
Accepted Manuscript

Nonlinear finite element analyses of FRP-strengthened reinforced concrete slabs

using a new layered composite plate element

Xiaodan Teng, Y.X. Zhang

PII: S0263-8223(14)00143-3

DOI: http://dx.doi.org/10.1016/j.compstruct.2014.03.040

Reference: COST 5638

To appear in: Composite Structures

Please cite this article as: Teng, X., Zhang, Y.X., Nonlinear finite element analyses of FRP-strengthened reinforced

concrete slabs using a new layered composite plate element, Composite Structures (2014), doi: http://dx.doi.org/

10.1016/j.compstruct.2014.03.040

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers

we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and

review of the resulting proof before it is published in its final form. Please note that during the production process

errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

http://dx.doi.org/10.1016/j.compstruct.2014.03.040
http://dx.doi.org/http://dx.doi.org/10.1016/j.compstruct.2014.03.040
http://dx.doi.org/http://dx.doi.org/10.1016/j.compstruct.2014.03.040


  

1 
 

Nonlinear finite element analyses of FRP-strengthened reinforced 

concrete slabs using a new layered composite plate element  

Xiaodan Teng, Y.X. Zhang* 

School of Engineering and Information Technology, The University of New South Wales, Canberra, Australian 

Defence Force Academy, ACT 2600, Australia 

*Corresponding author:   Email: y.zhang@adfa.edu.au; Tel: 612-62688169 

ABSTRACT 

A new layered 4-node, 24-degrees of freedom rectangular composite plate element is developed in this paper for 

nonlinear finite element analyses of FRP-strengthened RC slabs. The layered approach is used to form an 

integrated plate element for modelling of concrete, FRP, adhesive layer and steel reinforcement with a perfect 

bond assumption between each layer. Timoshenko’s composite beam functions are employed to describe the 

bending behaviour of the layered plate element and shear locking problem is avoided naturally. Geometrical and 

material nonlinearities are both included in the new plate element. The proposed element is simple and 

demonstrated to be accurate and efficient for analysis of the structural behaviour of FRP-strengthened RC slabs. 

Once validated, the new element is also employed to investigate the effects of parameters, including the types of 

FRPs and strengthening scheme on the structural behaviour of FRP-strengthened RC slabs.    

Keywords: Composite plate element, FRP, Nonlinear finite element analysis, Concrete slabs.  

1. Introduction 

Due to the great advantages of the fibre reinforced polymers (FRPs), such as a high strength-

to-weight ratio, high corrosion resistance and enhanced durability, they have been used as 

retrofitting materials to strengthen reinforced concrete (RC) structures. A typical application 

of FRPs is rehabilitation of bridge components, especially bridge decks, which has become 

an important issue with the ageing of bridges globally. Thus, investigating the structural 

behaviour of FRP-strengthened concrete slabs is essential. 
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     A number of numerical studies of the structural behaviour of FRP-strengthened concrete 

slabs have been reported. Reitman and Yankelevsky [1] developed a technology which was 

based on a nonlinear finite element (FE) grid analysis and yield-line theory for the structural 

analysis of FRP-strengthened concrete slabs. In the study conducted by Limam et al. [2], a 

three-layer FE model, in which FRP, concrete and steel were represented by a layer element 

was proposed. In addition a two-dimensional FE model was developed to describe elastic 

behaviour of CFRP-strengthened RC slabs [3].  

     Commercial FE software, such as ANSYS, ABAQUS and ADINA, have also been 

employed for nonlinear FE analyses of FRP-strengthened concrete slabs with usually 

different types of elements having to be used to model the concrete, steel reinforcement and 

FRP layers of the slabs separately which leads to complexity in establishing the FE model 

and excessive computational cost. For example, Tedesco et al. [4] analysed the structural 

behaviour of FRP-strengthened RC bridge deck using 3D 8-node solid elements for concrete, 

two-node truss elements for steel reinforcements and FRP laminates. Ebead and Marzouk [5] 

modelled the concrete using 27-node three-dimensional (3D) brick elements, the steel 

reinforcement using two-node truss elements and the FRP strips using eight-node thin shell 

elements.  

     In all the numerical studies mentioned above and some others [6-7], perfect bond has been 

assumed for simplicity of the finite element models. Although debonding between the FRP 

and concrete interface might be a concern [8-9], a very good bond can be achieved with the 

development of adhesive materials and technology. 

      In this paper, a layered 4-node 24-degrees of freedom (DOF) rectangular composite plate 

element (denoted as element CPEP) is developed for nonlinear FE analyses of FRP-

strengthened concrete slabs. The element is a unified one with the concrete layers, the 
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smeared steel layers from the steel reinforcements, the smeared FRP layers from the FRP 

laminates and the adhesive layer modelled in one single element with perfect bond between 

the FRP, concrete and reinforcement assumed. The in-plane displacement functions of a 

quadrilateral plane element with drilling DOFs as used by Zhang et al. [10] are employed for 

the in-plane displacement of the element CPEP. Both geometric and material nonlinearities, 

which incorporate tension, compression, concrete cracking and tension stiffening, are 

included in this element. Perfect bond between the FRP, concrete and reinforcement is 

assumed. The nonlinear structural behaviour of FRP-strengthened concrete slabs with 

different types and width of FRPs, and various spacing between FRPs is investigated in the 

parametric studies using the developed element after validation 

   Timoshenko’s beam function method has been proven to be simple and efficient for 

alleviating the shear-locking effect in FE analyses of plates and beams when used to construct 

plate and beam elements. The Timoshenko’s composite beam functions were developed and 

employed to construct two simple and efficient displacement-based quadrilateral elements for 

linear and geometric nonlinear analysis of composite laminated plates by Zhang and Kim 

[11-12].  They were then extended and employed for developing of a layered shear-flexural 

plate/shell element for nonlinear analysis of reinforced concrete plates by Zhang et al. [10], 

which were then further developed for nonlinear analysis of moderately thick reinforced 

concrete slabs at elevated temperatures [13]. Furthermore, Zhang and Zhu [14] developed a 

new shear-flexible FRP-reinforced concrete slab element for nonlinear finite element analysis 

of FRP reinforced concrete slabs. Also, the Timoshenko’s composite beam functions have 

been further extended and used to construct a series of composite beam elements for analysis 

of composite beams by Lin and Zhang [15] and steel/FRP reinforced concrete beams without 

and with bond-slip by Zhang and Lin [16] and Lin and Zhang [17]. In this paper, the 

Timoshenko’s composite beam functions are extended and used for developing a composite 
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layered plate element for nonlinear FE analysis of FRP strengthened RC slabs. Shear 

deformation effects are included in the element and shear locking is avoided naturally by 

using the Timoshenko’s composite beam functions.  

