
Electrical Power and Energy Systems 62 (2014) 221–228
Contents lists available at ScienceDirect

Electrical Power and Energy Systems

journal homepage: www.elsevier .com/locate / i jepes
Multi-objective reactive power optimization strategy for distribution
system with penetration of distributed generation
http://dx.doi.org/10.1016/j.ijepes.2014.04.040
0142-0615/� 2014 Elsevier Ltd. All rights reserved.

⇑ Corresponding author at: College of Electrical Engineering & New Energy, China
Three Gorges University, YiChang 443002, China. Tel.: +86 13618683042.

E-mail address: hpucquyzu@cqu.edu.cn (S. Cheng).
Shan Cheng a,b,⇑, Min-You Chen c

a College of Electrical Engineering & New Energy, China Three Gorges University, YiChang 443002, China
b Hubei Collaborative Innovation Centre for Microgrid of New Energy, YiChang 443002, China
c School of Electrical Engineering, Chongqing University, Chongqing 400044, China

a r t i c l e i n f o
Article history:
Received 27 August 2013
Received in revised form 17 April 2014
Accepted 18 April 2014

Keywords:
Distributed generation
Distribution system
Multi-objective particle swarm
optimization
Reactive power optimization
a b s t r a c t

The study investigates multi-objective reactive power optimization (MORPO) of distribution system
penetrated with distributed generation (DG). Integrating the reactive power of DG as one type of decision
variables, a multi-objective model for RPO has been established to decrease the system active power loss,
reduce voltage deviation and minimize the total capacity of reactive power compensation (RPC) devices
(or minimize investments on RPC devices). Instead of converting the multiple objectives into a single one,
a dynamically adaptive multi-objective particle swarm optimization (DAMOPSO) algorithm with
introduction of special adaptive techniques has been proposed and validated and then applied to the
MORPO problem with continuous and discrete variables. In order to the proposed MORPO model and
the application of DAMOPSO, and to obtain a deep insight into MORPO with different objectives, a series
of simulations on IEEE 33-bus system along with analysis and discussion are carried out. The results
verified the feasibility and effectiveness of the proposed strategy.

� 2014 Elsevier Ltd. All rights reserved.
Introduction

With energy and environmental challenges, distributed genera-
tion (DG, such as fuel-cells, biomass, micro-turbines, small hydro-
electric and other forms of renewable energy technologies [1,2])
has attracted special attention all over the world, and its estimated
share will increase significantly in electric power systems in the
near future. In general, DG can be installed within distribution sys-
tems or on the customer side of the network [3]. However, the tra-
ditional distribution systems have been constructed without
considering DG’s penetration. The impact of DG on the distribution
of the reactive power is significant in a distribution system with
radial configuration and small X/R ratio [4–8]. Thus, RPO of the
distribution system with DG is fundamental to ensure the
economic operation of the system without violating technical
and operational limits and to provide consumers with sufficient
power of high quality.

RPO of the distribution system with integrated DG has been
investigated, and a large number of optimization models and
methods for this problem have been proposed. Firstly, different
kinds of single-objective optimization model have been studied
and various single-objective optimization algorithms have been
applied [8,9]. Afterwards, researchers advocated that a wide range
of objective functions should be considered and a multi-objective
formulation should be formed to effectively replicate different
perspectives of RPO problem. The commonality of such researches
is that a multi-objective problem (MOP) is converted to a single-
objective one using a weighted aggregation approach [4,5,10] or
fuzzy optimization method [6,7]. It have to be pointed that fuzzy
method and weighted aggregation approach are inherently sin-
gle-objective optimization techniques, and the only one best solu-
tion fails to provide the designer with alternative options [11,12],
though they simplify the optimization process of MORPO problem.
Then, single-objective optimization cannot accurately reflect the
relationship between the various objectives, especially when the
involved objectives are conflict with each other. Furthermore,
fuzzy optimization turns out to be weighted aggregation approach
with a set of stationary weights (preference factors [13]). If such a
relative preference factor among the objectives is known for a
specific problem, weighted aggregation approach is a simple and
adequate method to deal with the MOPs. While, it’s important to
realize that the solution obtained by this strategy is largely
sensitive to the relative vector used in forming the composite
function [13,14].

