cir-
cuit current at different radiation levels and different temperatures
[19]

ISCðG; TÞ ¼ ISC�STC � ðG=GSTCÞ þ KI � ðT � TSTCÞ ð15Þ

VOCðG; TÞ ¼ VOC�STC � KV � ðT � TSTCÞ þ a � VT � lnðG=GSTCÞ ð16Þ

ImpðG; TÞ ¼ Imp�STC � ðG=GSTCÞ ð17Þ

VmpðG; TÞ ¼ Vmp�STC � KV � ðT � TSTCÞ ð18Þ

These equations can be used even when the data sheets are avail-
able, instead of using datasheet curves to read currents at different
voltages, radiation levels and temperature values. Actually, using
these equations provide values of decision vector parameters that
accurately model the PV module, as illustrated in the following
section.

4. Results and discussion

In order to validate the adopted model, the results of the simu-
lation of the model using Matlab–Simulink are compared with the
manufacturer’s datasheet. Three types of PV modules, using differ-
ent technologies, are used for this purpose, which include the
mono-crystalline (from Sanyo (HIT – 215)), multi-crystalline (from
Kyocera (KC200GT)), and thin-film (from Shell Solar (ST 40)) types.
Table 1 shows the constants and parameters for these types, with
the Data sheets downloaded from the companies’ web sites. On top
of the datasheet values, this table also includes the simulation re-
sults for these three types of PV modules at standard test condi-
tions. It is fairly obvious from comparing these values that the
results of the simulation agree with the data sheet values.
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Table 2
Comparison between data sheet and simulation results for Sanyo – HIT 215 module at different radiation levels.

Quantity G = 1 kW G = 0.6 kW G = 0.2 kW

Data sheet Simulation Abs. error Data sheet Simulation Abs. error Data sheet Simulation Abs. error

Voc (V) 51.6 51.6 0 50.43 50.47 0.04 47.94 48 0.06
Isc (A) 5.61 5.61 0 3.4 3.411 0.011 1.145 1.158 0.015
Imp (A) 5.13 5.131 0.001 1.98 2.094 0.114 0.905 1.023 0.118
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4.1. Effect of variation of parameters (a, RS, Rp)

The effect of varying different variables constructing the deci-
sion vector on the characteristic curves of the PV module differs,
and the effect of varying the ideality factor on the I–V is shown
in Fig. 7. It is obvious from the figure that increasing the ideality
Fig. 11. I–V curves for Sanyo – HIT 215 from manufacturer at different temper-
atures and at G = 1 kW/m2.
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Fig. 12. Simulation I–V curves for Sanyo – HIT 215
factor decreases the values of voltage, current and consequently,
power, at the maximum point. Fig. 8 shows the effect of varying
the series resistance on the I–V curve. This figure illustrates that
as the RS increases, the values of voltage, current and power at
the maximum point also decrease. In addition, it is also observed
that varying the values of both ideality factor and series resistance
caused a noticeable effect at the region of the maximum power
point. Finally, the effect of varying Rp on the I–V curve of a PV mod-
ule was also studied, but this effect was barely noticeable. These
comparisons were done on a Kyocera (KC200GT) panel, at standard
test conditions. This panel was also selected for the validation of
the results of the developed approach.
4.2. Results of genetic algorithm

Different cases were taken into account while using the genetic
algorithm to extract the optimal parameters of the PV module. The
purpose of analyzing different cases is to specify the most optimal
case that enables the extraction of the most precise parameters of
PV module model, which when used in the simulation program,
provides the results that agrees with the datasheet information.

Case 1: The usage of a single-diode model and the optimization
is done using Toolbox optimization Matlab library:

In this case, a single-diode model and a Toolbox optimization
Matlab library were used. The results obtained from this case are
deemed the most accurate. The Diode ideality factor (a), series
resistance (RS) and shunt resistance (Rsh) are the calculated param-
eters using the genetic algorithm.

For a Mono-Crystalline PV (Sanyo – HIT 215), the values of the
parameters are [a = 1.178, RS = 0.782 O, Rsh = 852.177 O, with an
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average absolute error = 0.016615]. Fig. 9 shows the I–V curves ta-
ken from the manufacturer data sheet for the different radiation
levels, while Fig. 10 shows the simulation results that take into ac-
count the values of the parameters being given before. The values
of the voltages at maximum power points are read from the simu-
lation P–V curve, which were not provided by the manufacturer.
From the two figures, one can observe the similarity of the results
at different radiation levels. Table 2 summarizes a comparison be-
tween the results of the two graphs at open circuit, short circuit
and maximum points. The largest absolute error in the current oc-
curs at the region of the maximum power point, and as it is obvious
from the graphs and the table, it increases as the radiation de-
creases, but still possesses small values. Fig. 11 shows the I–V
curve for the same PV module at different temperatures, while
Fig. 12 shows the simulation results for the same module. Detailed
graphs of error as function of voltage for different radiation levels
and different temperature values are illustrated later in this
section.