2. A New Layered Composite Plate Element and Basic Formulations  

The proposed 4-node 24-DOF layered rectangular plate element CPEP is shown in Fig. 1. 

There are six engineering DOFs per node for the proposed element, i.e., the translational 

displacement components , ,u v w , the rotational components around the x and y axes ,x yθ θ  

and the rotational (drilling) DOF zθ . The cross-section of the element consists of concrete 

layers, steel layers of the smeared steel reinforcement, FRP layer of the smeared FRP and 

adhesive layer as shown in Fig. 1(a). The smeared steel layer is of equivalent 

thickness /s st A b=  , where sA represents the area of single steel bar and b is space between 

two bars. The equivalent thickness of the smear FRP layer is determined by 

0t /FRP FRP slabt A A= × , where FRPA   and slabA  represents the total area of the bonded FRP 

plates and strengthening slab respectively, and 0t is the physical thickness of a single FRP 

plate.  

It is assumed that each layer is in a state of plane stress, that compatibility exists and perfect 

bond is assumed between the steel, FRP and concrete layers. For each layer, the stress points 

are taken as the Gaussian points at its mid-surface. Based on the Mindlin-Reissner plate 

theory, the displacement component , ,u v w  in the direction at a point ( , , )x y z   in a plate 

element can be expressed by the corresponding mid-plane translational displacement 

components 0 0 0, ,u v w and rotations of the mid-plane normal around x  and y  axes ,x yθ θ as

                                   

0

0

0

( , , ) ( , ) ( , )

( , , ) ( , ) ( , )

( , ) ( , )
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u x y z u x y z x y
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     The strain vector at any point in the plate element can be written as  

                                                m bε ε ε= +                                                                                (2) 

where the bending strain is expressed as  

                                     [ ]{ }
T

y y ex x
b b bB q

x y y x

θ θθ θε
∂ ∂⎛ ⎞∂ ∂= + =⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

                                   (3)          

and the membrane strain is    

                                                        l nl
m m mε ε ε= +                                                                  (4)                         

in which the linear and nonlinear membrane strains are 

                                              [ ]{ }
0 0 0 0 T

l e
m m m

u v u v
B q

x y y x
ε ∂ ∂ ∂ ∂= + =

∂ ∂ ∂ ∂
                              (5)                       

                                              
22

1 1

2 2

T

nl
m

w w w w

x y x y
ε ⎛ ⎞∂ ∂ ∂ ∂⎛ ⎞= ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

                            (6) 

In addition, the transverse shear strain vector is defined as   

                      [ ]{ }
T

e
xz yz x y s b

w w
B q

x y
γ γ γ θ θ∂ ∂= = − − =

∂ ∂
                                  (7) 

where { }e
mq and { }e

bq  are the element nodal in-plane displacement vector and nodal bending 

displacement vectors, and they are expressed as  

                        { } { }1 2 3 4e
m m m m mq q q q q=  in which { } { }Ti

m i i ziq u v θ=                           (8-a) 

                        { } { }1 2 3 4e
b b b b bq q q q q=  in which { } { }Ti

b i xi yiq w θ θ=                           (8-b) 
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2.1 Timoshenko’s composite beam functions  

The Timoshenko’s composite beam functions used to represent the bending displacement of 

the composite plate element for FE analysis of RC slabs [10] are modified, and employed for 

the analysis of FRP-strengthened RC slabs in this paper. The Timoshenko’s composite beam 

functions which satisfy the boundary condition for the displacement w  and rotation θ  at two 

ends of an beam element of length L , width  b and thickness t , are given as 

  

[ ] [ ] [ ]

[ ]

1 1 2 1 2 1 1 2 1 2 1 2 1 2 1 2 2 1 2

1 2 1 2 1 2 2

(L L ) (L L ) (L L )
2

(L L )
2

e e e

e

L
w L L L w L L L L L L L w

L
L L L L

μ μ θ μ

μ θ

= + − + + − + + −

+ − + −
    (9-a) 

                   ( ) ( )1 2 1 2
1 1 2 1 2 2 1 2

6 6
1 3 1 3e e

e e

L L L L
w L L w L L

L L
θ μ θ μ θ

μ μ
⎛ ⎞ ⎛ ⎞

= − + − + + −⎡ ⎤ ⎡ ⎤⎜ ⎟ ⎜ ⎟⎣ ⎦ ⎣ ⎦
⎝ ⎠ ⎝ ⎠

          (9-b) 

in which   

                               1 2 2

1
1 ; ; ;

1 12
b

e e
e s

Qx x
L L

L L Q L
μ λ

λ
= − = = =

+
                                (10) 

and ,b sQ Q  are the bending and shear constant, respectively.  

     For an element side ij  of the rectangular plate element with two nodes i  and j , the 

interpolation of the normal nθ� and tangential sθ� slopes are expressed as 

                                                n i ni j njL Lθ θ θ= +�                                                                      (11) 

              ( ) ( )6 6
1 3 1 3i j i j

s ij i i ij j si ij j j ij i sj
ij ij

L L L L
w L L w L LS Sθ μ μ θ μ μ θ⎛ ⎞ ⎛ ⎞= − + − + + −⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

�             (12) 

where ,ni siθ θ  and ,nj sjθ θ  are the normal and tangential slopes at nodes i and j , respectively, in 

which 

                              
1 2 2

1
1 ; ; ;

1 12
bij

e e
ij ij ij sij ij

Qx x
L L

S S Q S
μ λ

λ
= − = = =

+
                            (13) 
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where x is the coordinate along the element side, ijS  is the length of its side ij , and ,bij sijQ Q   

is the bending and shear elastic constant of side ij respectively. For a thin plate ( 0t → ) with 

a side length ijS , / 0ijt S → and then 0ijλ →  since /bij sijQ Q is a function of 2t and so 1ijμ → . 

Therefore, the displacement sθ� on the side is the familiar rotational displacement of a thin 

plate. It can be clearly seen that the shear locking problem is alleviated and unified 

representation of the displacement functions are derived for both thick and thin plates by 

employing the Timoshenko’s beam composite functions.   