Therefore, some multi-objective optimization (MOO) tech-
niques, which have been proved to be efficient in solving MOPs
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by tackling multiple competing objectives simultaneously, should
be applied to the MORPO problem. The objectives involved in MOR-
PO are usually non-commensurable or even conflict with each
other, and it is always impossible to find a solution which can opti-
mize all the objectives at the same time. Instead of a single optimal
solution, the solution to a MOP is a set of different solutions (so-
called Pareto optimal set [13]). Via MOO algorithms, we aim to find
Pareto solutions that represent the best possible compromises
among the objectives. Deb [13] argued that the MOO technique
can provide flexibility with a variety of diverse choices and it is
more methodical, more practical and less subjective, compared
with the method converting the multi-objective into a single objec-
tive. Such MOO technique has been applied to the MORPO problem,
which made the MORPO come into true. Especially, the MOO tech-
nique has been applied to MORPO of distribution system with DG.
Considering the voltage stability of the grid-connected wind farm,
Zhao and Lv [15] addressed the MORPO model for power system
with wind farms and indicated that the identified Pareto solutions
can provide decision maker with alternative choices. To maintain
the diversity of Pareto solutions, the niching technique was
adopted, while one of its drawbacks is difficult to define the
involved parameters.

This study aims to investigate the MORPO strategy for distribu-
tion system penetrated with DG. Integrate the reactive power of
the DG to be the decision variables together with the traditional
RPO decision variables and establish the MOO model, in which
the objective functions include minimization of the system active
power loss, voltage deviation and total capacity of the RPC devices
(or investments on the RPC devices). To provide the decision maker
with alternatives and to allow to analyze correlations between
optimization objectives, a dynamically adaptive multi-objective
optimization (DAMOPSO) algorithm has been presented to deal
with the non-linear MORPO problem with continuous and discrete
variables. For demonstrating advantages of the proposed model
and effectiveness of the application of DAMOPSO, comparison
and discussion have been carried out along with a series of simu-
lations on modified IEEE 33-bus system.
Multi-objective reactive power optimization model

Objective function

Economic and safe operation of the electric power system is
paramount to all others, which also results in great benefits to
the society. Even though power loss cannot be completely
removed, it can be brought down to an acceptable value. Moreover,
reducing the power loss has a positive impact on relieving the
feeders, decreasing the voltage drop and possessing other environ-
mental and economical benefits [16]. Hence, power loss is a key
and greatly concerned index regarding RPO.

Besides, stability of the system and quality of power supply
become more and more important with the development of the
society. Failure of power supply and lower power quality would
produce faults to the terminal system even paralysis, the resulting
effect is devastating and the disrupted productivity would cost bil-
lions of dollars in damages. Voltage deviation is one of indices to
evaluate the stability of the system and the quality of power supply
[17], and minimization of voltage deviation has been selected as
one of the multiple objectives in [6,7,10].

Furthermore, the utmost aim of RPO is to reducing active power
loss, improving voltage profile and promoting voltage stability
with acceptable investment on RPC devices. Since the investment
is related to the total capacity of the installed RPC devices, less
investment means less total capacity of RPC devices while meeting
reactive power demand. Under electric power market environment
with separation of power plant and power grid, researchers real-
ized the importance and necessity of pricing the reactive power,
and have investigated the RPO problem considering the cost of
reactive power, such as decreasing investment of RPC equipments
[4,5], minimizing reactive power injection costs [18].

