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Shiga toxins are the main virulence factors of a group of Escherichia coli strains [Shiga toxin-

producing E. coli (STEC)] that cause severe human diseases, such as haemorrhagic colitis and

haemolytic–uraemic syndrome. The Shiga toxin family comprises several toxin subtypes, which

have been differentially related to clinical manifestations. In addition, the phages that carry the

Shiga toxin genes (stx phages) are also diverse. These phages play an important role not only in

the dissemination of Shiga toxin genes and the emergence of new STEC strains, but also in the

regulation of Shiga toxin production. Consequently, differences in stx phages may affect the

dissemination of stx genes as well as the virulence of STEC strains. In addition to presenting an

overview of Shiga toxins and stx phages, in this review we highlight current knowledge about the

diversity of stx phages, with emphasis on its impact on STEC virulence. We consider that this

diversity should be taken into account when developing STEC infection treatments and diagnostic

approaches, and when conducting STEC control in reservoirs.

Introduction

Shiga toxin-producing Escherichia coli (STEC) strains are a
diverse group of E. coli that cause severe human diseases,
such as haemorrhagic colitis and haemolytic–uraemic syn-
drome (HUS) (Riley et al., 1983; Karmali et al., 1985). The
latter was originally defined as a combination of renal
failure, thrombocytopenia and haemolytic anaemia affect-
ing mainly infants and children (Gianantonio et al., 1964).
Recently, the definition of HUS has come to include
documented haemolysis rather than anaemia, platelet con-
sumption rather than thrombocytopenia and signs of renal
damage rather than renal failure (Ardissino et al., 2014).
HUS lacks specific treatment; HUS patients are generally
given supportive care of electrolytes for water imbalance,
anaemia, hypertension and renal failure (Mele et al., 2014).
The mortality rate has decreased due to improved diagnosis
and treatment, yet 1–2 % of patients die during the acute
phase of the disease (Loirat, 2013; Mele et al., 2014) and
~30 % of patients evidence long-term renal damage (Garg
et al., 2003; Spinale et al., 2013).

Ruminants, especially bovine animals, are the main reservoir
of STEC strains (Naylor et al., 2005). These animals are
asymptomatic carriers of STEC and so they generally enter
the human food chain. As a result of practices during
slaughtering, milking or later when handling and packaging
the products, meat and milk often become the main sources
of human infection in some countries (Riley et al., 1983; Bell
et al., 1994; Guh et al., 2010). Other vehicles of STEC infec-
tion include lettuce, spinach, sprouts, watercress, strawberries,

apple cider, and drinking and recreational water (Robert
Koch Institute, 2011; Launders et al., 2013; Luna-Gierke
et al., 2014).

We have gained a great deal of new knowledge about STEC
over recent decades. However, many questions remain
unanswered and some old statements need to be revised, as
demonstrated in the HUS outbreak in Germany in 2011.
This outbreak was caused by an unusual E. coli strain,
occurred in a high proportion of adult patients and had no
evidence of zoonotic origin (Frank et al., 2011; Mellmann
et al., 2011; Piérard et al., 2012). We learnt that strains
lacking in typical virulence factors or belonging to infre-
quent serotypes may be highly virulent. Moreover, this
outbreak highlighted the role of mobile elements, especially
phages harbouring stx genes, in STEC virulence. In parti-
cular, regarding O26 strains from Scotland, Chase-Topping
et al. (2012) suggested that stx2 phage acquisition would
increase the prevalence of those strains in severe human
disease.

In this review, we analyse the published literature on the
different Shiga toxin subtypes and stx phages, with special
emphasis on their diversity, which can affect STEC viru-
lence and the dissemination of Shiga toxin genes.

Shiga toxins

All STEC strains are able to produce Shiga toxins (Stx) –
their main virulence factor. A single STEC strain may carry
one or more Shiga toxin-encoding genes (stx) in their
genome. Indeed, strains carrying three or more stx subtypes
have been described (Bertin et al., 2001; Eklund et al., 2002;
Krüger et al., 2011). The stx genes are generally carried by

Abbreviations: HUS, haemolytic–uraemic syndrome; STEC, Shiga toxin-
producing Escherichia coli.
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prophages (usually called stx phages or Stx phages) and the
toxins are released when bacteriophage-mediated bacteri-
olysis occurs.

