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Abstract— This paper discusses and compares different con-
trol techniques for damping undesirable inter-area oscillation in
power systems by means of Power System Stabilizers (PSS), Static
Var Compensators (SVC) and Shunt Static Synchronous Compen-
sators (STATCOM). The oscillation problem is analyzed from the
point of view of Hopf bifurcations, an “extended” eigen analysis to
study different controllers, their locations, and the use of various
control signals for the effective damping of these oscillations. The
comparisons are based on the results obtained for the IEEE 50-
machine, 145-bus test system, which is a benchmark for stability
analysis.

Index Terms— Power system oscillations, Hopf bifurcations,
PSS, SVC, STATCOM.

I. INTRODUCTION

ELECTROMECHANICAL oscillations have been ob-
served in many power systems worldwide [1], [2], [3],

[4]. The oscillations may be local to a single generator
or generator plant (local oscillations), or they may involve
a number of generators widely separated geographically
(inter-area oscillations). Local oscillations often occur when
a fast exciter is used on the generator, and to stabilize these
oscillations, Power System Stabilizers (PSS) were developed.
Inter-area oscillations may appear as the systems loading is
increased across the weak transmission links in the system
which characterize these oscillations [4]. If not controlled,
these oscillations may lead to total or partial power interruption
[2], [5].

Electromechanical oscillations are generally studied by
modal analysis of a linearized system model [2], [6]. However,
given the characteristics of this problem, alternative analysis
techniques can be developed by using bifurcation theory to ef-
fectively identify and control the state variables associated with
the oscillatory problem [7], [8], [9], [10]. Among various types
of bifurcations, saddle-node, limit-induced, and Hopf bifurca-
tions have been identified as pertinent to instability in power
systems [11]. In saddle-node bifurcations, a singularity of a
system Jacobian and/or state matrix results in the disappearance
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of steady state solutions, whereas, in the case of certain limit-
induced bifurcations, the lack of steady state solutions may be
associated with system controls reaching limits (e.g. generator
reactive power limits); these bifurcations typically induce volt-
age collapse. On the other hand, Hopf bifurcations describe the
onset of an oscillatory problem associated with stable or un-
stable limit cycles in non linear systems (e.g. interconnected
power system).

The availability of Flexible AC Transmission System
(FACTS) controllers [12], such as Static Var Compensators
(SVC), Thyristor Control Series Compensators (TCSC), Static
Synchronous Compensators (STATCOM), and Unified Power
Flow Controller (UPFC), has led their use to damp inter-area
oscillations [13], [14], [15]. Hence, this paper first discusses
the use of bifurcation theory for the study of electromechani-
cal oscillation problems, and then compares the application of
PSS, SVC, and STATCOM controllers, proposing a new con-
troller placement technique and a methodology to choose the
best additional control signals to damp the oscillations.

The paper is organized as follows: Section II introduces
power system modeling and analysis concepts used through-
out this paper; thus, the basic theory behind Hopf bifurcations
and the modeling and controls of the PSS, SVC and STATCOM
controllers used are briefly discussed. Oscillation control using
SVC and STATCOM controllers, including a new placement
technique, is discussed in Section III. In Section IV, simula-
tion results for the IEEE 50-machine test system are presented
and discussed, together with a brief description of the analyti-
cal tools used. Finally, the major contributions of this paper are
summarized in Section V.

II. BASIC BACKGROUND

A. Power System Modeling

In general, power systems are modeled by a set of differential
and algebraic equations (DAE), i.e.

ẋ = f(x, y, λ, p) (1)

0 = g(x, y, λ, p)

where x ∈ �n is a vector of state variables associated with
the dynamic states of generators, loads, and other system con-
trollers; y ∈ �m is a vector of algebraic variables associated
with steady-state variables resulting from neglecting fast dy-
namics (e.g. most load voltage phasor magnitudes and angles);



λ ∈ �� is a set of uncontrollable parameters, such as variations
in active and reactive power of loads; and p ∈ �k is a set of con-
trollable parameters such as tap and AVR settings, or controller
reference voltages.