     In the developed element CPEP, considering the contributions of the concrete, steel, FRP 

and adhesive layers, the bending and shear elastic constants are 

           
3 3 2 2 2

11 1 11 , 11 11
1 1

1
( ) ( ) ( ) ( ) ( )

3

c sn n
i j

bij cij i i sij j s j FRPij FRP FRP aij a a
i j

Q Q z z Q z t Q z t Q z t+
= =

= − + + +∑ ∑          (14-a) 

         55 1 1 55 , 55 55
1 1

( ) ( ) ( ) ( ) ( )
c sn n

i j
sij cij i i sij s j FRPij FRP aij a

i j

Q Q z z Q t Q t Q t+ +
= =

= − + + +∑ ∑       

  

               (14-b) 

in which    

               ( ) 4 4 2 2
11 11 12 66(cos sin ) 2( )cos sini i i i

c ij ij c c ij ijcij
Q Q Q Qθ θ θ θ= + + +                            (15-a)   

                ( ) 4 4 2 2
11 11 12 66(cos sin ) 2( )cos sinj j j j

s ij ij s s ij ijsij
Q Q Q Qθ θ θ θ= + + +                           (15-b) 

                ( ) 4 4 2 2
11 11 12 66(cos sin ) 2( )cos sinFRP ij ij FRP FRP ij ijFRPij

Q Q Q Qθ θ θ θ= + + +            (15-c)                           

( ) 4 4 2 2
11 11 12 66(cos sin ) 2( )cos sina ij ij a a ij ijaij

Q Q Q Qθ θ θ θ= + + +                                           (15-d) 

( ) ( ) ( ) ( )55 55 55 55; ; ;
2(1 ) 2(1 ) 2(1 ) 2(1 )

c s aFRP

cij sij FRPij aij
c s FRP a

E E EE
Q Q Q Q

ν ν ν ν
= = = =

+ + + +
 (15-e) 

where 11 12,i i
c cQ Q and 66

i
cQ  are the elastic constants of the thi  layer of concrete, 11 12,j j

s sQ Q  and  

66
j

sQ are the elastic constants of the thj layer of steel and 11 12,FRP FRPQ Q and 66FRPQ  are the 
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elastic constants of FRP layer, and 11 12,a aQ Q  and  66aQ  are the elastic constants of the 

adhesive layer. They are given as 

                                 11 12 662 2
; ;

1 1 2(1 )
i i ic c c c

c c c
c c c

E E E
Q Q Q

ν
ν ν ν

= = =
− − +

                               (16-a) 

                             11 12 662 2
; ;

1 1 2(1 )
j j js s s s

s s s
s s s

E E E
Q Q Q

ν
ν ν ν

= = =
− − +

                                    (16-b) 

                         11 12 662 2
; ;

1 1 2(1 )
FRP FRP FRP FRP

FRP s FRP
FRP FRP FRP

E E E
Q Q Q

ν
ν ν ν

= = =
− − +

                     (16-c)   

                                 11 12 662 2
; ;

1 1 2(1 )
a a a a

a a a
a a a

E E E
Q Q Q

ν
ν ν ν

= = =
− − +

                                (16-d) 

where , , ,c s FRP aE E E E  are the Young’s modulus, and , , ,c s FRP aν ν ν ν  are the Poisson’s ratio of 

the concrete, steel reinforcement, FRP and adhesive, respectively, and ijθ is the angle between 

the global x  axis and element side ij of the layer.  

2.2 Bending strain 

The bending displacement and rotation of a side of the proposed element are deduced from 

the Timoshenko’s beam composite functions presented above using the similar method as 

that in Zhang et al.’s paper [10] for the analysis of RC slabs. The rotational components xθ  

and yθ  around the x and y axes are expressed as 

                                                   
{ }e

x x bN qθ θ ⎡ ⎤= ⎣ ⎦                                                            (17) 

where more details of N⎡ ⎤⎣ ⎦  can be found in Zhang et al’s paper (2007).  

     Then, the bending strain vector is given as 

                                      [ ]{ }
T

y y ex x
b b bB q

x y y x

θ θθ θε
∂ ∂⎛ ⎞∂ ∂= + =⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

                              (18) 
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where   [ ] [ ]1 2 3 4b b b b bB B B B B=  and [ ]biB  can be found in the Zhang et al.’s paper [10]. 

2.3 Membrane strain 

Similar to the finite element for the analysis of RC slabs [10], the membrane displacement 

function of a quadrilateral element with drilling DOFs [18] is used to represent the in-plane 

displacements of the proposed model, with the membrane strain vector given as 

                                      [ ]{ }
0 0 0 0

T

e
m m m

u v u v
B q

x y y x
ε ⎛ ⎞∂ ∂ ∂ ∂= + =⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

                                (19)                                    

where [ ] [ ]1 2 3 4m m m m mB B B B B= with [ ]miB  (i=1, 2, 3, 4), and the [ ]miB  is similar to that 

in Zhang et al’s paper [10]. 

2.4 Transverse shear strain 

The vector of the transverse shear strains of the new element can be expressed in terms of 

natural coordinates as 

                                                           [ ]{ }T e
xz yz s bB qγ γ γ= =                                           (20) 

The transverse shear strain matrix [ ]sB  is of the same expression as that in Zhang et al’s 

paper [10]. 

3. General Constitutive Relationship 

Assuming that the material properties of each layer are constant throughout its thickness, the 

material property matrices of the element are obtained by algebraically summing the 

contributions of each layer as given in Eq. (22-a) to (22-d). 

                                                  

0

0
mm mb

bb

ss

D D

D D

sym D

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

                                                    (21) 
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where mmD  is the extensional stiffness, bbD  is the bending stiffness, mbD  is the bending-

extensional coupling stiffness and ssD is the transverse stiffness given as 

                        , 1 , ,
1 1

(z z )
c sn n

mm c i i i s j s j FRP FRP a a
i j

D D D t D t D t+
= =

= − + + +∑ ∑                                    (22-a) 

                         3 3 2 2 2
, 1 , ,

1 1

(z z )
c sn n

bb c i i i s j j s j FRP FRP FRP a a a
i j

D D D z t D t z D t z+
= =

= − + + +∑ ∑                (22-b) 

                         
2 2

, 1 , ,
1 1

(z z )
c sn n

mb c i i i s j j s j FRP FRP FRP a a a
i j

D D D z t D t z D t z+
= =

= − + + +∑ ∑                       (22-c) 

                         , 1
1

(z )
cn

ss co i i i
i

D k D z+
=

= −∑                                                                               (22-d) 

where cn  and sn is the number of concrete layers and smeared steel layers respectively, ,c iD   

,s jD , FRPD  and aD  are the in-plane material property matrices of the thi concrete layer, 

thj steel layer, FRP layer and adhesive layer respectively, ,co iD  is the out-of-plane material 

property matrix of the thi concrete layer, 1iz +  and iz  is the coordinate of the upper and lower 

surfaces of the thi concrete layer in the z direction respectively, jz is the coordinate of the 

mid-height of the thj steel layer in the z direction, FRPz  is the coordinate of the mid-height of 

the FRP layer in the z direction, az  is the coordinate of the mid-height of the adhesive layer 

in the z direction, st is the thickness of the thj  steel layer, FRPt  is the thickness of the FRP 

layer, and at  is the thickness of the adhesive layer. k is a constant representing the non-

uniformity of the shearing stress, which is generally set to be 5 / 6 [19]. 
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4. Material Models 

4.1 Material model of steel, FRP and adhesive layer 

The reinforcing steel is assumed to be elastic–perfectly plastic in tension and compression, 

with axial stiffness in only the bar direction, as shown in Fig. 2. FRPs are assumed to be 

linear elastic until the tension stress reaches its ultimate strength which causes brittle rupture 

and then reduces to zero as shown in Fig. 3. The adhesive layer is considered to be elastic-

perfectly plastic in tension [20], and the in-plane material property matrix aD  in Eq. (22) is 

given by Eq. (23). 

