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Abstract Supplier selection, a multi-criteria decision making
(MCDM) problem, is one of the most important strategic
issues in supply chain management (SCM). A good solution
to this problem significantly contributes to the overall supply
chain performance. This paper proposes a new integrated
mixed integer programming ‐ data envelopment analysis
(MIP‐DEA) model for finding the most efficient suppliers in
the presence of imprecise data. Using this model, a new
method for full ranking of units is introduced. This method
tackles some drawbacks of the previous methods and is com-
putationally more efficient. The applicability of the proposed
model is illustrated, and the results and performance are
compared with the previous studies.
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1 Introduction

Charnes et al. [6] introduced an innovative data oriented
mathematical approach, data envelopment analysis (DEA),
for evaluating numerous relative efficiency measurements of
a set of peer decision making units (DMUs). Each DMU
converts multiple inputs to multiple outputs. Numerous
researches in various fields and various applications have
quickly showed that DEA is an outstanding and straightfor-
ward methodology for modeling operational process in

performance evaluations. As a result, this approach has rapid-
ly gained too much attention and widespread use by the
scientists. Nowadays, DEA becomes the important analysis
tool and research method in management science, operational
research, system engineering, decision analysis, and so on.

Generally, traditional DEA models partition all DMUs into
two main groups: efficient and inefficient. These models fail
to discriminate between efficient DMUs. To capture this
shortcoming, many different approaches are proposed:
Cross-efficiency methods utilize DEA in peer evaluation in-
stead of only a self-evaluation [21]. Super-efficiency ranking
methods eliminate the data on the under evaluation unit from
the solution set [4]. Benchmark ranking methods rank effi-
cient DMUs by measuring their importance as a benchmark
for inefficient DMUs [32]. Rankingwithmultivariate statistics
in DEA context, including linear discriminant analysis, uses
the statistical techniques in alliance with DEA (Sinuany-Stern
et al. [20]). In ranking inefficient DMUs approaches a new
Measure of Inefficiency Dominance (MID) index is intro-
duced to rank all inefficient units [5]. Notwithstanding with
the multi-criteria decision making (MCDM) methodologies
which do not consider a complete ranking as their ultimate
aim, DEA-MCDM methods deal with the use of preference
information to further improve the discriminating power of the
DEA models [12].

Besides all ranking studies, the problem of finding a single
efficient DMU, known as the most (best) efficient DMU in
DEA, has called the attention of some researchers: Karsak and
Ahiska [15] proposed a MCDM-DEAmodel in order to select
the most efficient advanced manufacturing technology
(AMT). Amin and Toloo [2] and Toloo and Nalchigar [24]
tried to improve and extend the approach of Karsak and
Ahiska [15]. Ertay et al. [9] suggested a minimax model in
order to detect the most efficient layout in the facility layout
design (FLD) problem. Farzipoor Saen [10] proposed an
approach to deal with the supplier selection problem in supply
chain system. Toloo et al. [25], Toloo and Nalchigar [27] and
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Amin et al. [3] formulated an integrated MIP model for
finding the most efficient discovered rules in data mining
and designed an algorithm to rank all efficient discovered
rules. Farzipoor Saen [11] proposed an MIP model to handle
the media selection problem. Some new approaches can be
found in Toloo [31], Toloo and Ertay [29] and Toloo and
Kresta [30]. Although ranking approaches can be applied to
find the most efficient unit, it is unnecessary to rank all
efficient DMUs and then find the most efficient one. More
importantly, traditional DEAmodels usually consider variable
set of optimal weights for each DMU, meanwhile the most
efficient DMU should be founded in an identical condition
which can be achieved by the common set of optimal weights
(CSW) approaches. These approaches enjoy considerable ad-
vantages in terms computational issues. Instead of solving at
least one optimization problem for each DMU in variable set
of optimal weights approaches, an integrated model can be
formulated to find the most efficient DMU in CSW
approaches.