Bifurcation analysis is based on eigenvalue analyses [16]
(small perturbation stability or modal analysis in power sys-
tems [6]), as system parameters λ and/or p change in (1) [11].
Hence, linearization of these equations is needed at an equilib-
rium point (xo, yo) for given values of the parameters (λ, p),
where [f(xo, yo, λ, p) g(xo, yo, λ, p)]T = 0 (ẋ=0). Thus, by
linearizing (1) at (xo, yo, λ, p), it follows that[

∆ẋ
0

]
=

[
J1 J2

J3 J4

]
︸ ︷︷ ︸

J

[
∆x
∆y

]
(2)

where J is the system Jacobian, and J1 = ∂f/∂x|0, J2 =
∂f/∂y|0, J3 = ∂g/∂x|0, and J4 = ∂g/∂y|0. If J4 is non-
singular, the system eigenvalues can be readily computed by
eliminating the vector of algebraic variable ∆y in (2), i.e.

∆ẋ = (J1 − J2 J−1
4 J3)∆x = A ∆x (3)

In this case, the DAE system can then be reduced to a set of
ODE equations [17]. Hence, bifurcations on power system
models are typically detected by monitoring the eigenvalues of
matrix A as the system parameters (λ, p) change.

B. Hopf Bifurcations

Hopf bifurcations are also known as oscillatory bifurcations.
Such bifurcations are characterized by stable or unstable peri-
odic orbits emerging around an equilibrium point, and can be
studied with the help of linearized analyses, as these bifurca-
tions are associated with a pair of purely imaginary eigenval-
ues of the state matrix A [16]. Thus, consider the dynamic
power system (1), when the parameters λ and/or p vary, the
equilibrium points (xo, yo) change, and so do the eigenvalues
of the corresponding system state matrix A in (3). These equi-
librium points are asymptotically stable if all the eigenvalues of
the system state matrix have negative real parts. As the parame-
ters change, the eigenvalues associated with the corresponding
equilibrium point change as well. The point where a complex
conjugate pair of eigenvalues reach the imaginary axis with re-
spect to the changes in (λ, p), say (xo, yo, λo, po), is known
as a Hopf bifurcation point; at this point, certain transversality
conditions should be satisfied [16].

The transversality conditions basically state that a Hopf bi-
furcation corresponds to a system equilibrium point with a pair
of purely imaginary eigenvalues with all other eigenvalues hav-
ing non-zero real parts, and that the pair of bifurcating or critical
eigenvalues cross the imaginary axis as the parameters (λ, p)
change, yielding oscillations in the system.

Electromechanical oscillation problems have been classically
associated with a pair of eigenvalues of system equilibria (oper-
ating points) jumping the imaginary axis of the complex plane,
from the left half-plane to the right half-plane, when the sys-
tem undergoes sudden changes, typically produced by system
contingencies (e.g. line outages). If this particular oscillatory
problem is studied using more gradual changes in the system,
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Fig. 1. PSS model used for simulations [6], where Vs is an additional input
signal for the AVR.

such as changes on slow varying parameters like system load-
ing, it can be directly viewed as a Hopf bifurcation problem, as
suggested in [9]. Thus, in the current paper, Hopf bifurcation
theory is used to analyze the appearance of electromechanical
oscillations on a test system due to a line outage, and to de-
vise damping techniques based on PSS, SVC and STATCOM
controllers, as shown in Section IV.

C. Power System Stabilizers [6]

A PSS can be viewed as an additional block of a generator
excitation control or AVR, added to improve the overall power
system dynamic performance, especially for the control of elec-
tromechanical oscillations. Thus, the PSS uses auxiliary stabi-
lizing signals such as shaft speed, terminal frequency and/or
power to change the input signal to the AVR. This is a very ef-
fective method of enhancing small-signal stability performance
on a power system network. The block diagram of the PSS used
in the paper is depicted in Fig. 1.

In large power systems, participation factors corresponding
to the speed deviation of generating units can be used for initial
screening of generators on which to add PSS. However, a high
participation factor is a necessary but not sufficient condition
for a PSS at the given generator to effectively damp oscillation.
Following the initial screening a more rigorous evaluation us-
ing residues and frequency response should be carried out to
determine the most suitable locations for the stabilizers.

D. SVC

SVC is basically a shunt connected static var generator/load
whose output is adjusted to exchange capacitive or inductive
current so as to maintain or control specific power system vari-
ables; typically, the controlled variable is the SVC bus voltage.
One of the major reasons for installing a SVC is to improve
dynamic voltage control and thus increase system loadability.
An additional stabilizing signal, and supplementary control, su-
perimposed on the voltage control loop of a SVC can provide
damping of system oscillation as discussed in [9], [10].