Based on these considerations, this study propose MOO model
for RPO of the distribution system penetrated with DG, in which
the multiple objectives consist of minimizing the active power loss,
the total voltage deviation and the total capacity of RPC devices (or
investments on RPC devices). The mathematical formulations of
the objectives can be expressed as follows.

min f loss ¼
XNbra

k¼1

Gk½V2
i þ V2

j � ViVjcoshij� ð1Þ
min f DV ¼
XNbus

i¼1

ðVi � V�i Þ
2 ð2Þ
min f cost=Q ¼
XNQ

s¼1

CCAPsjQ qsj ð3Þ

where floss; f DV and fcost=Q represent the total active power loss, the
total voltage deviation and the investments on RPC devices (or total
capacity of RPC devices), respectively. CCAP indicates the investment
for RPC devices per unit. If CCAP ¼ 1, Eq. (3) becomes a function of
total capacity of RPC devices. Nbra; Nbus and NQ denote the total
number of branches, buses and RPC devices in the system, respec-
tively. Gk is the conductance of branch k which connects bus i and
bus j. V and h are voltage magnitude and voltage angle, respectively.
hij ¼ hi � hj. Qq represents the actual capacity of RPC device
installed.
Constraints

The conventional decision variables of RPO include generator
terminal voltage magnitude VG, reactive power of capacitors Q C

and tap of transformers T, while the state variables consist of reac-
tive power of generator(s) Q G and voltage magnitude of each load
bus in the system. Considering the reactive power capability of DG,
the decision variables also include the reactive power of the DG,
QDG. Decision variables and state variables must keep within the
pre-defined ranges to ensure the quality of power supply, eco-
nomic and safe operation of the power system. According to the
regulations of power system operation and technical and physical
limits, constraints are defined as follows:
Power balance constraints
The equality constraints are the power balance constraints with

DG, which include two nonlinear recursive power flow equations.
For bus i, it can be formulated as Eq. (4).

PGi þ PDGi � PLi ¼ Vi

XNbus

j¼1

VjðGkcoshij þ BksinhijÞ

Q Gi þ QDGi þ Q Ci � Q Li ¼ Vi

XNbus

j¼1

VjðGksinhij þ BkcoshijÞ

8>>>>><
>>>>>:

ð4Þ

where PG; PDG and PL represent active power of generator, DG and
load at bus i, respectively. QG; QDG; QC and QL represent reactive
power of generator, DG, RPC and load, respectively. Bk represent
the susceptance of the branch k.

While, inequality constraints mainly include the following
ones:
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Voltage limit for each bus
The voltage magnitude of each bus in the network reflects the

quality of power supply and voltage stability is important for safe
operation of the network. Hence, the voltage level at each bus is
not allowed to fall outside the maximum and minimum values
according to grid voltage regulations. For bus i, voltage limit can
be expressed as Eq. (5).

Vimin 6 Vi 6 Vimax; i ¼ 1;2; . . . ;Nbus ð5Þ

where min and max represent minimum and maximum limits,
respectively.

Feeder transmission capacity constraints
Power flow through any distribution feeder must comply with

the thermal capacity of the line, which can be expressed by Eq. (6).

Skmin 6 Sk 6 Skmax; k ¼ 1;2; . . . ;Nbra ð6Þ

where Sk represents the transmission capacity of branch k.

Constraints for generators, transformers and RPC devices
Such constraints mainly include limits on terminal voltage of

the generators, reactive power output of the generators and DGs,
the ratio of load tap changer transformers and output of RPC equip-
ment, which can be sequentially formulated as Eqs. (7)–(11).

Vgmin 6 Vg 6 Vgmax; g ¼ 1;2; . . . ;NG ð7Þ

Q Ggmin 6 Q Gg 6 Q Ggmax; g ¼ 1;2; . . . ;NG ð8Þ

Q DGlmin 6 QDGl 6 Q DGlmax; l ¼ 1;2; . . . ;NDG ð9Þ

Tjmin 6 Tj 6 Tjmax; j ¼ 1;2; . . . ;NT ð10Þ

Q Csmin 6 Q Cs 6 QCsmax; s ¼ 1;2; . . . ;NQ ð11Þ

where NDG and NT denote number of DG and transformers,
respectively.