For a Multi-Crystalline PV (Kyocera – Kyocera – KC200GT), the
values of the parameters are [a = 1.106, RS = 0.331 O,
Rsh = 883.925 O, with an average absolute error = 0.0152]. Fig. 13
shows the I–V curve obtained from the manufacturer data sheet
for different temperature levels, while Fig. 14 shows the simulation
Fig. 13. I–V curves for Kyocera – KC200GT from manufacturer at different
temperatures and at G = 1 kW/m2.
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Fig. 14. Simulation I–V curves for Kyocera – KC200G
results that take into account the values of parameters that were
previously provided. The values of the voltages at maximum power
points are read from the simulation P–V curve, which are not pro-
vided by the manufacturer. Table 3 summarizes a comparison be-
tween the results of the two graphs at open circuit, short circuit
and maximum points. From the two figures, one can observe the
similarity of the results at different temperature levels. The largest
absolute error in the current occurs at the region of maximum
power point, and as it is obvious from the graphs and the table,
it increases as radiation decreases, but still possesses small values.
Fig. 15 shows the I–V curves for the same PV module at different
radiation levels, while Fig. 16 shows the simulation results for
the same module. Table 4 summarizes a comparison between the
results of the two graphs at open circuit, short circuit and maxi-
mum points.

For a thin film PV (Shell Solar – ST 40), the values of the param-
eters are [a = 1.558, RS = 1.149 O, Rsh = 860.75 O, with an average
absolute error = 0.0094]. Fig. 17 shows the I–V curve taken from
the manufacturer’s data sheet for different temperature levels,
while Fig. 18 shows the simulation results, taking into account
the values of the parameters given before. The values of voltages
at maximum power points are read from the simulation P–V curve.
Table 5 summarizes a comparison between the results of the two
graphs at open circuit, short circuit and maximum points. From
the two figures, one can observe the similarity of the results at dif-
ferent temperature levels. Furthermore, the manufacturer provides
the value for the series resistance, which equals to 1.14 O. This va-
lue is consistent with the value that was computed using the
developed approach.

Case 2: Is similar to case 1, but the optimization is done via the
developed Matlab code.

For this case, a Kyocera module is also taken into account for
comparison purposes. The values of the parameters that are ex-
tracted by the genetic algorithm code are [a = 1.107, RS = 0.3395,
Rsh = 870.27 with an average absolute error = 0.0153]. For this
case, Fig. 19 shows the I–V curves for different radiation levels.
The results of this figure can be compared with the results of the
Toolbox optimization, shown in Fig. 16. The comparison shows
that the corresponding values in the two figures are almost similar.
Fig. 20 shows the value of the average absolute error as a function
of the number of generations. This graph is obtained via the devel-
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Table 3
Comparison between data sheet and simulation results for Kyocera – KC200GT module at different temperature values.

Quantity T = 25 �C T = 50 �C T = 75 �C

Data sheet Simulation Abs. error Data sheet Simulation Abs. error Data sheet Simulation Abs. error

Voc (V) 32.9 32.9 0 29.78 29.83 0.05 26.7 26.76 0.06
Isc (A) 8.2 8.209 0.009 8.298 8.312 0.014 8.397 8.369 0.028
Imp (A) 7.61 7.61 0 7.72 7.633 0.078 7.68 7.509 0.171

Fig. 15. I–V curves for Kyocera – KC200GT 215 module from manufacturer at
different solar radiation levels and T = 25 �C.
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oped Matlab code. It is obvious that after about fifteen generations,
the optimized function obtains its final value.

Case 3: In this case, a two-diode model is used, and the decision
vector is made up of six parameters. The optimization Toolbox is
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Fig. 16. Simulation I–V curves for Kyocera – KC200GT 215 module a

Table 4
Comparison between data sheet and simulation results for Kyocera – KC200GT module at

Quantity G = 1 kW G = 0.6 kW

Data sheet Simulation Abs. error Data sheet

Voc (V) 32.9 32.9 0 32.07
Isc (A) 8.2 8.209 0.009 4.9
Imp (A) 7.61 7.61 0 4.62
used, and the Kyocera module is also used for comparison pur-
poses. The values of the parameters extracted by the genetic algo-
rithm code are [a1 = 1.112, a2 = 1.377, RS = 0.29 O, Rsh = 480.496 O,
Io1 = 4.23 � 10�9 A, Io2 = 9.1478 � 10�9 A, with an average abso-
lute error = 0.02]. For this case, Fig. 21 shows the I–V curves for dif-
ferent radiation levels. The results can be compared to the results
of the Toolbox optimization that are shown in Fig. 16 for the case
of a single-diode model. The comparison shows that the corre-
sponding values in the two figures are almost similar, while the
single-diode model provides a more accurate result compared to
the datasheet values, with an average absolute error also being
smaller.