In this paper, the SVC is basically represented by a variable
reactance with maximum inductive and capacitive limits to con-
trol the SVC bus voltage, with an additional control block and
signals to damp oscillations, as shown in Fig. 2.

E. STATCOM

The STATCOM resembles in many respects a synchronous
compensator, but without the inertia. The basic electronic block
of a STATCOM is the Voltage Source Converter (VSC), which
in general converts an input dc voltage into a three-phase output
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Fig. 2. Structure of SVC controller with oscillation damping, where B is the
equivalent shunt susceptance of the controller.

voltage at fundamental frequency, with rapidly controllable am-
plitude and phase angle. In addition to this, the controller has
a coupling transformer and a dc capacitor. The control system
can be designed to maintain the magnitude of the bus voltage
constant by controlling the magnitude and/or phase shift of the
VSC output voltage.

The STATCOM is modelled here using the model described
in [18], which is a fundamental frequency model of the con-
troller that accurately represents the active and reactive power
flows from and to the VSC. The model is basically a control-
lable voltage source behind an impedance with the representa-
tion of the charging and discharging dynamics, of the dc ca-
pacitor, as well as the STATCOM ac and dc losses. A phase
control strategy is assumed for control of the STATCOM bus
voltage, and additional control block and signals are added for
oscillation damping, as shown in Fig. 3.
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Fig. 3. STATCOM phase control with oscillation damping, where α is the
phase shift between the controller VSC ac voltage and its bus voltage V .

III. OSCILLATION CONTROL USING FACTS

Even though it is a costly option when compared to the use
of PSS for oscillation control, there are additional benefits of
FACTS controllers. Besides oscillation control, FACTS local
voltage control capabilities allow an increase in system load-
ability [19], which is not possible at all with PSS.

There are two major issues involved in FACTS controller de-
sign, apart from size and type. One is the placement, and the
other is the choice of control input signal to achieve the de-
sired objectives. For oscillation damping, the controller should
be located to efficiently bring the critical eigenvalues into the
open left half plane. This location might not correspond to
the best placement to increase system loadability and improve
voltage regulation, as shown in Section IV for the test system
used. There are some methods suggested in the literature based
on mode controllability and eigenvalue sensitivity analysis for

proper FACTS controller location (e.g. [14]). A new method
based on extended eigen analysis is proposed here to determine
the suitable location of a shunt FACTS controller for oscillation
control. For the best choice of control signal, a mode observ-
ability index is used [14].

A. Shunt FACTS Controllers Placement

In calculating the eigenvalues of the system, the linearized
DAE system equations can be used instead of the reduced sys-
tem state matrix; this is popularly referred to as the generalized
eigenvalue problem. Its major advantage is that sparse matrix
techniques can be used to speed up the computation. Further-
more, the extended eigenvector can be used to identify the dom-
inant algebraic variable associated with the critical mode. Thus
the eigenvalue problem can be restated as

[
J1 J2

J3 J4

] [
v1

v2

]
= µ

[
v1

0

]
(4)

where µ is the eigenvalue and [v1 v2]T is the extended eigen-
vector of µ, with

v2 = −J4
−1J3v1

Entries in v2 correspond to the algebraic variables at each bus
(e.g. voltages and angles, or real and imaginary voltages). In
this case, real and imaginary voltages are used as the algebraic
variables at each bus. A shunt FACTS controller, which directly
controls voltage magnitudes, can be placed by identifying the
maximum entry in v2 associated with a load bus and the critical
mode. Thus, assuming that

v2 =




v2V 1r

v2V 1i

...
v2V nr

v2V ni




where v2V corresponds to the complex eigenvector associated
with the real (r) and imaginary (i) components of the load bus
voltages, i.e. v2V kr

and v2V ki
for load bus k, the magnitudes

v2Vk
= |v2V kr

+ jv2V ki
|

are ranked in descending order. The largest entries of v 2Vk
are

then used to identify the candidate load buses for placement of
shunt FACTS controllers. Clearly, this methodology is compu-
tationally more efficient than methods based on mode control-
lability indices.