                                                            

2

1 0

1 0
1

1
0 0

2

a

a
a a

a
a

E
D

ν
ν

ν
ν

⎡ ⎤
⎢ ⎥
⎢ ⎥

= ⎢ ⎥− ⎢ ⎥−
⎢ ⎥
⎣ ⎦

                                                         (23)  

where aE  and aν  is the elastic modulus and Poisson’s ratio of adhesive layer respectively.  

4.2 Material model of concrete  

Before cracking or crushing, the concrete is assumed to be isotropic and linear elastic. The in-

plane and out-out-plane material stiffness matrices[ ]ciD ,[ ]coD   are given by  

                   [ ] [ ]2

1 0
1 0

1 0 ;
0 11 2(1 )

1
0 0

2

c

c c
ci c co

c c
c

E E
D D

ν
ν

ν ν
ν

⎡ ⎤
⎢ ⎥

⎡ ⎤⎢ ⎥= = ⎢ ⎥⎢ ⎥− + ⎣ ⎦⎢ ⎥−
⎢ ⎥⎣ ⎦

                         (24) 

     For concrete in compression, more complex constitutive relationship, e.g. nonlinear elastic, 

hypoelastic and plastic with isotropic hardening or kinematic hardening, are available.  

However, computational time with these constitutive relationships is excessively increased 

with little improvement in accuracy [10, 21]. Thus, the concrete is assumed to be elastic-

perfectly plastic to simplify the model, in which a limiting compressive strain 0.0035cuε = is 
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assumed. Once the compressive strain reaches to the limit, the concrete is assumed to crush 

and possess no strength.  

     For concrete in tension, the maximum principal stress criterion is used to identify cracking. 

When the maximum principal stress at the Gaussian points reaches the concrete tensile 

strength, cracks are assumed to form in planes perpendicular to the direction of the maximum 

principal tensile stress, with the elastic modulus and Poisson’s ratio are reduced to zero in the 

maximum principal stress direction. ‘1’ and ‘2’ represents the directions of maximum and 

minimum principal stress respectively. Once the maximum principal stress in direction 1 

reaches the concrete tensile strength tf , the in-plane material property matrix '
ciD⎡ ⎤⎣ ⎦  in the 

principal coordinate system is expressed as                                             

                                              '
120 c

ci cD diag E G⎡ ⎤ ⎡ ⎤=⎣ ⎦ ⎣ ⎦                                                (25-a) 

When the minimum principal stress in direction 2 also reaches tf , a second crack plane 

perpendicular to the first one is assumed to form, and then the in-plane property matrix '
ciD⎡ ⎤⎣ ⎦  

becomes 

                                            '
12

1
0 0

2
c

ciD diag G⎡ ⎤⎡ ⎤ =⎣ ⎦ ⎢ ⎥⎣ ⎦
                                                    (25-b) 

where the 12
cG  represents the cracked shear modulus that accounts for aggregate interlocking 

and dowel action in the smeared cracking model, and is from Cedolin and Deipoli’s paper 

[22]. After cracking, the out-of-plane material property matrix in the principal coordinate 

system becomes 

                                                  '
13 23
c c

coD diag G G⎡ ⎤ ⎡ ⎤=⎣ ⎦ ⎣ ⎦                                                (26) 
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where the cracked shear moduli 13
cG and 23

cG suggested by Cedolin and Deipoli [22] are 

utilized in this study, which account for aggregate interlock and dowel action. After cracking, 

tension-stiffening effects become significant and must be included in the analysis. The 

material model for concrete in tension proposed by Izumo et al. [23] (shown in Fig. 4) is 

adopted herein, in which tension-stiffening effect has been taken into account. It should be 

noted that the material models for the steel reinforcement and concrete have been adopted in 

the element developed by Zhang et al. [10] for FE analysis of RC slabs.                                 

5. Nonlinear finite element formulations 

5.1 General formulation 

The total Lagrangian approach, which takes the original configuration as the reference, is 

used for the nonlinear FE analysis of the FRP-strengthened RC slabs which is formulated as 

                                           [ ] [ ]( ){ } { } { }t t tK K q P Rσ
+Δ+ Δ = −                                            (27-a) 

where 

                                    [ ] [ ] [ ]; ;e t t
e e

e e e

K K K K R Rσ σ⎡ ⎤= = =⎣ ⎦∑ ∑ ∑                               (27-b) 

The element stiffness matrix [ ]eK , geometric stiffness matrix eKσ⎡ ⎤⎣ ⎦  and internal force vector 

{ }t
eR  and the external load vector { }t tP +Δ are defined in the following sub-sections.  

5.2 Element stiffness matrix 

Eq. (28) is used to calculate the element stiffness matrix [ ]eK  in which eA  represents the area 

of element and [ ]D is the material property matrix of the element given by Eq. (21). 

                                                     [ ] [ ] [ ][ ]
e

T

e e

A

K B D B dA= ∫                                                   (28) 
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For geometrically nonlinear analysis, strain matrix [ ]B is written as the sum of its linear and 

nonlinear components as 

                                                      [ ] l nlB B B⎡ ⎤ ⎡ ⎤= +⎣ ⎦ ⎣ ⎦                                                           (29) 

where lB⎡ ⎤⎣ ⎦  is the linear strain matrix and nlB⎡ ⎤⎣ ⎦ is the nonlinear strain matrix. lB⎡ ⎤⎣ ⎦  is given 

in Eq. (30-a) which contains linear membrane strain matrix [ ]miB , bending strain matrix 

[ ]biB  and transverse shear strain matrix [ ]siB .  