The I–V curves shown in case-1’s results accurately match the
data sheet information for all radiation levels and temperature val-
ues, along with all types of modules. The absolute error in the PV
current does not exceed 0.20 A, even in its worst case scenario
(for Kyocera at temperature = 75 �C), while in other cases, it is
invariably less. A detailed graph, illustrating the absolute error as
a function of voltage for different radiation levels, and at tempera-
tures equaling 25 �C, is shown in Fig. 22, while Fig. 23 illustrates it
for different temperature levels at solar radiations equaling 1 kW/
m2. These two graphs illustrate the agreement in values between
the datasheet information and the simulation results. It is also
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Fig. 17. I–V curves for shell solar – ST 40 from manufacturer at different
temperatures and at G = 1 kW/m2.
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fairly obvious that the maximum error occurs at the region of the
maximum power point, where the curvature of the curve is largely
affected by the values of the PV parameters.

Certain value for each parameter was extracted using this ap-
proach, which shows strong agreement of the results with the data
sheet information. In this approach, solar radiation and tempera-
ture variations were incorporated into the calculation while for-
mulating the average absolute error fitness function in order to
compute the optimized values for different parameters. A value
that deals with the entire range for solar radiation and tempera-
tures was therefore calculated for each parameter. In Ref. [27],
the used approach enabled the computation of the values of the
parameters that change with solar radiation variation and/or tem-
perature variation. The results of this study are consistent with the
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Table 5
Comparison between data sheet and simulation results for Shell Solar – ST 40 module at

Quantity T = 25 �C T = 40 �C

Data sheet Simulation Abs. error Data sheet

Voc (V) 23.3 23.3 0 22.03
Isc (A) 2.68 2.68 0 2.683
Imp (A) 2.36 2.36 0 2.35
results of the study presented in Ref. [27] for different types of PV
modules, although in the developed approach presented in this
manuscript, certain constant value was calculated for each param-
eter for the whole range of solar radiation and temperatures. For a
thin-film PV (ST40), authors of Ref. [27] found values for the series
resistance to be within the range of (0.71–0.99 O), and presented a
value for this resistance, which equals to 0.092 O using the RS-
model. In the developed approach in this manuscript, this value
equals to 1.149 O, and it is consistent with the value provided by
the manufacturer. The results are also consistent with results of
Ref. [30], where the effect of the temperature on the ideality factor
and series resistance was taken into consideration. Authors of Ref.
[31] presented their results in a graphical form. The presented
curves in this reference included the results of the absolute error
in the current for the approach developed in this reference, and
the results of another approach. The results were for the Kyocera
PV module (KC200GT) at standard test conditions. The maximum
recorded absolute error in this reference was about 0.45 A, while
it was about 0.88 A for the other presented approach. In the devel-
oped approach presented in this manuscript, it was about 0.02 A.
The same comparison was conducted with the results of Ref.
[22], where the maximum recorded absolute error for the current
was about 0.2 A for the Kyocera PV module (KC200GT) at standard
test conditions, and it was greater than this value for the other two
methods presented in the same reference.

Many attempts were made to find the execution time to obtain
the model parameters. It was found that this time, in most cases, it
is less than 4 s. However, as this developed approach uses the spec-
ifications of any solar module given by the manufacturer to extract
global values of the parameters that suit the entire range of solar
radiation and temperature variations, these parameters can be
firstly calculated (off-line). This means that in this approach, there
is no need for real time modeling. In other approaches where the
parameter values change with solar radiation and temperatures
variations, real-time modeling is required. In these cases, the mod-
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Fig. 20. Average absolute error as a function of generation number.
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Fig. 22. Absolute error in PV current for different radiation levels at T = 25 �C for Sanyo – HIT 215 module.

Fig. 23. Absolute error in PV current for different temperature values at G = 1 kW/m2 for Sanyo – HIT 215 module.
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eling approach shall be fast enough to deal with real time
operation.
Fig. 24. The series parallel connections for the 20 � 3 array.
4.3. Validation of the results of the developed model for partial shading

In partial shading, different parts of the PV array are exposed
upon different radiation levels. If the approach is able to provide
an accurate model of the PV panel at different solar radiation and
temperature values, this developed model can be satisfactorily ap-
plied in the case of partial shading.

As it was earlier mentioned in this work, the developed ap-
proach provides the parameters for the PV model that suit the en-
tire range of the solar radiation and temperature fluctuations. So,
the developed model described in this work can be accurately used
for this purpose. Actually, there is no need for real time modeling
to be utilized while using the model developed by this approach,
since this model is appropriate for different radiation and temper-
ature levels. This is so due to the fact that there is no need to adapt
the values of model’s parameters to real time operation.