The Shiga toxin family includes several toxins related to
Shiga toxin from Shigella dysenteriae that share a similar
structure and biological activity. The toxins produced by
STEC strains are also called verotoxins (‘toxic to Vero
cells’), as initially described by Konowalchuk et al. (1977).
Shiga toxins are AB5 proteins composed of one active A
subunit bound to five B subunits. Their mode of action
involves binding to a specific glycolipid on target cells via
the B subunits followed by A subunit internalization and
A1 fragment release. The RNA N-glycosidase activity of
Shiga toxins inactivates 60S ribosomal subunits, leading to
inhibition of protein synthesis (Endo et al., 1988; Saxena
et al., 1989). In addition, evidence shows that Shiga toxins
induce apoptosis in many cell types (Tesh, 2010).

Shiga toxin subtypes

All Shiga toxins share structural and enzymic charac-
teristics; however, there are differences regarding sequence,
biological activity and serological reactivity. Shiga toxins
from E. coli are classified in two major types: Stx1 and Stx2.
Each group comprises several subtypes, with the Stx2
group being more heterogeneous than the Stx1 group. The
different Stx subtypes have been described over time by
using different methods and criteria. This has led to a great
deal of confusion about Stx nomenclature and has also
hindered comparisons amongst studies performed with
different subtyping approaches.

To standardize Shiga toxin nomenclature, Scheutz et al.
(2012) developed a system based on phylogenetic sequence-
based relatedness of the proteins. According to this scheme,
the Stx nomenclature (without numbers) is reserved for
Shiga toxins when they are produced by Shigella spp., and
Shiga toxin subtypes found in E. coli are designated Stx1a,
Stx1c, Stx1d, Stx2a, Stx2b, Stx2c, Stx2d, Stx2e, Stx2f and
Stx2g. Scheutz et al. (2012) also proposed a new PCR
protocol to facilitate stx subtyping standardization.

Stx subtyping is not only useful for STEC characterization,
but also valuable for diagnosis as some types and subtypes
of Shiga toxin have been epidemiologically associated with
different clinical outcomes after STEC infection. A correla-
tion has been observed between the stx2 genotype and
severity of disease, as several studies have shown that some
stx2 subtypes are frequently associated with a higher risk of
developing HUS, whilst others are present mainly in strains
isolated from patients with uncomplicated diarrhoea or in
those not isolated from humans (Eklund, et al., 2002;
Friedrich et al., 2002; Zhang et al., 2002; Jenkins et al.,
2003; Leung et al., 2003; Beutin et al., 2004; Girardeau et al.,
2005; Bielaszewska et al., 2006; Persson et al., 2007). By
applying the recently proposed nomenclature to previous
studies, it is possible to correlate stx2a with high virulence
and HUS, and stx2e, stx2f and stx2g with low pathogenicity

in humans. However, it is not always possible to apply the
current nomenclature to results of studies that used
previous subtyping methods because the designations are
not equivalent. Therefore, it is necessary to apply the new
subtyping method and nomenclature to more studies to
confirm the risk associated with each stx subtype in STEC
infections and its clinical significance.

Several studies have also linked some stx subtypes to specific
reservoirs. Furthermore, particular stx subtypes could affect
the level of STEC shedding by cattle and con-
sequently the risk of transmission to humans (Matthews
et al., 2013). Although most stx subtypes have been detected
in STEC strains isolated from cattle and beef products, some
predominate amongst bovine STEC strains whereas others
are rarely detected in such strains (Bertin et al., 2001; Brett
et al., 2003a; Gobius et al., 2003; Beutin et al., 2007; Krüger
et al., 2011). Examples of the latter include stx1c, which has
frequently been detected in STEC isolated from ovine faeces
(Koch et al., 2001; Brett et al., 2003b), stx2e, the common stx
subtype in STEC strains responsible for oedema disease of
swine (Linggood & Thompson, 1987; Weinstein et al., 1988),
and stx2f, detected in STEC strains isolated from the faeces of
feral pigeons (Schmidt et al., 2000). Once again, it is not
always possible to assign the new nomenclature to results
obtained using previous subtyping methods. Future studies
using the standardized protocol will contribute to confirm-
ing associations between stx subtypes and reservoirs, and
enable us to gain a better understanding of the epidemiology
of STEC infections.