B. Controls

The introduction of SVC and STATCOM controllers at an
appropriate location, by itself does not provide adequate damp-
ing, as the primary task of the controllers is to control voltage.
Hence, in order to increase the system damping, it is necessary
to add an additional control block with an appropriate input sig-
nal.
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The desired additional control input signal should be prefer-
ably local to avoid problems associated with remote signal con-
trol. Typical choices of local signals are real/reactive power
flows and line currents in the adjacent lines. Here, a mode ob-
servability index was employed to determine the best input sig-
nal [14]. This additional signal is fed through a washout control
block to avoid affecting steady state operation of the controller,
and an additional lead-lag control block is used to improve dy-
namic system response, as shown in Figs. 2 and 3.

IV. RESULTS

All simulation results presented in this section are obtained
for a slightly modified version of the IEEE 50 machine system,
an approximated model of an actual power system that was de-
veloped as a benchmark for stability studies [20]. It consist
of 145 buses and 453 lines, including 52 fixed-tap transform-
ers. Seven of the generators are modeled in detail with IEEE
ST1a exciters [22], whereas the rest of the generators are mod-
eled only with their swing equations. The loads are modeled as
constant impedances for all stability studies, and as PQ loads
to obtain the PV curves. There are about 60 loads for a total
load of 2.83 GW and 0.8 Gvar. The IEEE 50 machine system
shows a wide range of dynamic characteristics, presenting low
frequency oscillations at high loading levels.

A. Analytical Tools

P-V or nose curves of the system for various contingencies
with and without controllers were obtained with the help of the
UWPFLOW [21]. Modal analysis (eigenvalues analysis) and
time domain simulations were carried out using the Power Sys-
tem Toolbox (PST) [22].

UWPFLOW is a research tool that has been designed to de-
termine maximum loadability margins in power systems asso-
ciated with saddle-node and limit induced bifurcations. The
program has detailed static models of various power system
elements such as generators, loads, HVDC links, and vari-
ous FACTS controllers, particularly SVC and STATCOM con-
trollers under phase and PWM control, representing control
limits with accuracy for all models.

PST is a MATLAB-based analysis toolbox developed to per-
form stability studies in power systems. It has several tools with
graphical features, of which the transient stability and small sig-
nal stability tools were used to obtain the results presented here.

B. Simulation Results

Figure 4 shows the P-V curves, including the operating point
at which a Hopf bifurcation is observed (HB point), for two
different contingencies in the system (lines 79-90 and 90-92, as
these are two of the most heavily loaded line in the weakest area
of the system). These curves were obtained for a specific load
and generation direction by increasing the active and reactive
powers in the loads as follows:

P = Po(1 + λ)

Q = Qo(1 + λ)
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Fig. 4. (a) P-V curves at bus 92 for different contingencies, and (b) enlarged
P-V curves around the operating point.

Fig. 5. Oscillations due to a Hopf bifurcation triggered by line 90-92 outage
(λ=0.002 p.u.).

where Po and Qo correspond to the base loading conditions and
λ is loading factor. The “current” operating conditions are as-
sumed to correspond to a value λ = 0.002 p.u. The operat-
ing condition “line” depicted on Fig. 4 defines the steady state
points for the base system topology and two contingencies un-
der consideration, assuming that the load is being modeled as
a constant impedance in small and large disturbance stability
studies; this is the reason why this line is not vertical.

As one can see from the P-V curves, a Hopf bifurcation prob-
lem is triggered by the line 90-92 outage, since the load line
yields an equilibrium point beyond the HB point on the corre-
sponding PV curve. In order to study the effect of this bifur-
cation in the system, a time domain simulation was performed
for the corresponding contingency at the given operating con-
ditions. As can be seen in Fig. 5, the Hopf bifurcation leads the
system to an oscillatory unstable condition.

The dominant state variables related to the Hopf bifurcation
mode, which are responsible for the oscillation, were identified
through a participation factor analysis, as previously explained.
The state variables of the machines associated with the Hopf
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TABLE I
PARTICIPATION FACTOR ANALYSIS

Base Case Line 90-92 outage
State Bus P. Factor State Bus P. Factor

ω 93 1.0000 δ 104 1.0000
δ 93 1.0000 ω 104 1.0000

E
′
q 93 0.3452 E

′
q 104 0.1715

ω 124 0.1734 δ 111 0.2622
δ 124 0.1728 ω 111 0.2622

Ψ
′′

q 93 0.1720 δ 121 0.1713
ω 121 0.1206 ω 121 0.1709
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Fig. 6. Line 90-92 outage: (a) Some eigenvalues with PSS at bus 93; (b)
eigenvalues with PSS’s at bus 93 and 104; (c) P-V curves.

bifurcations for the base and the line 90-92 outage, and the cor-
responding participation factors are given in Table I. It is inter-
esting to see that with the line 90-92 outage the critical mode
differs from that in the base. Thus, the PSS at bus 93, which
stabilizes the base case, is unable to stabilize the contingency
case; for the latter, a PSS at bus 104 is required for stability.
Time domain analysis confirms the linear analysis, as can be
seen from Figs. 6 and 7.