                                   1 2 3 4, , ,l l l l lB B B B B⎡ ⎤ ⎡ ⎤=⎣ ⎦ ⎣ ⎦  with 

0

0 ( 1,2,3,4)

0

mi
l
i bi

si

B

B B i

B

⎡ ⎤
⎢ ⎥⎡ ⎤ = =⎣ ⎦ ⎢ ⎥
⎢ ⎥⎣ ⎦

       (30-a)  

                                   1 2 3 4, , ,nl nl nl nl nlB B B B B⎡ ⎤ ⎡ ⎤=⎣ ⎦ ⎣ ⎦  with 

0

0 0 ( 1,2,3,4)

0 0

nl
mi

nl
i

B

B i

⎡ ⎤
⎢ ⎥⎡ ⎤ = =⎣ ⎦ ⎢ ⎥
⎢ ⎥⎣ ⎦

   (30-b)            

The nonlinear strain matrix nlB⎡ ⎤⎣ ⎦ consists of the nonlinear membrane strain matrix 

nl
miB⎡ ⎤⎣ ⎦ where the expression of nl

miB⎡ ⎤⎣ ⎦  is similar to that in Zhang et al’s paper (2007). 

5.3 Element geometric stiffness matrix 

The element geometric stiffness matrix eKσ⎡ ⎤⎣ ⎦  is obtained from the following equations. 

                                                       

e

e T
L e

A

K dq dB dAσ σ= ∫                                                         (31) 

In component form, the element geometric stiffness matrix can be written as 

   

                                 

 
0 0

0ij

ij

e

m

K
Kσ

σ

⎡ ⎤⎡ ⎤ = ⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦  

with  [ ] [ ]
ij

e

T

m i L j e

A

K G G dAσ σ ⎡ ⎤= ⎣ ⎦∫                   (32) 

in which 
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                                                      [ ] x xy

L
yx y

N N

N N
σ

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
                                                          (33) 

Where , ,x y xyN N N  are the membrane forces in the element mid-surface given by Eqs. (35-a) 

to (35-c). 

5.4 Element internal force vector 

The element internal force is given by  

                                                       

{ } [ ] [ ]
e

Tt
e e

A

R B dAσ= ∫                                                      (34) 

in which [ ] [ ]T
N M Tσ = is the general form of stress, [ ] T

x y xyN N N N⎡ ⎤= ⎣ ⎦ is 

membrane force vector defined at the mid-plane, [ ] T

x y xyM M M M⎡ ⎤= ⎣ ⎦ is the bending 

moment vector and [ ] T

x yT Q Q⎡ ⎤= ⎣ ⎦ is the transverse shear force vector.  

                                     1
1 1
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= =
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                                      1
1 1

(z z )
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i j F a
y y i i y s y FRP y a

i j

N t t tσ σ σ σ+
= =
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                                     1
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                                 1
1 1

(z z )
c sn n

i j F a
x i x i i j x s FRP x FRP a x a

i j

M z z t z t z tσ σ σ σ+
= =

= − + + +∑ ∑                    (35-d) 

                               1
1 1

(z z )
c sn n

i j F a
y i y i i j y s FRP y FRP a y a

i j

M z z t z t z tσ σ σ σ+
= =

= − + + +∑ ∑                    (35-e) 

                              1
1 1

(z z )
c sn n

i j F a
xy i xy i i j xy s FRP xy FRP a xy a

i j

M z z t z t z tσ σ σ σ+
= =

= − + + +∑ ∑                  (35-f)    

                              1 1
1 1

(z z ); (z z )
c cn n

i i
x xz i i y yz i i

i i

Q Qτ τ+ +
= =

= − = −∑ ∑                                          (35-g) 



  

16 
 

The respective stress increments σΔ  in the concrete, steel, FRP and adhesive layers in the 

next ( 1)thn + iteration for the updated stress vector σ  are 

                                                           ( ) ( )1n ni i iσ σ σ
+

= + Δ                                                 (36-a) 

                                                           ( ) ( )1n nj j jσ σ σ
+

= + Δ                                               (36-b) 

                                                           ( ) ( )1n nF F Fσ σ σ
+

= + Δ                                             (36-c) 

                                                            ( ) ( )1n na a aσ σ σ
+

= + Δ                                             (36-d) 

where  

                        [ ]{ } [ ]{ } { }( ),
i e e nl e

c i m m b b m bD B q z B q B qσ ⎡ ⎤⎡ ⎤Δ = Δ + Δ + Δ⎣ ⎦ ⎣ ⎦                                (37-a) 

                        [ ]{ } [ ]{ } { }( )s, j
j e e nl e

m m b b m bD B q z B q B qσ ⎡ ⎤⎡ ⎤Δ = Δ + Δ + Δ⎣ ⎦ ⎣ ⎦                               (37-b) 

                         [ ] [ ]{ } [ ]{ } { }( )F e e nl e
FRP m m b b m bD B q z B q B qσ ⎡ ⎤Δ = Δ + Δ + Δ⎣ ⎦                            (37-c) 

                          [ ] [ ]{ } [ ]{ } { }( )a e e nl e
a m m b b m bD B q z B q B qσ ⎡ ⎤Δ = Δ + Δ + Δ⎣ ⎦                               (37-d) 

where iσΔ  is the stress increment in the thi  concrete layer, jσΔ is that in the thj steel layer,  

FσΔ is that in the FRP layer and aσΔ  is that in the adhesive layer. 

     The out-of-plane shear stress vector τ  of the concrete in the ( 1)thn +  iteration due to the 

shear stress increment τΔ  is 

                                                  ( ) ( )1i i iτ τ τ+ = + Δ                                                               (38-a) 

where                                      [ ]{ },i
i e

co s bD B qτ ⎡ ⎤Δ = Δ⎣ ⎦                                                       (38-b) 

6. Numerical Validation 

Three numerical examples of FRP-strengthened RC slabs are computed to validate the 

proposed element CPEP. Before conducting the FE analysis, convergence studies are carried 
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out to study the convergence of element CPEP with the mesh refinement and the variation of 

the concrete layers. 

6.1 Finite element analysis of a CFRP-strengthened RC slab tested by Agbossou et al. [24] 

A 1250 mm × 1250 mm × 100 mm RC slab strengthened with CFRP (Slab 1) tested by 

Agbossou et al. [24] is analysed in this example. One layer of full-length CFRP strips, each 1 

mm thick and 50 mm wide, were spaced 150 mm and bonded in the x and y directions. The 

bottom steel reinforcements were made of ST65C-welded square mesh ( 63.6sA = mm2) and 

the top ones were made of ST35C-welded square mesh ( 38.5sA = mm2). The tensile strength 

of the concrete was 2.5 MPa and its compressive strength 35.4 MPa. The Poisson’s ratio of 

the concrete and steel was 0.2 and 0.3, respectively, the elastic modulus of the concrete, steel, 

FRP and adhesive was 30 GPa, 200 GPa, 80 GPa and 3.18 GPa respectively, and the tensile 

strength of the steel, CFRP and adhesive was 500 MPa, 925 MPa and 72.4 MPa respectively. 

It should be noted that, as the material properties of the adhesive were not given in Agbossou 

et al.’s test [24], the data was obtained from the literature [25]. The slab was simply 

supported on four edges with a concentrated load applied locally to its centre. Details of the 

FRP-strengthened RC slab are shown in Fig. 5.  