The variability amongst Shiga toxins and stx gene sequences
also has several implications for STEC detection. In some
epidemiological or clinical studies, STEC presence may be
underestimated when using methods that detect only a
limited number of stx subtypes. To avoid this, PCR and
quantitative PCR assays designed for STEC detection should
include all stx subtypes and, if possible, additional identi-
fication of the stx subtypes. For example, a recent study in
The Netherlands evaluated the presence of stx2f – a generally
underdiagnosed subtype. The results showed that whilst
this subtype is still associated with mild STEC infections
(Friesema et al., 2014), its frequency is higher than expected.

Diversity of Shiga toxin production and toxicity

Cytotoxic activity on Vero cells is a common characteristic
of STEC strains due mainly to the production of Shiga
toxins. However, verotoxicity assays of supernatants of
STEC cultures have shown that titres vary amongst strains.
Differences in cytotoxicity, Stx production or clinical
outcome have been related to the number and/or type or
subtype of stx genes carried by the STEC strain (Bertin
et al., 2001; Eklund et al., 2002; Krüger et al., 2011).

Despite epidemiological and experimental observations
that link some stx subtypes with highly pathogenic strains,
their molecular basis is not completely understood. At the
same time, other factors seem to be involved. On the one
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hand, particular characteristics of Stx toxin, like receptor-
binding affinity, have been correlated with cytotoxic speci-
ficity on different cell lines (Tyrrell et al., 1992). In a study
of potency of purified Stx toxins, Fuller et al. (2011) found
differences amongst Stx subtypes under both in vitro and in
vivo conditions. In particular, Stx2a and Stx2d proved
more potent than Stx2b, Stx2c and Stx1. When comparing
Stxs to chimeric toxins, Russo et al. (2014) found that the
different toxicity between Stx1a and Stx2a on cells and in
mice relies on the B subunit. On the other hand, there is
diversity in stx expression amongst STEC strains, which
may account for differences in virulence. Neupane et al.
(2011) reported an overexpression of Stx2 in E. coli
O157 : H7 strains associated with severe human disease. As
discussed in the following sections, Stx production is
related to the level of phage production (Köhler et al., 2000;
Muniesa et al., 2003; de Sablet et al., 2008; Łoś et al., 2009),
and phages with distinct genotypes were found to produce
markedly different amounts of Stx2 (Wagner et al., 1999).

Stx phages

The role of bacteriophages in the transference of stx genes
was identified in the 1980s, and phages carrying stx (here
named stx phages) were soon isolated and analysed
(Scotland et al., 1983; Smith et al., 1983, 1984; O’Brien
et al., 1984). The first comparative studies showed a relation-
ship between stx phages and l phages (Huang et al., 1987).
Complete sequence studies of stx phages reported at the end
of the 1990s confirmed that stx phages have sequence and
gene organization levels similar to those of lambdoid phages,
and also showed gene clusters with related functions,
including recombination, early regulation, replication, late
regulation, lysis and head and tail structural gene regions
(Makino et al., 1999; Miyamoto et al., 1999; Plunkett et al.,
1999). The location of stx genes within the phage lysis
region, in addition to data from functional and genetic
analysis of regulatory regions, indicated a link between Shiga
toxin production and phage release during lytic growth
(Mühldorfer et al., 1996; Neely & Friedman, 1998; Fuchs
et al., 1999; Karch et al., 1999; Miyamoto et al., 1999;
Plunkett et al., 1999). Furthermore, Wagner et al. (1999)
proposed an active role for stx phages in STEC pathogenesis.

Induction of stx phages

The stx phages have a phage cycle regulation similar to
bacteriophage l. In the lysogenic state, the DNA of the stx
phage is integrated into the STEC chromosome and the
expression of most stx phage genes, including stx, is
inhibited. In the absence of external inducing agents, most
of the lysogens are stable; however, a small subpopulation
is induced spontaneously. Under certain conditions,
repression is removed, phage genes are expressed and stx
phages are produced and released. This switch from the
lysogenic state to the lytic state is called induction. Thus,
expression of stx in STEC depends primarily on prophage
induction (Wagner et al., 2001; Tyler et al., 2013), although

stx1 transcription can be also driven by its own promoter
under low iron conditions (Calderwood & Mekalanos,
1987; Aertsen et al., 2005b).