SVC and STATCOM controllers were considered as the other
possible choices to control system oscillations. To find out
the suitable location for the shunt FACTS controllers, the pro-
posed extended eigen analysis technique was applied to the
test system. Thus, the algebraic eigenvector v2 was computed
for the Hopf bifurcation point at the base case, resulting in
seven load buses as possible candidates for placement of a
SVC/STATCOM. Table II shows the bus and associated value
of |v2V k

|; the last two columns correspond to the critical eigen-
value when a SVC or a STATCOM are placed on the corre-
sponding buses. These results were obtained for “typical” ±
150 MVAr SVC and STATCOM controllers without the addi-
tional control loop for damping oscillations, and indicate that
bus 125 is the best candidate location to prevent the Hopf bi-
furcation problem in the base case; this was confirmed by time
domain simulations.

Fig. 7. Oscillation damping with PSS at bus 93 and 104 for line 90-92 outage
(λ=0.002 p.u.).

TABLE II
CRITICAL EIGENVALUES WITH SVC AND STATCOM AT DIFFERENT

LOCATIONS

Bus |v2Vk
| Critical eigenvalue

×10−2 SVC STATCOM

125 1.5980 −0.014± j6.536 −0.022± j6.527
133 1.3450 −0.006± j6.493 −0.018± j6.504
68 1.0786 −0.005± j6.480 −0.015± j6.501

123 1.0618 0.005± j6.481 −0.004± j6.491
75 1.0068 0.029± j6.433 0.020 ± j6.448
29 0.9803 0.016± j6.459 0.013 ± j6.464
28 0.9736 0.016± j6.458 0.013 ± j6.464
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Fig. 8. P-V curves with SVC and STATCOM controllers for the base case.
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TABLE III
LOADING MARGIN WITH DIFFERENT CONTROLLERS

Controllers Maximum Loading Margin (p.u.)
Base Case Line 90-92 outage

no controller 0.01059 0.00454
PSS 0.01059 0.00454
SVC at 125 0.01066 0.01059
STATCOM at 125 0.01069 0.01066
SVC at 107 0.01069 0.01061
STATCOM at 107 0.01078 0.01071
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Fig. 9. Line 90-92 outage: (a) Some eigenvalues with SVC; (b) eigenvalues
with STATCOM; (c) and P-V curves with SVC and STATCOM.

Figure 8 shows the P-V curves for SVC and STATCOM con-
trollers located at bus 125, showing that the Hopf bifurcation
can be removed for the base case. Observe that the loadability
margin for the system does not increase significantly; this is due
to the fact that voltage stability analysis yields bus 107 as the
best location to maximize system loadability, and that the size
of the SVC/STATCOM chosen is not very significant for these
purposes. Table III shows the maximum loadability margins for
different system conditions and controllers under study. Notice
that the SVC and STATCOM controllers significantly increase
system loadability when the contingency is applied.

Figure 9 shows the eigenvalue plot with SVC and STATCOM
controllers at bus 125, and the corresponding P-V curves for the
line 90-92 outage case. It is interesting to see that the SVC and
STATCOM work well for the given contingency, even though
the optimal placement in this case should be bus 77 based on
the extended eigen analysis. The P-V curves show that both the
static loading margin and the dynamic stability margin (margin
between the current operating point and the Hopf bifurcation
point) increase when SVC and STATCOM controllers are in-
troduced.

