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Abstract

We prove a spectral perturbation theorem for rank-one updated matrices of special structure. Two applications of the result are
given to illustrate the usefulness of the theorem. One is for the spectrum of the Google matrix and the other is for the algebraic
simplicity of the maximal eigenvalue of a positive matrix.
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1. Introduction

In this paper we give a simple proof of a spectral perturbation theorem for rank-one perturbed matrices of special
structure, using a well known determinant identity. This work was motivated by the recent spectral analysis of the so-
called Google matrix in the computation of the PageRank for the Google Web search engine [2,3,7,8,10]. The Google
matrix is a positive matrix obtained by a special rank-one perturbation of a stochastic matrix which represents the
hyperlink structure of the webpages. In our more general result, the unperturbed matrix is arbitrary, but the perturbation
satisfies some natural condition.

Because we apply a classic determinant equality to our spectral analysis, we are able to find the explicit expression
of the characteristic polynomial of the rank-one perturbed matrix. All the eigenvalues of the matrix are immediately
available. Then, as a consequence, the eigenvalues of the Google matrix can be obtained easily. It would be interesting
to note that our general result may also be applied to derive other useful results, for instance, the algebraic simplicity
of the maximal eigenvalue of a positive matrix.

The main idea behind our proof is from the following simple relation between the determinants of a matrix and its
rank-one perturbation.

I This work was supported by the National Natural Science Foundation of China (Grant No. 10425105) and subsidized by the Special Funds for
Major State Basic Research Projects (Grant No. 2005CB321704).

∗ Corresponding author.
E-mail address: jiu.ding@usm.edu (J. Ding).

0893-9659/$ - see front matter c© 2007 Elsevier Ltd. All rights reserved.
doi:10.1016/j.aml.2006.11.016

http://www.elsevier.com/locate/aml
mailto:jiu.ding@usm.edu
http://dx.doi.org/10.1016/j.aml.2006.11.016


1224 J. Ding, A. Zhou / Applied Mathematics Letters 20 (2007) 1223–1226

Lemma 1.1. If A is an invertible n × n matrix, and u and v are two n-dimensional column vectors, then

det(A + uvT) = (1 + vT A−1u) det A. (1)

Proof. We may assume A = I , the n × n identity matrix, since then (1) follows from A + uvT
= A(I + A−1uvT) in

the general case. In this special case, the result comes from the equality[
I 0
vT 1

] [
I + uvT u

0 1

] [
I 0

−vT 1

]
=

[
I u
0 1 + vTu

]
. �

In the next section we present the main result, and we give two applications in Section 3.

2. Spectral perturbation of rank-one updated matrices

Let A be an n × n matrix. The eigenvalues of A are all the complex zeros of the characteristic polynomial
pA(λ) ≡ det(λI − A) of A. Let σ(A) ≡ {λ1, λ2, . . . , λn} be the set of the eigenvalues of A, counting algebraic
multiplicity. Our purpose is to find the eigenvalues of a special rank-one updated matrix of A and their multiplicity.
The following is our main theorem.

Theorem 2.1. Let u and v be two n-dimensional column vectors such that u is an eigenvector of A associated with
eigenvalue λ1. Then, the eigenvalues of

A + uvT

are

{λ1 + vTu, λ2, . . . , λn},

counting algebraic multiplicity.

Proof. Let λ 6∈ σ(A) be any complex number. Then, by applying Lemma 1.1 to the equality

λI − (A + uvT) = (λI − A) − uvT,

we have

det[λI − (A + uvT)] = [1 − vT(λI − A)−1u] det(λI − A). (2)

The condition Au = λ1u implies that

(λI − A)−1u =
1

λ − λ1
u, (3)

so (2) becomes

det[λI − (A + uvT)] =

(
1 −

vTu
λ − λ1

)
det(λI − A)

=
[λ − (λ1 + vTu)](λ − λ1)(λ − λ2) · · · (λ − λn)

λ − λ1

= [λ − (λ1 + vTu)](λ − λ2) · · · (λ − λn). (4)

Since the above equality is true for all λ 6∈ σ(A), the theorem is proved. �

Remark 2.1. By Theorem 2.1, the characteristic polynomial of A + uvT is

pA+uvT(λ) = [λ − (λ1 + vTu)](λ − λ2) · · · (λ − λn). (5)