Supplier selection is a critical managerial decision making
problem, which requires considering various qualitative and
quantitative factors. The goal is to find the best supplier for
meeting a firm’s needs consistently and at an acceptable cost
[16]. This problem is a fundamental issue of supply chain
area, a kind ofMCDMwhich requiresMCDMmethods for an
effective problem solving. A good solution to this problem
significantly contributes to the overall supply chain perfor-
mance. Numerous methods have been proposed to tackle the
problem of supplier selection. Analytic hierarchy process
(AHP), artificial intelligence (AI), analytic network process
(ANP), linear programming (LP), mathematical program-
ming, multi-objective programming, DEA, neural networks
(NN), and fuzzy set theory (FST) are instances ofmethods that
have been proposed in literature. A comprehensive literature
review of the MCDM approaches in supplier evaluation and
selection is published by Ho et al. [14]. The readers are
referred to this paper for further discussion on methods.

Recently, Toloo and Nalchigar [26] proposed a new DEA
method for selecting and ranking suppliers in the presence of
imprecise data, particularly when it is of cardinal, ordinal, or
bounded form. As will be seen subsequently, their approach
has some drawbacks. The aim of this study is to capture theses
drawbacks. Toward this end, we propose a new integrated
MIP‐DEA model for finding the most efficient unit in the
presence of cardinal and ordinal data. The model improves
the integrated DEA model that was proposed in Toloo and
Nalchigar [26]. In addition, using the suggested MIP-DEA
model, we propose a new ranking method to prioritize units.
This method is novel and computationally more efficient than
the previous proposed methods.

The remainder of this paper is organized as follows:
Section 2 reviews related studies and investigates the draw-
backs in the previous works. Section 3 presents a new MIP-

DEA model which tackles the drawbacks. A new method for
full ranking units in the presence of cardinal and ordinal data is
proposed in Section 4. Section 5 shows the applicability of
proposed method and compares its results and performance
with the previous methods. Finally, the paper closes in
Section 6 with some concluding remarks.

2 Related works

Since supplier selection problem has been widely studied by
many authors, various approaches have been proposed. For
instance, Kilincci and Onal [16] proposed a fuzzy analytic
hierarchy-based method to select the best supplier for a wash-
ing machine company in Turkey. Sevkli et al. [19] applied a
hybrid method, data envelopment analytic hierarchy process
(DEAHP) methodology to tackle the problem of supplier
selection. Lin et al. [18] proposed a hybrid methodology of
ANP technique for order preference by similarity to ideal
solution (TOPSIS) and LP for supplier selection process.
Güneri et al. [13] developed a new approach based on adap-
tive neuro-fuzzy inference system (ANFIS) to overcome sup-
plier selection problem.

Although extensive research has been carried out on sup-
plier selection problem, most of them focus on cardinal data.
Hence, the proposedmethods are not applicable for conditions
in which data is imprecise, especially in the form of ordinal
and interval data. In other words, in many real world supplier
selection problems, the data of the alternatives is imprecise
and many of the traditional methods are not applicable. To
encounter these conditions, some authors have proposed sup-
plier selections methods that deals with imprecise data.
Among others, Farzipoor Saen [10] proposed the following
model to identify a set of efficient suppliers in the presence of
both cardinal and ordinal data, without considering the non-
Archimedean epsilon to have positive decision variables.

π*
o ¼ max

X
r ¼ 1

s

Y ro

s:t:

X
i ¼ 1

m

X io ¼ 1

X
r ¼ 1

s

Y rj �
X
i ¼ 1

m

X ij≤0 j ¼ 1; 2;…; n

X ij ∈ eD−
i i ¼ 1; 2;…;m j ¼ 1; 2;…; n

Y rj ∈ eDþ
r r ¼ 1; 2;…; s j ¼ 1; 2;…; n

X ij≥0 i ¼ 1; 2;…;m j ¼ 1; 2;…; n

Y rj≥0 r ¼ 1; 2;…; s j ¼ 1; 2;…; n

ð1Þ

where eD−
i and eDþ

r are the sets of constraints to consider:
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& Bounded data: y
rj
ur ≤Y rj≤yrjur; xijwi≤X ij≤xijwi .

& Weak ordinal data: Yrj≤Yrk , Xij≤Xik.
& Strong ordinal data: Yrj<Yrk , Xij<Xik ∀j≠k for some r, i.