     A convergence test is conducted and, due to symmetry, only one-quarter of the slab is 

modelled. The maximum central displacement obtained from the proposed model using a 4×4, 

5×5, 6×6, 7×7 element mesh with eight concrete layers and the experimental result of 

Agbossou et al. [24] are compared in Table 1. It can be seen that converged results can be 

obtained with the refinement of the mesh.  

     In order to study the effect of the number of concrete layers on the computed results for 

the element, Slab 1 is analysed using a 7×7 mesh with different numbers of concrete layers (4, 

6, 8, 10 and 20). The computed maximum central displacement of the slab are presented in 
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Table 2 and it can be seen that the results became stable when the number of concrete layers 

reached 8, and the discrepancies between the computed central displacements using 6, 8 and 

10 layers from that using 20 layers were all under 1%. In the following computation, for 

computational efficiency, one-quarter of the slab is modelled using a 7×7 mesh with the 

composite cross-section consisting of 8 layers of concrete, two layers of steel reinforcement, 

one layer of CFRP and one adhesive layer. 

     The load-central deflection relationship of Slab 1 obtained from the proposed model, the 

experimental study [24] and numerical result from Agbossou et al.’s study [24] are compared 

in Fig. 6 in which it can be seen that the results obtained from the current model show better 

agreement with the experimental than the other numerical model. The load-deflection curve 

from the current model and experimental study show very similar trends during the loading 

period with the ultimate maximum central deflection of 6.392 mm and 6.68 mm respectively.  

     It should be mentioned that Agbossou et al. [24] modelled the slab using ANSYS and 

different types of elements were used to model the concrete, steel reinforcement and FRP 

strips.  Solid65 elements with 8 nodes and three DOFs at each node were used to model the 

concrete, Link8 elements with 2 nodes and three DOFs at each node were used to model the 

steel reinforcement and Shell99 elements with 8 nodes and six DOFs at each node were used 

to model the FRP strips. In total, 6296 elements (5408 Solid65 elements, 728 Link8 elements 

and 160 shell elements), 6561 nodes and 19,368 DOFs were used to model the slab, while 

only 49 CPEP elements with 64 nodes and 384 DOFs are used in the current FE model, 

which is much more computationally effective.  

6.2 Finite element analysis of a CFRP-strengthened two-way RC slab tested by Foret and Limam [3] 

A 1650 mm × 1150 mm × 70 mm two-way RC slab (Slab 2) tested by Foret and Limam [3] is 

analysed for further validation of the proposed plate element. The internal steel grid 
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reinforcements consisted of 6 mm diameter steel bars spaced 300 mm apart in the x and y 

directions, and the CFRP laminate was 50 mm wide and 1.4 mm thick. The tension face of 

Slab 2 was strengthened by CFRP strips 1000 mm wide and 1500 mm long spaced 150 mm 

apart in the x and y directions, respectively. The average 28-day modulus of elasticity of the 

concrete was 25 GPa and the elastic modulus of the steel reinforcement, CFRP and adhesive 

was 200 GPa, 163G Pa and 3.18 GPa respectively. The tensile strength of the steel, CFRP 

and adhesive was approximately 540 MPa, 2800 MPa and 72.4 MPa respectively. The slab 

was simply supported on four sides and subjected to a central load, and a physical model of it 

is shown in Fig. 7. Due to symmetry, in the current FE model, only one-quarter of the slab is 

analysed using a 6 × 6 mesh, with the cross-section of the concrete divided into eight layers. 

      The relationships between the load and central displacement obtained from the current 

model and experimental study [3] are compared in Fig. 8. Although there is some difference 

between the load-deflection curves from current model and experimental results during the 

initial loading stage, these curves match well after around 60 kN with computed maximum 

deflection of 10.31 mm using the present model and 10.766 mm from experimental results.  

6.3 Finite element analysis of a CFRP-strengthened RC slab tested by Limam et al. (2003) [2] 

A 1700 mm × 1300 mm × 70 mm FRP-strengthened RC slab (Slab 3) tested by Limam et al. 

[2] was computed using the developed model. The internal steel grid reinforcement was 

provided by 6 mm diameter bars spaced 200 mm apart in the x and y directions, and the 

concrete cover was 17 mm. 1.4 mm thick, 50 mm wide and 1500 mm long CFRP strips were 

bonded to the soffit of the slab in the y direction and CFRP strips with the same cross-

sectional dimensions but 1000 mm long were bonded to the tension face of the slab in the x 

direction, all of which were spaced 150 mm apart. The average 28-day concrete compressive 

strength was 30 MPa and its modulus of elasticity was 25 GPa. The steel tensile yield stress 

strength was 540 MPa and its modulus of elasticity was 200 GPa. The tensile strength of the 
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CFRP and adhesive was 2800 MPa and 72.4 MPa, respectively, their moduli of elasticity was 

160 GPa and 3.18 GPa, respectively. The slab was simply supported on four sides and 

subjected to a central load, and a physical model of it is shown in Fig. 9 Due to symmetry, 

only one-quarter of the slab was analysed using a 5×5 mesh with the cross-section of the 

concrete divided into eight layers. 

     Fig. 10 shows a comparison of the load versus central deflection relationship obtained 

from the present model and experimental study [2] in which it can be seen that the computed 

and experimental results agree very well until approximately 100 kN and slight difference 

between them is observed in the final loading stage. The computed ultimate displacement is 

26.01 mm while that of from experiment is 28.09 mm. 

7. Parametric Studies of Structural Behaviour of FRP-strengthened RC Slabs  

Once the finite element model has been validated, parametric studies can be conducted to 

further investigate the structural behaviour of the structure which will provide useful 

reference to engineers. The effects of different parameters, such as the type of FRPs, width 

and thickness of FRPs on the structural behaviour of FRP-strengthened RC slabs are analysed 

using the present model.   

     Slab 3 as computed in Section 6 is used as the basic physical model for the parametric 

studies. The load-central deflection relationship of the slab with different parameters are 

presented and compared.   

7.1 Effect of types of FRPs on the structural behaviour  

Material properties of FRPs vary with different types. CFRP has good rigidity but relatively 

expensive compared to GFRP and BFRP.  The strength properties of GFRP are somewhat 

lower than those of carbon fibres and it is less stiff, and its raw materials are much less 

expensive. BFRP has a similar chemical composition to GFRP but better strength 
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characteristics. In order to investigate the effect of the type of FRPs on the structural 

behaviour of the FRP-strengthened RC slab, three RC slabs strengthened with CFRP, GFRP 

and BFRP (denoted as Slab 3-C, Slab 3-G and Slab 3-B) are analysed using the new element. 