From equations described above, it can be seen that the objec-
tive functions with technical and operational constraints are for-
mulated. The MORPO model has nonlinear equality constraints
defined by power flow equations; it also has nonlinear optimiza-
tion objective, minimization of the system loss. Appropriate MOR-
PO model considering several objectives of interest is essential for
RPO. Such a model is worthless when it is optimized with an inac-
curate optimization method. Traditionally, the MORPO problem
has been solved by linear programming, and usually one of the
objectives is optimized and the others are included in the restric-
tions, or using fuzzy method and weighted aggregation approach
where the MOP is converted into a mono-objective one. These
methods simplify the optimization process of MORPO, but gener-
ate disadvantages [5,19]:

� Representation of the objectives by means of the restrictions in
linear programming can lead to unfeasible problems.
� There is not a clear criterion for choosing the suitable objective

function and in many cases the fulfillment of one single objec-
tive can be in conflict with others.
� Fuzzy optimization turns out to be a weighted aggregation

approach with a set of stationary weights (preference factors).
� The weighted aggregation approach cannot accurately reflect

the relationship between the various objectives, especially
when the involved objectives are conflicted with each other.
� The only one best solution fails to provide the designer with

alternative options.

Compared with mono-objective optimization techniques, the
main advantage of MOO is that a set of diverse optimal solutions
are identified instead of one optimal solution, which gives more
flexibility to the decision maker. To offer a set of solutions to do
tradeoff analysis and provide a deep insight into the MORPO prob-
lem with DG, effective MOO algorithms should be applied to this
non-convex, nonlinear problem with discrete and continuous
variables.
Dynamically adaptive multi-objective particle swarm
optimization algorithm

Particle swarm optimization (PSO) is an evolutionary computa-
tion technique. In real number space each particle i is associated
with its velocity v i ¼ ½v i1;v i2; . . . ;v iD�T and position xi ¼ ½xi1; xi2;

. . . ; xiD�T , where D stands for the dimensions of the decision
variables. The best position ever found so far by particle i is
recorded as pi ¼ ½pi1; pi2; . . . ; piD�

T , whose fitness value is pbest .
Moreover, the best position found by any particle is recorded as
pg ¼ ½pg1; pg2; . . . ; pgD�

T , and its fitness value is gbest . During the
evolutionary process, the velocity and position update formulae
of particle i on the dimension djd¼1;2;...;D are updated according to
Eqs. (12) and (13), respectively.

v idðt þ 1Þ ¼ wv id tð Þ þ c1r1 pid � xid tð Þ½ � þ c2r2 pgd � xid tð Þ
� �

ð12Þ

xidðt þ 1Þ ¼ xid tð Þ þ v id t þ 1ð Þ ð13Þ

where t is the current iteration, w is the inertia weight, and c1 and c2

are acceleration coefficients, and r1 and r2 are random numbers
with uniform distribution between 0 and 1.

Because of fast convergence, fewer parameters to adjust, robust
adaptability, and relative simplicity of implement, PSO has been
extended for multi-objective particle swarm optimization
(MOPSO). MOPSO is the process of identifying well-spread solu-
tions as diverse as possible and as close to the real Pareto front
as possible. To make PSO suitable for MOPSO, techniques must
be introduced to strengthen the global search ability and prevent
the premature. Besides, how to promote the diversity of Pareto
solutions is also to be considered. In the study a dynamically adap-
tive MOPSO (DAMOPSO) is proposed, which introduces the follow-
ing strategies to ensure its performance.

Strategy for inertia weight and acceleration factor

The inertia weight controls a balance between global and local
exploration. To make the swarm converge to global optimum and
ensure an effective exploitation, the balance between exploration
and exploitation adjusts dynamically. The inertia weight can adjust
adaptively according to Eq. (14).

wðtÞ ¼ w0 þ r3ð1�w0Þ ð14Þ

where r3 is a random number with uniform distribution in the
range of [0,1]; w0 2 ½0;1� is a positive constant and the suggested
range for w0 is [0,0.5] [20].