& Ratio bounded data: Lrj≤
Yrj

Y r jo
≤Urj and Gij≤

X rj

X i jo
≤Hij j≠ joð Þ ,

where Lrj and Gij represent the lower bounds, Urj and Hij

represent the upper bounds.
& Cardinal data: Y rj ¼ μrbyrj and X ij ¼ wibxij , where byrj

and bxij represent cardinal data.

Given a set of DMUs, Model (1) finds a subset of
efficient units and suggests them to decision maker.
Although applicable in many situations, it has a main
shortcoming since it identifies efficient suppliers and is
not able to find the most efficient supplier candidates
and rank them. In other words, using Farzipoor Saen
[10]’s method, decision maker is not able to rank sup-
pliers and chooses the best one. To overcome these
drawbacks, Toloo and Nalchigar [26] proposed the following
MIP model to select the most efficient supplier with the
common set of weights:

M * ¼ min M

s:t:
M � d j≥0 j ¼ 1; 2;…; n

X
i¼1

m

X ij≤1 j ¼ 1; 2;…; n

X
r¼1

s

Y rj �
X
i¼1

m

X ij þ d j−β j ¼ 0 j ¼ 1; 2;…; n

X
j¼1

n

d j ¼ n−1 ð2Þ

0≤β j≤1 ; d j∈ 0; 1f g j ¼ 1; 2;…; n

X ij∈eD−
i i ¼ 1; 2;…;m j ¼ 1; 2;…; n

Y rj∈eDþ
r r ¼ 1; 2;…; s j ¼ 1; 2;…; n

X ij≥ε* i ¼ 1; 2;…;m

Yrj≥ε* r ¼ 1; 2;…; s j ¼ 1; 2;…; n

where ε∗ is the non-Archimedean epsilon. According to Toloo
and Nalchigar [26], the binary variable dj is the deviation from
the efficiency of DMUj and hence their model minimizes the
maximum of the deviations. Based on this assumption, they
concluded that DMUj is the most efficient unit if and only if
dj
∗=0 and introduced an algorithm for ranking the suppliers.
Nevertheless, based on the efficiency definition in DEA liter-
ature, DMUj is CCR-efficient if and only if there exists at least
one common set of optimal variables (X∗,Y∗)∈Rn(m+s) such

that ∑r=1
s Yrj

∗=∑ i=1
m Xij

∗. Considering the third types of con-
straints in Model (2), we can infer that DMUj is a CCR-
efficient DMU if and only if dj

∗−βj∗=0 and hence dj
∗−βj∗ is

the deviation from the efficiency of DMUj. Therefore, this
unit is the most efficient if and only if dj

∗=βj
∗. On the

other hand, −1≤dj−βj≤1 and obviously it could not be
considered as the deviation from the efficiency. In ad-
dition, it should be mentioned that a binary variable
cannot be considered as deviation from efficiency, and
this is the main drawback of Model (2). Considering
these modeling drawbacks, the solution of Model (2)
does not necessarily shows the most efficient unit.
Moreover, Toloo and Nalchigar [26]’s algorithm for
ranking units is based on Model (2); consequently, it
suffers from the same drawbacks. In the next section,
we propose a new MIP-DEA model to find the most
efficient unit in the presence of imprecise data. In addition,
a new ranking method is designed.

3 Proposed model

Toloo [23] proposed the following basic integrated LP model
for finding a set of candidate DMUs for being the most BCC-
efficient unit:

z* ¼ min dmax

s:t:

dmax−d j≥0 j ¼ 1; 2;…; n

X
i¼1

m

wixij≤1 j ¼ 1; 2;…; n

X
r¼1

s

uryrj−u0−
X
i¼1

m

wixij þ d j ¼ 0 j ¼ 1; 2;…; n

d j≥0 j ¼ 1; 2;…; n

wi≥ε* i ¼ 1; 2;…;m

ur≥ε* r ¼ 1; 2;…; s

ð3Þ

Solving this model, the user achieves a common set
of strictly positive optimal weights (u∗>0,w∗>0),
which gives us a set of the most BCC-efficient unit
candidates. In other words, DMUk is a candidate for the
most BCC-efficient unit if and only if u∗yk−u0−w∗xk=
0 and hence in this model positive variable dk