The material properties of each FRP are given in Table 3 and their configurations for 

strengthening are the same, with the FRP strips 1.4 mm thick and 50 mm wide.  

     The effect of the different types of FRPs on the structural behaviour of the RC slabs is 

shown in Fig. 11. It can be seen that the RC slab strengthened with CFRP exhibited stiffer 

behaviour after approximately 60 kN, which may be attributed to the higher elastic modulus 

of CFRP, while those strengthened with BFRP and GFRP, which had similar material 

properties, performed similarly. At a load level of about 120 kN, the central deflection with 

CFRP, GFRP and BFRP is 26.01 mm, 29.2 and 28.64 mm, respectively, that is, that of GFRP 

and BFRP is respectively, 12.26% and 10.11% greater than that of CFRP.  

7.2 Effect of width of FRPs on the structural behaviour 

Three RC slabs, denoted as Slab 3, Slab 3-W1, and Slab 3-W2, strengthened with 50 mm, 

100 mm and 150 mm wide CFRP strips respectively are analysed to study the effect of width 

of the FRP on their structural behaviour. The CFRP strip is 1.4 mm thick with 150 mm 

spacing. The tensile strength and elastic modulus of CFRP is 2000 MPa and 160 GPa 

respectively.  

      Fig. 12 shows the computed load-central deflection relationship of the three slabs. It can 

be seen that the load-deflection relationships of the three slabs are generally very close and 

this shows that the width of strengthening FRP sheets has no significant effect on the load-

deflection behaviour of the RC slabs. The curve for Slab 3-W1 and Slab 3-W2, strengthened 

with 100 mm and 150 mm wide CFRP strips respectively are nearly the same.  The curve for 

Slab 3 strengthened with 50 mm wide CFRP strips is nearly the same as the other two until 
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the load is approximately 50 kN, where a little discrepancy appears and the discrepancy 

increases with the increase of applied load but the curve still agree reasonably well with other 

two. The Slab 3 strengthened with 50 mm wide CFRP strips has the maximum deflection 

which is 26.01 mm when the load is around 120 kN, while Slab 3-W1 and Slab 3-W2 

produce less deflection of 25.18 mm and 24.65 mm respectively. 

7.3 Effect of thickness of FRP on the structural behaviour 

The commonly used thicknesses of FRP plates are 1 mm and 1.4 mm while, in engineering 

practice, different layers of FRP can be applied to attain the required thickness. In this study, 

reinforced concrete slabs strengthened with 1 mm, 1.4 mm and 2 mm (2×1 mm layers) thick 

CFRP plates (named Slab 3-T1, Slab 3 and Slab 3-T2) are analysed using the proposed 

element to investigate the effect of thickness of FRP on the structural behaviour of the slab. 

The computed load-central deflection of the three slabs obtained from the proposed element 

is compared in Fig. 13. The material properties of the CFRP are given in Table 2 and their 

configurations for strengthening are the same, with the FRP strips 1.4 mm thick and 50 mm 

wide.  

     It can be found from Fig. 13 that the load-deflection curves of the three slabs are very 

close, especially before the load reaching 50 kN. After the load of 50 kN, small discrepancy 

is observed from the three curves with the deflection of Slab 3-T1 of 26.34 mm which is 

slight (4.73%) larger than that of Slab 3-T2. The Slab 3 strengthened with 1.4 mm thick FRP 

plates produces nearly the same deflection as Slab 3-T2 strengthened with 2 mm thick FRP 

plates. Thus it can be seen that the thickness of the FRP sheets has with little effect on the 

flexural behaviour of the FRP strengthened RC slabs. 
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8. Summary  

A simple 4-node 24-DOF rectangular composite layered element is developed for nonlinear 

FE analysis of FRP-strengthened RC slabs in this paper.  

     The element is a unified element with all layers modelled in one single element. The shear 

locking problem naturally is avoided by using Timoshenko’s composite beam functions. 

Numerical examples demonstrated its accuracy and efficiency in predicting the structural 

behaviour of FRP-strengthened RC slabs. The effects of different types, widths and 

thicknesses of FRPs on the flexural response of FRP-strengthened RC slabs are also studied 

using the new element. Based on the parametric studies, the main findings are concluded.  

1. Types of FRPs have significant influence on the structural behaviour of FRP-

strengthened RC slabs. The CFRP-strengthened RC slab performs best comparing to 

the GFRP and BFRP-strengthened slabs. The central deflection of the CFRP-

strengthened RC slab is the least which is 12.26% and 10.11% less than that of the slab 

strengthened with GFRP and BFRP. The central deflection of the RC slab strengthened 

with GFRP and BFRP is close which might be attributed to their similar elastic 

modulus.  

2. The load resistance capability of FRP-strengthened RC slabs is improved with the 

increase of the width of the FRP strips. The RC slab strengthened with 200 mm wide 

FRP strips produces the least deflection compared to the one strengthened with 50 mm 

and 100 mm wide strips.  

3. The flexural responses of FRP-strengthened RC slabs are slightly affected by the 

thickness of the FRP strips. The deflection of the RC slab strengthened with 2 mm and 

1.4 mm thick FRP strips is about 5% less than that of the RC slab strengthened with 1 

mm thick FRP strips.  



  

24 
 

References 

[1] Reitman MA, Yankelevsky DZ. A new simplified model for nonlinear RC slabs analysis. 

ACI Structural Journal 1997;94(4):399-408. 

[2] Limam O, Foret G, Ehrlacher A. RC two-way slabs strengthened with CFRP strips: 

experimental study and a limit analysis approach. Composite Structures 2003;60(4):467-471. 

[3] Foret G, Limam O. Experimental and numerical analysis of RC two-way slabs 

strengthened with NSM CFRP rods. Construction and Building Materials 2008;22(10):2025-

2030. 

[4] Tedesco JW, Stallings JM, El-Mihilmy M. Finite element method analysis of a concrete 

bridge repaired with fiber reinforced plastic laminates. Computers and Structures 

1999;72:379-407. 

[5] Ebead UA, Marzouk H. Tension-stiffening model for FRP-strengthened RC concrete two-

way slabs. Materials and Structures 2005;38(276):193-200. 

[6] Oehlers DJ. Development of design rules for retrofitting by adhesive bonding or bolting 

either FRP or steel plates to RC beams or slabs in bridges and buildings. Composites - Part A: 

Applied Science and Manufacturing 2001;32:1345-1355. 

[7] Meshgin P, Choi KK, Taha MMR. Experimental and analytical investigations of creep of 

epoxy adhesive at the concrete-FRP interfaces. International Journal of Adhesion and 

Adhesives 2009;29:56-66. 

[8] Elsayed W, Ebead UA, Neale KW. Interfacial behavior and debonding failures in FRP-

Strengthened concrete slabs.  Journal of Composites for Construction 2007;11(6):619-628. 