Remark 2.2. Since A and AT have the same eigenvalues counting algebraic multiplicity, the conclusion of
Theorem 2.1 also holds for A + uvT, where v is a left eigenvector of A corresponding to eigenvalue λ1.
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3. Applications of the theorem

A direct consequence of Theorem 2.1 and Remark 2.2 is the following

Proposition 3.1. Let A be an n × n matrix with the eigenvalues λ1, λ2, . . . , λn , counting algebraic multiplicity, let
u and v be n-dimensional column vectors such that either u is an eigenvector of A or v is a left eigenvector of A,
associated with eigenvalue λ1, and let α ∈ [0, 1]. Then the eigenvalues of the matrix

αA + (1 − α)uvT

are αλ1 + (1 − α)vTu, αλ2, . . . , αλn , counting algebraic multiplicity.

Proposition 3.1 can be used to find the eigenvalues of the Google matrix in the Google Web search engine. Let S be
an n × n column-stochastic matrix, i.e. a nonnegative matrix that satisfies eTS = eT, where the n-dimensional vector
eT

= (1, 1, . . . , 1). The Google matrix G is defined by

G = αS + (1 − α)ueT,

where 0 < α < 1, and u is an n-dimensional positive vector normalized by uTe = 1 (i.e. u is a probability vector). It
is obvious that G is also column-stochastic. The eigenvector of G corresponding to the maximal eigenvalue 1 is called
the PageRank, the computation of which is a major talk of Google. Because of the huge size of the Google matrix, the
only practical method for computing the PageRank is the power method [6,8] whose convergence rate depends on the
second largest eigenvalue of G in magnitude.

The spectrum of the Google matrix G is given below, which is a direct consequence of Proposition 3.1. See [5,7,8]
for related works.

Corollary 3.1. Let S be a column-stochastic matrix with eigenvalues 1, λ2, . . . , λn , counting algebraic multiplicity,
let u be an n-dimensional probability vector, and let α ∈ (0, 1). Then the eigenvalues of the Google matrix
G = αS + (1 − α)ueT are 1, αλ2, αλ3, . . . , αλn , counting algebraic multiplicity.

Proof. Let v = e and A = S in Proposition 3.1. Then all the conditions there are satisfied and αλ1 + (1 − α)vTu =

α · 1 + (1 − α) · 1 = 1. Therefore, Corollary 3.1 follows. �

Our next application of Theorem 2.1 is for a new, short, and more direct proof of the following result supplementing
the Perron theorem for positive matrices; other proofs in textbooks and monographs known to the authors seem quite
long and complicated, using various techniques such as a game theory argument (Theorem 1.4.4(v) of [1]), Schur’s
triangulation theorem (Theorem 8.2.10 of [4]), and a derivative approach (Theorem 4.3 in [9]). A real matrix is positive
if all of its entries are positive. The spectral radius r(A) of a matrix A is the maximal magnitude of its eigenvalues.

Theorem 3.1. Let A be an n × n positive matrix. Then r(A) is an eigenvalue of A of algebraic multiplicity 1; that is,
r(A) is a simple zero of the characteristic polynomial of A.

Proof. From Perron’s theorem [1,4,9], r ≡ r(A) is an eigenvalue of A with geometric multiplicity 1,

lim
k→∞

(r−1 A)k
= xyT,

where x and y are the positive (right) eigenvector and left eigenvector of A respectively corresponding to eigenvalue
r such that yTx = 1, and r is not an eigenvalue of the matrix A − r xyT. Let

r, λ2, . . . , λn

be the eigenvalues of A, counting algebraic multiplicity. Then the condition of Theorem 2.1 is satisfied with u = −r x ,
and v = y. Thus, the eigenvalues of A − r xyT are, counting algebraic multiplicity,

µ, λ2, . . . , λn,

where µ = r + yT(−r x) = r − r = 0. Therefore, r 6= λi for all i = 2, 3, . . . , n. In other words, r(A) is an
algebraically simple eigenvalue of A. �

Remark 3.1. The conclusion of Theorem 3.1 and its above proof are still true if A is a nonnegative irreducible matrix.
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