A higher level of spontaneous induction has been reported
for stx phages in comparison with non-stx phages.
According to Livny & Friedman (2004), this trait may be
valuable for STEC population provided Stx production
confers an advantage. The non-induced lysogens may
benefit from Stx production as this toxin can cause the
death of eukaryotic cells, such as unicellular predators or
human leukocytes (Steinberg & Levin, 2007; Łoś et al.,
2011; Mauro & Koudelka, 2011). This supports the ‘model
of STEC altruism’ described and analysed by Łoś et al.
(2013). Furthermore, it has been proposed that Stx has
evolved as a mechanism of defence against protozoa that
confers a selective advantage for bacteria harbouring stx
phages (Stolfa & Koudelka, 2012).

As in the case of l, the induction of stx prophages has been
shown to be controlled by RecA (Mühldorfer et al., 1996;
Fuchs et al., 1999) – a regulator of the SOS bacterial
response. Furthermore, it is also assumed that agents or
conditions that lead to bacterial DNA damage activate RecA,
which cleaves the phage repressor and finally causes
prophage induction. The role of RecA has also been
evidenced in studies showing a higher level of spontaneous
stx phage induction in recA-positive strains in comparison
with recA-negative strains (Mühldorfer et al., 1996; Fuchs
et al., 1999; Livny & Friedman, 2004; Imamovic & Muniesa,
2012). Several studies have reported enhanced production of
stx phage particles and Stx under typical SOS inducers, such
as UV irradiation and mitomycin C. In addition to activated
RecA, other mechanisms could contribute to stx prophage
induction (Muniesa et al., 2004a; Imamovic & Muniesa,
2012; Nassar et al., 2013). In a recent study, Imamovic &
Muniesa (2012) described RecA-independent induction of
stx2 phages by EDTA due to its chelating property.

It is important to note that induction efficiency varies
amongst the different stx prophages (Muniesa et al., 2004a;
de Sablet et al., 2008; Karama & Gyles, 2008; Garcı́a-Aljaro
et al., 2009; Łoś et al., 2009). In addition, the stx phages are
not equally sensitive to the different inducers.

Several factors have been shown to regulate the lysis/
lysogeny switch. Such factors include hydrogen peroxide
(Wagner et al., 2001; Łoś et al., 2009, 2010), high tem-
perature in combination with UV irradiation (Yue et al.,
2012), EDTA (Imamovic & Muniesa, 2012), sodium citrate
(Imamovic & Muniesa, 2012; Nejman-Faleńczyk et al.,
2012), amino acid starvation (Nejman-Faleńczyk et al.,
2012), phenethyl isothiocyanate (Nowicki et al., 2014),
DNase colicins (Toshima et al., 2007), high hydrostatic
pressure (Aertsen et al., 2005a), sodium chloride (Łoś et al.,
2009; Harris et al., 2012), nitric oxide (Vareille et al., 2007),
60Co irradiation (Yamamoto et al., 2003) and several
antibiotics, such as azithromycin, ciprofloxacin, fosfomy-
cin, imipenem, gentamicin, norfloxacin and rifampicin
(Matsushiro et al., 1999; Köhler et al., 2000; Zhang et al.,
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2000; Ohara et al., 2002; Herold et al., 2005; Ochoa et al.,
2007; Łoś et al., 2009; Nassar et al., 2013), as well as those
antibacterials used as growth promoters in animal produc-
tion (Köhler et al., 2000).

The expression of stx phage genes can be regulated by the
presence of other phages in the host genome (Serra-Moreno
et al., 2008; Fogg et al., 2012) and interactions amongst O157
prophages can complement the functions of defective
prophages (Asadulghani et al., 2009). Some studies show
that the presence of more than one stx phage in the same
strain affects Stx production in comparison with strains
harbouring only one stx phage. Either an increase or a
decrease in toxin production has been reported (Muniesa
et al., 2003; Serra-Moreno et al., 2008; Fogg et al., 2012).

In addition to the characteristics of the phages, bacterial
factors are also involved in the induction process. Several
studies indicate a co-regulation between stx phages and the
bacterial host. On the one hand, genetic and physiological
conditions of the lysogen influence phage-inducing capa-
city (Muniesa et al., 2004a; Imamovic & Muniesa, 2012)
and indeed the host effect on phage development seems to
be more pronounced on stx phages than in l (Węgrzyn
et al., 2014). On the other hand, stx phage lysogeny has a
direct effect on the global expression of bacterial genes;
moreover, an increase in acid tolerance and motility has
been reported when bacteria were lysogenized (Su et al.,
2010). Tree et al. (2014) found that stx2 bacteriophages
encoded an anti-small RNA that can regulate bacterial
mRNA translation. Phages can also regulate different steps
of STEC interaction with the intestinal epithelium,
providing a selective advantage to STEC strains for coloni-
zation and persistence. For example, Stx increases the
expression of nucleolin, which is one of the receptors for
intimin – an adhesin of STEC (Robinson et al., 2006). In
addition, it was described that the presence of stx2 phages
represses the type III secretion system and it was hypoth-
esized that this repression is then overcome when appro-
priate niche signals are detected (Xu et al., 2012). Tozzoli
et al. (2014a) identified a regulatory region in stx phages
that downregulates the expression of type III secretion,
mainly present in O157 strains isolated from humans.