* is the
deviation from efficiency of DMUk. Indeed, DMUk is a
candidate for the most BCC-efficient unit if and only if
dk
∗=0.
In addition, Toloo [23] proposed the following inte-

grated MIP-DEA model to find the most efficient unit
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from the set of candidates:

z� ¼ mindmax

s:t:

dmax−d j≥0 j ¼ 1; 2;…; n

X
i¼1

m

wixij≤1 j ¼ 1; 2;…; n

X
r¼1

s

uryrj−u0−
X
i¼1

m

wixij þ d j ¼ 0 j ¼ 1; 2;…; n

X
j¼1

n

θ j ¼ n−1

d j≤Mθ j j ¼ 1; 2;…; n

θ j≤Nd j j ¼ 1; 2;…; n

d j≥0 j ¼ 1; 2;…; n

θ j∈ 0; 1f g j ¼ 1; 2;…; n

wi≥ε* i ¼ 1; 2;…;m

ur ≥ε* r ¼ 1; 2;…; s

ð4Þ

whereM and N are large enough numbers. Obviously, Models
(3) and (4) make an assumption that input and output data are
exact numbers on a ratio scale. Hence, they are not applicable
for situations in which data are imprecise. The term ‘imprecise
data’ reflects the situations where some of the input and output
data are only known to lie within bounded intervals (interval
numbers) while other data are known only up to an order
Despotis and Smirlis [8]. Cooper et al. [7] and Kim et al.
[17] classified imprecise data into four main groups as bound-
ed data, weak ordinal data, strong ordinal data, and ratio
bounded data as follows:

Bounded data:

y
rj
≤yrj≤ ȳrj and xij≤xij≤ x̄ij for r∈BO; i∈BI ð5Þ

where y
rj
and yrj are the lower and the upper bounds for r

th

bounded output, x ij and xij are the lower and the upper
bounds for ith bounded inputs, and BO and BI represent the
associated sets involving bounded outputs and inputs,
respectively.

Weak ordinal data:

yrj≤yrk and xij≤xik for r∈DO; i∈DI

or,

yr1≤yr2≤…≤yrk ≤…≤yrn r∈DOð Þ; ð6Þ

xi1≤xi2≤…≤xik ≤…≤xin i∈DIð Þ; ð7Þ

where DO and DI represent the sets of weak ordinal outputs
and inputs, respectively.

Strong ordinal data:

yrj < yrk and xij < xik for j≠k; r∈DO; i∈DI

or,

yr1 < yr2 < … < yrk < … < yrn r∈SOð Þ; ð8Þ

xi1 < xi2 < … < xik < … < xin i∈SIð Þ; ð9Þ

where SO and SI represent the sets of strong ordinal outputs
and inputs, respectively. Clearly, SO⊆DO and SI⊆DI.

Ratio bounded data:

Lrj≤
yrj
yr jo

≤Urj j≠ joð Þ r∈ROð Þ ð10Þ

Gij≤
xrj
xi jo

≤Hij j≠ joð Þ i∈RIð Þ ð11Þ

where RO and RI represent the sets of ratio bounded outputs
and inputs, respectively.

If we incorporate Eqs. (5)–(11) to Model (3) and transform
it to a linear model (by adopting similar approach to Toloo and
Nalchigar [26]), we get:

z* ¼ min dmax

s:t:

dmax−d j≥0 j ¼ 1; 2;…; n

X
i¼1

m

X ij≤1 j ¼ 1; 2;…; n

X
r¼1

s

Y rj−
X
i¼1

m

X ij þ d j ¼ 0 j ¼ 1; 2;…; n

d j≥0 j ¼ 1; 2;…; n

X ij∈eDþ
i i ¼ 1; 2;…;m j ¼ 1; 2;…; n

Y rj∈eD−
r r ¼ 1; 2;…; s j ¼ 1; 2;…; n

X ij≥ε* i ¼ 1; 2;…;m j ¼ 1; 2;…; n

Y rj≥ε* r ¼ 1; 2;…; s j ¼ 1; 2;…; n

ð12Þ
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In which eDþ
i and eD−

r are the same sets of con-
straints as in Model (1). It should be mentioned that
Model (12) finds a set of candidates for the most CCR-
efficient unit with a common set of optimal variables
(X∗,Y∗)∈Rn(m+s) in the presence of imprecise data. The
model finds the efficient unit(s) and it is easy to verify
that in this model dj is the deviation from efficiency of
DMUj and thus this unit is efficient if and only if dj

∗=0, or
equivalently ∑r=1

s Yrj
∗=∑ i=1

m Xij
∗.