  

25 
 

[9] Lu XZ, Teng JG, Ye LP, Jiang JJ. Bond–slip models for FRP sheets/plates bonded to 

concrete. Engineering Structures 2005;27:920–937. 

[10] Zhang YX, Bradford MA, Gilbert RI. A layered shear-flexural plate/shell element using 

Timoshenko beam functions for nonlinear analysis of reinforced concrete plates. Finite 

Elements in Analysis and Design 2007;43(11-12):888-900. 

[11] Zhang YX, Kim KS. Two simple and efficient displacement-based quadrilateral 

elements for the analysis of composite laminated plates. Int. J. Num. Meth. Engng. 2004; 

61:1771-1796.  

[12] Zhang YX, Kim KS. Geometrically nonlinear analysis of laminated composite plates by 

two new displacement-based quadrilateral plate elements, Composite Structures 2006;72(3): 

301-310.  

 [13] Zhang YX, Bradford MA. Nonlinear analysis of moderately thick reinforced concrete 

slabs at elevated temperatures using a rectangular layered plate element with Timoshenko 

beam functions, Engineering Structures 2007;29:2751-2761.  

[14] Zhang YX, Zhu Y. A new shear-flexible FRP-reinforced concrete slab 

element.  Composite Structures 2010; 92(3):730-735.  

[15] Lin Xiaoshan, Zhang YX. A novel one dimensional two-node shear-flexible layered 

composite beam element. Finite Elements in Analysis and Design 2011;47: 676–682.  

[16] Zhang YX, Lin Xiaoshan. Nonlinear finite element analysis of steel/FRP-

reinforced concrete beams by using a novel beam element. Advances in Structural 

Engineering 2013;16(2):339-352.  



  

26 
 

[17] Lin Xiaoshan, Zhang YX. Novel composite beam element with bond-slip for nonlinear 

finite element analyses of steel/FRP-reinforced concrete beams. Technical notes, Journal of 

Structural Engineering 2013;139(12):06013003-1-06013003-6. 

[18] MacNeal RH, Harder RL. A refined four-noded membrane element with rotational 

degrees of freedom. Computers & Structures 1988;28:75-84. 

[19] British Steel Construction Institute Steel Design Guide to BS5950: 1993;Part 1:1990, 

Vol. 1, Section Properties, Member Capacities, third edition. 

[20] Carlos AC, Maria ML. Damage approach for the prediction of debonding failure on 

concrete elements strengthened with FRP. Journal of Composites for Construction 2007; 

11(4):391-400.  

[21] Gilbert RI. Time dependent behaviour of structural concrete slabs. Ph.D. Thesis, 

University of New South Wales, Sydney, Australia, 1979.  

[22] Cedolin L, Deipoli S. Finite element studies of shear-critical R/C beams. Journal of the 

Engineering Mechanics Division 1977;ASCE (103):395–410.  

[23] Izumo J, Shin H, Meakawa K, Okamura H. An analytical model for RC panels subjected 

to in-plane stresses. Concrete Shear in Earthquakes 1992:206-215. 

[24] Agbossou A, Michel L, Lagache M, Hamelin P. Strengthening slabs using externally-

bonded strip composites: analysis of concrete covers on the strengthening. Composites Part B: 

Engineering 2008;39(7-8):1125-1135. 

[25] Quattlebaum JB, Harries KA, Petrout MF. Comparison of three flexural retrofit systems 

under monotonic and fatigue loads. Journal of Bridge Engineering 2005;10(6):731-740.



  

27 
 

FIGURE CAPTIONS 

Fig.1 A layered rectangular composite plate element. 

Fig. 2 Stress-strain relationship of steel. 

Fig. 3 Stress-strain relationship of FRP.  

Fig. 4 Stress-strain relationship of concrete in tension (Izumo et al. 1992). 

Fig. 5 The physical model of Slab 1 (Agbossou et al. 2008) (dimensions: mm) 

Fig. 6 Load-central deflection relationship of Slab 1 (dimensions: mm) 

Fig. 7 The physical model of Slab 2 (Foret and Limam 2008) (dimensions: mm) 

Fig. 8 Load-central deflection relationship of Slab 2. 

Fig. 9 The physical model of Slab 3 (Limam et al. 2003) (dimensions: mm) 

Fig. 10 Load-central deflection relationship of Slab 3. 

Fig. 11 Load-central deflection relationship of Slab 3 with different types of FRPs. 

Fig. 12 Load-central deflection relationship of Slab 3 with different width of FRPs. 

Fig. 13 Load-central deflection relationship of Slab 3 with different thickness of FRPs. 

 



  

28 
 

 

Fig. 1. A layered rectangular composite plate element  

 

 

Fig. 2. Stress-strain relationship of steel 
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Fig. 3. Stress-strain relationship of FRP 

 

 

Fig. 4. Stress-strain relationship of concrete in tension (Izumo et al. 1992) 
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Fig. 5. The physical model of Slab 1 [24] (dimensions: mm) 

 

Fig. 6. Load-central deflection relationship of Slab 1 (dimensions: mm) 
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Fig. 7. The physical model of Slab 2 [3] (dimensions: mm) 

 

 

Fig. 8. Load-central deflection relationship of Slab 2 
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Fig. 9. The physical model of Slab 3 [2] (dimensions: mm) 

 

 

Fig. 10. Load-central deflection relationship of Slab 3 
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Fig. 11. Load-central deflection relationship of Slab 3 with different types of FRPs 

 

 

Fig. 12. Load-central deflection relationship of Slab 3 with different width of FRPs 
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Fig. 13. Load-central deflection relationship of Slab 3 with different thickness of FRPs 
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TABLE CAPTIONS 

Table 1 Convergence test for different number of elements for element CPEP. 

Table 2 Convergence test for different concrete layers for element CPEP. 

Table 3 Material properties of different types of FRPs. 
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Table 1  

Convergence test for different number of elements for element CPEP 

Number of elements Number of nodes 
The maximum 

displacement (mm) 

4×4=16 25 6.318 

5×5=25 36 6.379 

6×6=36 49 6.388 

7×7=49 64 6.392 

Experimental result 
(Agbossou et al. 2008) 

                                         6.68 

 

Table 2  

Convergence test for different concrete layers for element CPEP 

Number of concrete layers The maximum deflection (mm) 

4 5.85 

6 6.33 

8 6.392 

10 6.385 

20 6.379 
Experimental result 

(Agbossou et al. 2008)  
6.68 
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Table 3  

Material properties of different types of FRPs  

Material 
Tensile 

strength (MPa) 
Modulus of 

elasticity (GPa) 

CFRP 2000 160 

GFRP 1500 76 

BFRP 1700 78 

 