The velocity of each particle updates according to a modified
formula described as Eq. (15).

v idðt þ 1Þ ¼ wv idðtÞ þ c½r1ðpid � xidðtÞÞ þ r2ðpgd � xidðtÞÞ� ð15Þ

where c is called acceleration factor. To enhance the global search
ability of the swarm at the end of iteration and help to jump out
of the local optimum, especially for MOPs, it linearly changes with
iteration according to Eq. (16) [20,21].

cðtÞ ¼ c0 þ t=Mt ð16Þ

where Mt indicates the max number of iterations; c0 is a constant
and the suggested range is [0.5,1].
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Selection of leader particle for each individual

Selection of leader(s) is a key component in designing a MOPSO
algorithm and appropriate selection technique would be effective
in promoting diversity of the swarm and Pareto solutions. Unlike
PSO, instead of only one global best (leader), there are a set of
non-nominated solutions to be select as leader(s) to guide the
flight of the swarm. The conventional way is to select a leader
for all particles in the swarm using random method, roulette-
wheel, tournament or crowding distance sorting. While, in the
study, a leader for each individual is selected from the current
non-dominated solutions, and the solution with max fitness value
is selected as leader pg according to Eq. (17). As a result, each indi-
vidual with a different leader and all the non-dominated solutions
have the opportunity to be selected as leader.

fitness ¼ 1
XM

i¼1

wifi

,
; wi ¼ ki

XM

i¼1

ki

,
; ki ¼ Uð0;1Þ ð17Þ

where M is the number of objectives, and fi is the ith objective-func-
tion. The function Uð0;1Þ generates a uniformly distributed random
number within the interval [0,1].
Strategy for diversity promotion of Pareto solutions

NSGA-II [22] crowding distance sorting (NCDS) is popularly
used to enhance the diversity of Pareto solutions. However, this
technique ignores the effect on the CD(s) of the selected non-nom-
inated solutions caused by the nearby eliminated one(s), which
results in the selected solutions being too sparse. Improve NCDS
and introduce dynamic elimination strategy for selection of parti-
cles for next iteration. Let N and NND denote the population size
and number of current non-dominated solutions, respectively.
Store the current non-dominated solutions in listND. Firstly, com-
pute the CDs of the non-nominated solutions. Then eliminate the
one with the least CD. Thirdly, re-compute the CDs of the rest
non-nominated solutions and also eliminate the one with the least
CD. Repeat the operations until N solutions remain and store them
in NewP for next iteration. In case of N > NND, first of all, copy all
individuals in ND to NewP. Then identify the non-nominated solu-
tions from the dominated solutions and then do the similar
operation.

Finally, in order to avoid premature caused by diversity loss of
the swarm, mutation operation are also incorporated.

Table 1 summaries a comparison between mean values of con-
vergence (GD) and diversity (D) on ZDT1 � ZDT4, performed by
DAMOPSO and those performed by NSGA-II [22], MOPSO [23],
AEPSO [21], CDMOPSO [24], AIPSO [25] and LH-MOPSO [26].
Results indicated that DAMOPSO has resulted in best convergence
on all test problems in terms of GD measure, especially on the most
difficult problems ZDT3 and ZDT4, markedly better than the other
algorithms. Hence, DAMOPSO is a highly competitive MOO
Table 1
Mean value of the convergence measure GD and diversity D.

Algorithm ZDT1 ZDT2

GD D GD D

NSGA-II 0.03348 0.3903 0.07239 0.43
MOPSO 0.01148 0.6813 0.00089 0.63
AEPSO 0.00016 0.6341 0.00008 0.62
CDMOPSO 0.00690 0.2740 0.00682 0.27
AIPSO 0.00448 0.5146 0.00329 0.49
LH-MOPSO 0.00210 0.4088 0.00270 0.38
DAMOPSO 0.00015 0.5753 0.00008 0.55
method, it can provide diverse solutions well spreading along the
Pareto front with good global convergence performance.

After validating the effective of DAMOPSO on a set of bench-
mark functions ZDT1 � ZDT4, it will be applied to MORPO.