The interest significance of the following lemma is that it
allows one to formulate a simpler and more practical model
than Model (4).

Lemma 1 In Model (12), ∀j dj≤1

Proof Form the constraints in Model (12), we have

d j ¼
X
i ¼ 1

m

X ij−
X

r ¼ 1

s

Y rj≤1−
X

r ¼ 1

s

Y rj≤1

which completes the proof.
Let E={j|dj

∗=0 j=1,…,n} results from solvingModel (12).
The following theorem indicates the relation between this
model and Model (1) which is proposed in Farzipoor Saen
[10].

Theorem 1 DMUk∈E is CCR-efficient.

Proof Let k∈E and (X∗,Y∗)∈Rn(m+s) be the set of common
optimal variables in Model (12). Hence, ∑r = 1

s Yrk
∗ =∑ i = 1

m Xik
∗ .

Obviously, (X∗,Y∗) is a feasible solution of Model (1) and the
related objective function value is equal to one. Therefore,
DMUk∈E is CCR-efficient.

After solving Model (12), two mutually exclusive alterna-
tives can be occurred for E: If k∈E, then DMUk is definitely
the best efficient DMU with the common set of optimal
variables, (X∗,Y∗). In this case, Model (12) individually is
enough to determine the best efficient unit. Otherwise, this
model fails to find a single efficient unit. To resolve this
problem, we suggest adding some appropriate constraints to
the model to impose it to find just a single efficient unit. We
formulate the following MIP model to be applied in this
situation:

z* ¼ mindmax

s:t:

dmax−d j≥0 j ¼ 1; 2;…; n

X
i¼1

m

X ij≤1 j ¼ 1; 2;…; n

X
r¼1

s

Y rj−
X
i ¼ 1

m

X ij þ d j ¼ 0 j ¼ 1; 2;…; n

X
j¼1

n

θ j ¼ n−1

d j≤θ j j ¼ 1; 2;…; n

θ j≤Nd j j ¼ 1; 2;…; n

X ij∈eDþ
i i ¼ 1; 2;…;m j ¼ 1; 2;…; n

Y rj∈eD−
r r ¼ 1; 2;…; s j ¼ 1; 2;…; n

θ j∈ 0; 1f g j ¼ 1; 2;…; n

X ij≥ε* i ¼ 1; 2;…;m j ¼ 1; 2;…; n

Y rj≥ε* r ¼ 1; 2;…; s j ¼ 1; 2;…; n

ð13Þ

According to the model, there is only one zero auxiliary
binary variable, says θk, and the constraint dk≤θk implies dk=
0. In this case, the constraint θk≤Ndk is redundant. On the
other hand, the constraint θj≤Ndj, for positive binary variables
(θj=1) and a large enough value for N, leads to positive dj.
Now, Lemma 1 insures that the constraint dj≤θj is redundant.
Hence, the following Lemma is proved.

Lemma 2 In Model (13), there is only one unit with zero
deviation.

Table 1 Data of 18 suppliers

Supplier
no. (DMU)

Inputs Output

TC SRa NB

1 253 5 [50,65]

2 268 10 [60,70]

3 259 3 [40,50]

4 180 6 [100,160]

5 257 4 [45,55]

6 248 2 [85,115]

7 272 8 [70,95]

8 330 11 [100,180]

9 327 9 [90,120]

10 330 7 [50,80]

11 321 16 [250,300]

12 329 14 [100,150]

13 281 15 [80,120]

14 309 13 [200,350]

15 291 12 [40,55]

16 334 17 [75,85]

17 249 1 [90,180]

18 216 18 [90,150]

a Ranking such that 18≡highest rank,…, 1≡lowest rank (x218>x216>…>
x217)
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It should be notice that Model (13) involves less parameter
than Model (4) and this improvement is due to Lemma 1. As a
result, Model (13) is simpler and more practical thanModel (4).
In a similar manner as in Toloo [31], a model for obtaining a
suitable epsilon value in Model (13) can be extended.