In order to validate the ability of this developed model to deal
with partial shading, a PV array configuration composed of 20 PV
panels and connected in series to form a string and three strings,
are connected in parallel. This case was studied in detail by Ref.
[22], where the SM55-Siemens PV panel was selected to validate
the partial shading modeling. The authors presented the results
of the developed model in this reference where a two-diode model
is used alongside results of other previous studies. Four shading
patterns affecting this array were assumed. Specific radiation lev-
els for each shading pattern were selected, and different tempera-
ture values were also considered. Fig. 24 shows the series parallel
connections of the 20 � 3 PV array, while Table 6 displays the sim-
ulation results of this work for selected cases of partial shading
patterns at different temperatures alongside the results presented
in the same mentioned reference. The simulations showed satisfac-
tory results compared to the results presented in this reference.
Fig. 25 shows the P–V curve of partial shading case 1, mentioned
in Table 6.

The values of the parameters that were extracted by the genetic
algorithm for this panel are [a = 1.107, RS = 0.551, Rsh = 940.52
with an average absolute error = 0.008]. The simulation results in
this manuscript that uses these parameters showed that this array
is capable of generating 3292 W, at a voltage of 347.2 V, at maxi-
mum power point at standard test conditions. As provided by the
manufacturer’s datasheet, the maximum power point voltage and
current at standard test conditions for this panel are 17.4 V and
3.15 A, respectively. According to these specifications, this array
can produce a power of 3288 W at 348 V, which are very close to
the simulation results, while the simulation results presented by
Ref. [22] for power and voltage are 3220 W and 350 V, respectively.



Table 6
The voltage Vmp and the power Pmp outputs of a 20 � 3 PV array at global maximum power point under different shading patterns at different temperatures.

Case T (�C) Shading pattern 1 means 1000 W/m2 Two diode model [22] Results of studies presented in Ref. [22] Proposed approach

Artificial neural network RS-model

A B C D Vmp (V) Pmp (W) Vmp (V) Pmp (W) Vmp (V) Pmp (W) Vmp (V) Pmp (W)

1 25 1 0.75 0.5 0.25 275 1359.6 276.38 1383.1 271 1350.8 271.8 1376.8
2 25 0.75 0.5 0.2 0.1 177 867.6 172.46 847.77 172 844.17 179.7 895.79
3 50 0.8 0.6 0.4 0.2 243 965.92 241.01 964.26 236 940.89 254.99 1028.04
4 75 0.9 0.6 0.3 0.1 158 935.20 150.35 885.98 156 914.9 147.86 885.11

Fig. 25. The P–V curve of case 1 mentioned in Table 6.
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The values for power and voltage under different shading pat-
terns presented in Ref. [22] are the simulation results of ap-
proaches, developed by the authors of this reference and the
authors of other studies, cited by the same reference.

The developed model in this manuscript showed accurate re-
sults for the proposed (20 � 3) array under standard test condi-
tions, as previously discussed. Furthermore, the SM55 PV panel
manufacturer provides a datasheet, including I–V curves of one
module at two radiation levels (1000 W and 800 W), and three
temperature values (25, 45 and 60 �C). The simulation results at
(G = 1000 W/m2, T = 60 �C) and at (G = 800 W/m2, T = 45 �C) are
consistent with the datasheet’s information.

5. Conclusions

In this paper, a modeling method based on the genetic algo-
rithm is proposed. The values of the PV module parameters were
computed in such a way that the error between the simulation re-
sults and the data sheet information is minimized. A global optimi-
zation for the values of the parameters was realized, so the values
extracted using this algorithm are applicable for the entire range of
the solar radiation and temperatures. The information provided by
the manufacturer’s data sheet of a certain PV module is the only
requirement for this approach. The Matlab–Simulink environment
was used to simulate the operation of the PV module using the
parameters obtained by the genetic algorithm. The accuracy eval-
uation of this approach was achieved by comparing the results of
the simulation based on the extracted parameters with the manu-
facturer’s data sheet information. The result validation was con-
ducted for three types of PV modules from different technologies
(mono-crystalline, poly-crystalline and thin-film). Different cases
were also analyzed for the purpose of comparison. It was found
that the error between the simulation results, based on the ex-
tracted parameters and the data sheet was minuscule for different
simulated types at different temperatures and different solar radi-
ation. The most accurate results (achieving least error) were ob-
tained using single-diode model with three extracted parameters
(ideality factor, series resistance and shunt resistance). The photon
current and the saturation current of the model were calculated
depending on the optimally extracted parameters. The effective-
ness of the model developed by this approach to predict the perfor-
mance of the PV system under partial shading conditions was also
approved. The accurate modeling of any PV module is an important
tool required for any further studies concerning PV applications, so
this approach can be used as valuable tool for this exact purpose.
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