MORPO problem based on DAMOPSO

The decision variables can be represented as

X ¼ ½VG1;VG2; . . . ;VGNG
jQ DG1;Q DG2; . . . ;QDGNDG

j

T1; T2; . . . ; TNT jQ C1;Q C2; . . . ;Q CNC
�T :

As mentioned above, the reactive power of Q DG is continuous,
while the capacity of RPC device installed Q C is discrete. During
the evolutionary process, treat QC as continuous variable and con-
vert it into an integer when compute power flow. That’s mean that
the capacity of RPC device installed is calculated eventually accord-
ing to Eq. (18).

QC ¼ round
Q C

Q C unit

� �
Q C unit ð18Þ

where QC unit denotes the unit-capacity of RPC device.

MORPO procedure

step1 Enter the data related to the DG and distribution system,
set the swarm size N, number of iterations Mt . Initialize
the swarm P according to the maximum and minimum
reactive power capacities of DG and RPC devices. Initial-
ize the individual best, pi.

step2 Update pi and pg for each particle. Execute power flow
computation and get the objective-function values corre-
sponding to each particle, then find the non-dominated
individuals in P and select pg for each particle according
to the strategy described in ‘Selection of leader particle
for each individual’. Meanwhile, Update pi.

step3 Generate new swarm R whose population size is 2N. Cre-
ate a swarm P0 according to Eqs. (15) and (13) based on
velocity and position of each particle in P. Combine P
and P0 to generate R.

step4 Identify non-dominated solutions from R, and store the
non-dominated ones in listND and dominated ones in
listD.

step5 Select particles for next iteration according to the
approach stated in ‘Strategy for diversity promotion of
Pareto solutions’.

step6 Execute mutation operation. Determine whether muta-
tion being needed, if yes, execute mutation operation,
else go to step7.

step7 Return to step2 until Mt is met.
step8 Output the non-dominated solutions from the final iter-

ation and regulate Q C according to Eq. (18) and then
store these solutions as Pareto solutions.
ZDT3 ZDT4

GD D GD D

08 0.11450 0.7385 0.51305 0.7026
92 0.00418 0.8320 7.37429 0.9619
78 0.00061 0.6039 0.00016 0.6002
09 0.00720 0.3707 0.26300 0.2118
91 0.00612 0.5056 0.14462 0.5074
03 0.00590 0.5607 0.48110 0.4089
64 0.00061 0.4877 0.00015 0.5657
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Fig. 1. Single line diagram of IEEE 33-bus system.
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A series of simulations, analysis and discussion

The DAMOPSO algorithm is employed to determine the optimal
reactive output of DGs and optimal capacities of RPC devices
installed in a IEEE 33-bus system [27] as illustrated in Fig. 1 for
reducing the active power loss, minimizing the voltage deviation
and decreasing the total capacity of RPC. The parameters involved
are listed in Table 2. The floss values under the two situations with-
out installed DG and without RPO are 0.2015 MW and 0.1348 MW,
respectively. And the fDV values are 0.0916 and 0.0518, respec-
tively. In order to demonstrate feasibility of the proposed model
and effectiveness of the application of DAMOPSO, to obtain a deep
insight into MORPO with different objectives and analyze the cor-
relation between objectives, a series of simulations along with
analysis and discussion are carried out.

Case 1: considering the three objectives: floss; f DV and fQ ;
Case 2: considering the two objectives: floss and fDV ;
Case 3: considering the two objectives: floss and fQ .

First of all, consider Case 1, determine decision variables via
optimize the three objectives floss; f DV and fQ . Table 3 lists the Par-
eto solutions and the objective function values corresponding to
each solution. Fig. 2 shows the well-distributed Pareto solutions
obtained by DAMOPSO in the objective space. It is clear that Pareto
solutions have satisfactory diversity characteristics. This is useful
for decision maker to choose a reasonable choice. It also reveals
that the objective functions are non-comparable and even conflict
with each other. Besides, each solution results in the system active
power loss and voltage deviation being reduced dramatically com-
pared with those of without DG and without RPO. However, no
Table 2
Parameter values.