In the next section, we utilize Models (12) and (13) to
propose an innovative method for full ranking of units.

4 Ranking method

Various authors have studied the problem of ranking DMUs in
DEA. Adler et al. [1] reviewed the ranking methods in DEA
and categorized them into six groups. Interested readers are
referred to this paper for further discussion on ranking
methods. Although there are a lot of ranking methods in
DEA, most of them focus on precise data. In other words,
ranking units with imprecise data have not well studied. To fill
this gap, in this section, we propose a method to rank DMUs
as follows:

Step 0 Let i=1. Replace the constraint ∑
j¼1

n

θ j ¼ n−1 in

Model (13) with ∑
j¼1

n

θ j ¼ n−i .

Step 1 Given all DMUs, solve Model (12). Let E be the set
of candidates for the most efficient DMU. For each
DMUj∉E, dj

∗ is the deviation from the efficiency and
could be used to rank DMUj∉E. DMUu has a better
rank than DMUv if and only if du

∗<dv
∗.

Step 2 If |E|=1, then stop. DMUk∈E is the most efficient unit
and ranked first.

Step 3 Given all DMUs, solve Model (13) and suppose dk
∗=

0. DMUk gets the ith rank position.
Step 4 If for all distinct u,v∈E we have du

∗≠dv∗, then stop.
DMUu has a better rank than DMUv if and only if
du
∗<dv

∗.
Step 5 Let i=i+1.
Step 6 If i=|E|, then stop. Otherwise, go to Step 3.

Indeed, in Step 1 of the proposed method, a set of DMUs is
selected as candidates to be the most efficient unit. In this step,
those DMUs, which are marked as non-candidate, are ranked
based on their deviation from the efficiency score (dj

∗). In Step
2, if we have only one candidate to be the most efficient unit,
we stop the algorithm since all DMUs are ranked. In this case,
we have∑r = 1

s Yrk
∗ =∑ i = 1

m Xik
∗ and ∀j≠k ∑r = 1

s Yrj
∗ −∑ i = 1

m Xij
∗<0

and clearly DMUk is the most efficient unit. If this not were
the case, then Model (13) finds the most efficient unit and this
unit gets the first rank position. To rank other candidates for
the most efficient unit, we must consider their deviation from
the efficiency. If all distinct candidates have different devia-
tion from the efficiency, then these units can be ranked based

on their deviation value. Otherwise, Model (13) with new
updated constraint (∑j = 1

n θj=n−i) finds the next top ranked
DMU. In other words, if i=t, then this algorithm rank tth most
efficient candidate. As a result, the designated algorithm must
be repeated at most |E|−1 times to rank all the candidates.

The next section of this paper shows the applicability of
proposed method and compares its result with previous
methods.

5 Application

In this section, the application of the proposed method and
models is shown in a supplier selection problem previously
used by Toloo and Nalchigar [26]. Including 18 suppliers, data

Table 3 Comparison of the proposed method with the previous methods

Supplier Results of Toloo and
Nalchigar [26]

Results of the
Proposed Method

Supplier
status

DMU4 1 4 Non-candidate

DMU14 2 7 Non-candidate

DMU6 3 5 Non-candidate

DMU17 4 3 Candidate

DMU11 5 1 Candidate

DMU8 6 2 Candidate

DMU9 7 9 Non-candidate

DMU7 – 6 Non-candidate

Table 2 Results of the proposed method

Supplier no.
(DMUs)

Ranking results
from Model (12)

i=1 i=2
Ranking results
from Model (13)

Ranking results
from Model (13)

1 8 8 8

2 14 14 14

3 13 13 13

4 4 4 4

5 12 12 12

6 5 5 5

7 6 6 6

8 – – 2

9 9 9 9

10 10 10 10

11 – 1 1

12 15 15 15

13 16 16 16

14 7 7 7

15 17 17 17

16 18 18 18

17 – – 3

18 11 11 11
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is obtained from other previous studies that used DEA for
problem of supplier selection [10, 22]. These suppliers con-
sume two inputs as total cost of shipment (TC) and supplier
reputation (SR) to produce bills received from the supplier
without errors (NB) as output. The inputs are in cardinal and
ordinal scale, respectively, and the output is bounded data.
Table 1 presents the data.