Observe that the damping introduced by the SVC and STAT-
COM controllers with only voltage control was lower than that
provided by the PSS’s. Hence, additional control signals were
considered to enhance damping, using mode observability in-

TABLE IV
ADDITIONAL CONTROL INPUT SIGNALS

Line Signal OI Line Signal OI

I 1.0955 I 0.3269
67-125 P 1.1099 121-125 P 0.3319

Q 0.5473 Q 0.0165
I 0.6656 I 0.1090

125-132 P 0.6809 122-125 P 0.1123
Q 0.1075 Q 0.0165

Fig. 10. Oscillation damping with SVC and additional control loop for line
90-92 outage (λ = 0.002 p.u.).

dices (OI) to identify the best additional signal. Table IV shows
the mode OI obtained for different control input signals from
the adjacent lines to the controller location with open loop con-
trol. According to this table, real power flow in line 67-125
is the best choice; this was confirmed by time domain simula-
tions. Figures 10 and 11 show the time domain simulations ob-
tained for the line 90-92 outage at the given operating point with
SVC and STATCOM controllers and additional control loops,
respectively. The best oscillation damping is obtained with the
PSS controller, as expected, due to the direct control of the state
variables and generator that yield the problem. Furthermore,
the STATCOM provides better damping than the SVC, which is
to be expected, as this controller is able to transiently exchange
active power with the system.

It is important to mention that in the current test system only
certain oscillation modes and contingencies where considered
for placing the PSS’s, resulting in only two of these controllers
being introduced in the system. In practice, PSS’s should be
considered for all generators with fast static exciters, which for
the given system would correspond to 7 generators.

V. CONCLUSIONS

This paper presents the direct correlation between typical
electromechanical oscillations in power systems and Hopf bi-
furcations, so that Hopf bifurcation theory can be used to design
remedial measures to resolve oscillation problems. A place-
ment technique is proposed to identify and rank suitable loca-
tions for placing shunt FACTS controllers, for the purpose of
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Fig. 11. Oscillation damping with STATCOM and additional control loop for
line 90-92 outage (λ = 0.002 p.u.).

oscillation control.
The paper demonstrates that inter-area oscillations, which

are typically damped using PSS controllers on generators, can
be adequately handled by properly placing SVC or STATCOM
controllers with additional controls on the transmission side.

Series connected FACTS controllers have been applied for
oscillation control in power systems. This paper demonstrates
that shunt-connected FACTS controllers, when properly placed
and controlled, can also effectively damp system oscillations.
This makes these types of controllers very appealing when com-
pared to series-connected controllers, given their additional bus
voltage control characteristics and lower overall costs.

Even though it has been shown that SVC and STATCOM
controllers significantly increase stability margins, especially
when contingencies occur, and that voltage profiles improve
throughout the system, an overall cost-benefit analysis must
be carried out when considering the use of these FACTS con-
trollers for damping oscillations, given their relatively high
costs when compared to PSS’s.
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currently an Associate Professor and the Associate
Chair for Graduate Studies at the E&CE Department
of the University of Waterloo, and his research activ-
ities mostly concentrate in studying stability, model-

ing and computational issues in ac/dc/FACTS systems.

7



PLACE
PHOTO
HERE

John Reeve received the B.Sc., M.Sc., Ph.D. and
D.Sc. degrees from the University of Manchester
(UMIST). After employment in the development of
protective relays for English Electric, Stafford, be-
tween 1958 and 1961, he was a lecturer at UMIST un-
til joining the University of Waterloo in 1967, where
he is currently an Adjunct Professor in the Depart-
ment of Electrical & Computer Engineering. He was
a project manager at EPRI, 1980-81, and was with
IREQ, 1989-1990. His research interests since 1961
have been HVDC transmission and high power elec-

tronics. He is the President of John Reeve Consultants Limited.
Dr. Reeve was chair of the IEEE DC Transmission Subcommittee for 8

years, and is a member of several IEEE and CIGRE Committees on dc trans-
mission and FACTS. He was awarded the IEEE Uno Lamm High Voltage Direct
Current Award in 1996.

PLACE
PHOTO
HERE

Graham Rogers graduated in Electrical Engineer-
ing, with first class honors, from Southampton Uni-
versity in 1961. From 1961 to 1964 he was a consul-
tant Mathematician with A.E.I. (Rugby) Ltd. From
1964 until 1978 he was Lecturer in Electrical Engi-
neering at Southampton University. He immigrated
to Canada in 1978 to work for Ontario Hydro in the
Power System Planning Division. Since his retire-
ment in 1993 he has operated Cherry Tree Scientific
Software. He was Associate Professor (part time) at
McMaster University from 1982 to 1996 and Visiting

Professor at I.I.T. Madrid in 1997. He is currently Adjunct Associate Professor
at the University of Toronto. He is a member of several IEEE Power Engineer-
ing Society Working Groups and was an Associate Editor of IEEE Transactions
on Control System Technology from 1994 to 1997.

8