Parameter Value Parameter Value Parameter Value

N 100 Vrated 1 pu PDG1=PDG2 1 MW
w0 0.3 QCunit 150 kvar QC1min=QC2min 0 kvar
c0 0.5 QC1max 4 ⁄ 150 kvar QDG1min=QDG2min �100 kvar
Mt 250 QC2max 7 ⁄ 150 kvar QDG1max=QDG2max 500 kvar

Table 3
Pareto solutions of Case 1.

Pareto solutions QDG1 (Mvar) QDG2 (Mvar) QC1 (Mvar)

S1 0.157 0.421 0.600
S2 0.418 0.328 0.600
S3 0.500 0.398 0.450
S4 0.390 0.439 0.600
S5 0.461 0.489 0.450
S6 0.460 0.500 0.300
S7 0.464 0.481 0.150
S8 0.461 0.494 0.150
S9 0.365 0.500 0.150
S10 0.379 0.500 0.150
S11 0.301 0.500 0.150
solution can satisfy each objective function to be minimum at
the same time.

Figs. 3 and 4 demonstrate the Pareto fronts of Cases 2 and 3,
respectively. It can be seen that when the two objective functions
are considered, the total capacity of RPC devices is conflict with the
power loss. Similarly, voltage deviation is conflict with the power
loss, unlike the relationship shown in Fig. 2(b). Tables 4 and 5 illus-
trate all the Pareto solution of Case 2 and selected ones of Case 3,
respectively. Apparently, the Pareto solutions also bring about ben-
efits to the system for the two cases. In addition, for Case 3, there
are more Pareto solutions and the voltage deviation is reduced
more markedly than the other two cases. Why? Analysis will be
presented.

Analysis and discussion

Rethink and reanalyze about objectives
Is weighted aggregation reasonable? Reinvestigate Figs. 2 and 3.

When the three objectives are selected fQ is conflict with floss and
fDV . As Eq. (2) shows, appropriate voltage promotion decrease volt-
age deviation, and it’s known that voltage promotion also results in
the reduction of power loss along the lines. As Fig. 4(a–c) demon-
strate, the voltage magnitude of each bus is prompted with RPO.
While part of contribution is caused by the output of RPC devices.
To some extent, the more output of RPC devices, the less voltage
deviation and system active power loss. Appropriate voltage pro-
motion is good both for reducing power loss and decreasing volt-
age deviation, but the relationship between floss and fDV is
complex, as shown in Figs. 2 and 3(b). Especially, when only floss

and fDV are considered, they are conflict with each other. Thus,
the relationship between the three objectives is complex, non-
comparable and even conflict with each other. In other word, is
it reasonable to convert three of them or two of them into a single
objective [4,5,10]? It deserves a further study.

The Pareto solutions of Case 3 shown in Fig. 3(b) are much more
than Cases 1 and 2. It seems that lack of fQ in the objective func-
tions accounts for the results. In Cases 1 and 2, minimization of
fQ is one of the objectives, while in Case 3, it’s out of consideration.
As stated above, to some extent, more output of RPC devices do
goods for power loss and voltage deviation, most of fQ correspond-
ing to each Pareto solution in Case 3 is equal to 1.65 MW, the value
of which is the maximum allowable total capacity of RPC devices.
The reactive power output of DG is regarded as continuous and a
small change in Q DG will result in different floss and fDV . Hence, in
this case, there are many combination of Q DG1 and QDG2 to generate
different combination of floss and fDV .

Effects on voltage magnitude and objective functions caused by
allocation of DG and RPC devices

As Fig. 4(a–c) indicate, the installations of DG units and RPC
devices have a positive effect on the promotion of voltage
QC2 (Mvar) floss (MW) fDV fQ (Mvar)

0.900 0.0799 0.0175 1.50
1.050 0.0799 0.0162 1.65
0.900 0.0801 0.0188 1.35
1.050 0.0806 0.0149 1.65
0.750 0.0810 0.0200 1.20
0.750 0.0822 0.0212 1.05
0.750 0.0840 0.0229 0.90
0.600 0.0865 0.0254 0.75
0.450 0.0904 0.0282 0.60
0.300 0.0953 0.0312 0.45
0.150 0.1016 0.0345 0.30
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Fig. 2. Pareto solutions of Case 1 in the objective space.
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Table 4
Pareto solutions of Case 2.