By adopting Zhu [33]’s approach, inputs and outputs of
suppliers could be written as follows:

eD−
1 ¼ X 11 ¼ 253w1;X 12 ¼ 268w1;X 13 ¼ 259w1;…;X 118 ¼ 216w1f g

eD−
2 ¼ X 218≥X 216≥…≥X 217f g

eDþ
1 ¼ 50μ1≤Y 11≤65μ1; 60μ1≤Y 12≤70μ1; 40μ1≤Y 13≤50μ1;…; 90μ1≤Y 118≤150μ1f g

Using these relations, we solve Model (12). The results
indicate that E ¼ 8; 11; 17f g which means DMU8, DMU11,
and DMU17 are the candidates to be the most efficient DMU.
For the rest of DMUs, dj∉E

∗ is the deviation from the efficiency
score and is used to rank them (See Table 2). Notice that based
on the results of Model (1) suppliers 4, 6, 8, 9, 11, 14, and 17
are recognized as the efficient suppliers and as we expected
the most efficient supplier candidates selected among these
efficient suppliers.

Since the condition of Step 2 is not satisfied, we skip this
step and directly proceed to Step 3. In this step, we solve
Model (13) with i=1. The result shows that d11

∗ =0 and d8
∗=

d17
∗ =0.001; hence, we skip Step 4. In Step 5, since i=2<|E|=
3, we go to Step 3 and solve Model (13) with i=2. The
result indicates that d8

∗=0. As a result, DMU8 gets the
second rank position. Obviously, the last candidate,
DMU17 , is ranked third. The stop condition in Step 5
is met and all DMUs are ranked. Table 2 presents the full
ranking results.

To provide further insights, we compare the performance
and results of proposed method with the results of two previ-
ous methods on the same data set (See Table 3).

The last column in Table 3 indicates that either a DMU is
selected as the most efficient unit candidate (candidate) or not
(non-candidate). This table illustrates the main drawback of
Toloo and Nalchigar [26]’s method. The first three top ranked
DMUs in this method (i.e., DMU4, DMU14, and DMU6) are
not even identified as the most efficient unit candidates.
Apparently, a reliable approach is required to rank top
DMUs among the most efficient unit candidates (i.e.,
DMU11, DMU8, and DMU17). This inconsistency in the
method, as explained in Section 2, lies in the fact that Model
(2) is formulated incorrectly. As can be extracted fromTable 3,
notwithstanding Toloo and Nalchigar [26]’s method, the pro-
posed method in this paper results in reliable ranking. Indeed,
the most efficient unit candidates are at the top of ranking in
our new suggested method. Hence, in comparison with the
previous method, the proposed method provides more deci-
sion aids to decision maker and captures drawbacks of the
previous studies.

Finally, to compare these methods from computational
efficiency, we can say that Farzipoor Saen [10]’s method
requires decision maker to solve 18 LPs to find 7 efficient
suppliers whereas in our approach, 2 (=|E|−1) MIPs must be
solved. Although dealing with LPs is more computationally
efficient than MIPs, Farzipoor Saen [10]’s method selects
suppliers based on variable set of optimal weights meanwhile
our integrated approach is based on the common set of optimal
weights. Common set of optimal weights lets us to select
suppliers in an identical condition. As a result, the suggested
method in this study is more logical and practical.

6 Conclusion

Supplier selection has been considered as one of the most
important strategic issues in SCM. Many practitioners and
researchers have emphasized that a well designed and imple-
mented supply chain system play a critical role in increasing
competitive advantages of companies. This paper developed a
supplier selection approach based on DEA for conditions in
which data of suppliers are imprecise. Although previous
researches have considered the problem of imprecise data in
supplier selections, their approach suffers from some draw-
backs. The main contribution of this paper was to propose a
new integrated MIP-DEA model to overcome these draw-
backs and to use the new model to propose a new method
for full ranking of units. The applicability of the new method
was shown, and results were compared with the previous
studies. Future research could use the proposed method of
this paper, with mirror modifications, for other multi-criteria
managerial decision making problems such as selection of
media, technology, and international market. Moreover, the
formulated models and designated algorithm in this study can
be extended to find the most BCC-efficient unit in the pres-
ence of imprecise data.
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