Pareto solutions QDG1 (Mvar) QDG2 (Mvar) QC1 (Mvar) QC2 (Mvar) floss fDV (MW) fQ (Mvar)

S21 0.15 0.36 0.60 0.90 0.080 0.018 1.50
S22 0.50 0.50 0.15 0.45 0.090 0.028 0.60
S23 0.50 0.50 0.15 0.30 0.095 0.031 0.45
S24 0.50 0.50 0.15 0.15 0.101 0.034 0.30
S25 0.47 0.50 0.30 0.75 0.082 0.021 1.05
S26 0.50 0.50 0.30 0.60 0.084 0.024 0.90
S27 0.27 0.48 0.45 0.75 0.081 0.020 1.20
S28 0.45 0.50 0.15 0.60 0.086 0.025 0.75

Table 5
Pareto solutions of Case 3.

Pareto solutions QDG1 (Mvar) QDG2 (Mvar) QC1 (Mvar) QC2 (Mvar) floss (MW) fDV fQ (Mvar)

S31 0.50 0.49 0.60 1.05 0.0812 0.0143 1.65
S32 0.50 0.44 0.60 1.05 0.0806 0.0149 1.65
S33 0.50 0.37 0.60 1.05 0.0801 0.0157 1.65
S34 0.50 0.26 0.60 1.05 0.0797 0.0170 1.65
S35 0.50 0.35 0.60 0.90 0.0795 0.0182 1.50
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magnitude in the system. In addition, the voltage magnitude of the
bus, where DG units (or RPC devices) are installed, and those of its
nearby buses are prompted significantly, i.e., bus 13 where a DG is
located and bus 31 where a RPC device is installed. Especially in
Case 3, the output of RPC devices is larger than Cases 1 and 2,
and results in more voltage promotion. But, the investment on
RPC devices is dramatically more than those of Cases 1 and 2.

Since the system active power loss and voltage deviation are
related to voltage magnitude of each bus in the system, and the
fact that the voltage magnitude of the bus, where DG units and
(or) RPC devices are installed, is prompted significantly as well as
those of its nearby buses, diverse optimally located DGs and RPC
devices with appropriate capacity would bring about more benefits
to the system active power loss and voltage deviation than those
brought about by fixed location of DGs and RPC devices. In other
words, both location and sizes of DGs and RPC devices should be
decision variables, and techniques should be employed to deter-
mine the optimal allocation of DGs and RPC devices along with
the other conventional RPO decision variables.
Conclusion

This study attempted to investigate the MORPO of distribution
system integrated with DG. To effectively replicate different per-
spectives of the RPO problem and provide the designer with
diverse alternative options, a MOO model with technical and oper-
ational constraints has been constructed to reduce the total active
power loss, minimize the voltage deviation and decrease the total
capacity of RPC devices simultaneously. A DAMOPSO has been suc-
cessfully applied to the MORPO problem, suggesting that the
proposed approach is capable of providing higher quality and a
wider range of Pareto solutions so that the decision makers can
have a more flexible and reasonable choice. Analysis and discus-
sion have been conducted to obtain a deep insight into MORPO
with different objectives. It can be concluded that optimization
results depend on the selected objective functions, and that the
relationship between the objective functions is complex, non-com-
parable and even conflict with each other, which make us to
rethink whether it’s reasonable to convert the conflict objective
functions into a single one.

It’s known that the intermittence nature of some DG (e.g. wind
and photovoltaic) and the variability of the load influence the oper-
ation of electric power system. And as stated in ‘Effects on voltage
magnitude and objective functions caused by allocation of DG and
RPC devices’, both locations and capacities of DGs and RPC devices
affect the voltage of each bus in the system, and eventually affect
the optimization results. Hence, further study considering inter-
mittence nature of some DG and the variability of the load into
MORPO and taking both locations and capacities of DGs and RPC
devices as decision variables together with the conventional RPO
decision variables will be investigated.
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