Diversity of stx phages

All phages carrying a stx gene are considered, by definition,
stx phages. Although they commonly share several charac-
teristics, it is not surprising that this is a heterogeneous
group. The stx phages present different morphologies, e.g. a
regular hexagonal head and a short tail, an elongated head
and a long tail, and a regular hexagonal head and a long
tail (Rietra et al., 1989; Muniesa et al., 2000; Allison et al.,
2003; Karama & Gyles, 2008). Furthermore, there is also
heterogeneity in the host infectivity range (Gamage et al.,
2004; Muniesa et al., 2004a).

The genome size of sequenced stx phages ranges from 29.7
to 68.7 kb (Table 1), with most .60 kb. Genomic

differences amongst stx phages have been made evident
by several approaches, including RFLP patterns (Osawa
et al., 2000), polymorphic prophage patterns (Park et al.,
2013) and a multilocus characterization scheme (Smith
et al., 2007). Developments in sequencing technologies
over recent years have allowed for complete nucleotide
sequencing of several stx phages. Table 1 lists stx phages
whose complete sequences are available in GenBank.
Recent comparisons of whole genomes have confirmed
that stx phages share a general genomic organization, but
with a significant degree of sequence diversity, reinforcing
the concept of their mosaic nature (Ahmed et al., 2012;
Smith et al. 2012; Steyert et al., 2012; Cooper et al., 2014;
Tozzoli et al., 2014a). Furthermore, some studies identified
different types of stx phages harbouring even the same stx2

subtype (Ahmed et al., 2012; Tozzoli et al., 2014b).

In an analysis of loci representing key modules involved in
infection and propagation of stx phages (int, N, cI, cro, cII,
Q, O, P, stx, capsid and tail structural genes, packaging),
Smith et al. (2012) found a high level of genetic diversity
amongst 11 stx phages as they observed that no two phages
of that group possessed an identical genetic profile.

The genomes of stx phages encode many hypothetical
proteins and carry genes with poorly understood roles for
phage biology, mainly in the late region (Smith et al.,
2012). Amongst others, the gene encoding a putative DNA
adenine methyltransferase has been identified in some stx
phages (Cooper et al., 2014). Recently, Nübling et al.
(2014) described a functional esterase encoded down-
stream of the stx2a operon in the bacteriophage 933W, and
homologue genes are present in many stx2-encoding phages
(Unkmeir & Schmidt, 2000).

Insertion site diversity

The integration sites of stx phages in the bacterial
chromosome also show great diversity. Considering the
stx phages present in E. coli O157 : H7 strains, two insertion
sites were first described as preferred: wrbA and yehV
(Shaikh & Tarr, 2003; Besser et al., 2007). However, there
are other integration sites described for stx phages in O157,
such as sbcB, argW and yecE (De Greve et al., 2002; Mellor
et al., 2012; Shringi et al., 2012).

Several integration sites have been described for stx phages
in non-O157 STEC strains, i.e. argW, potC, prfC, serU, ssrA,
wrbA, yciD, yecD, yecE, yjbM, ynfH and Z2577 (Recktenwald
& Schmidt, 2002; Koch et al., 2003; Ahmed et al., 2012;
Steyert et al., 2012; Cooper et al., 2014).

The factors that mediate the integration of a stx phage in a
specific locus have not been clearly identified and, in
contrast to the immunity to superinfection of l lysogens,
double lysogens have been detected (Allison et al., 2003). In
an interesting study evaluating chromosomal site specifi-
city, Serra-Moreno et al. (2007) detected that phages
preferentially use one insertion site depending on the host
strain; however, if the preferred locus is unavailable, the
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phage integrates into a secondary insertion site. In addi-
tion, Steyert et al. (2012) observed heterogeneity in integrase
genes amongst stx phages in LEE (locus of enterocyte
effacement)-negative strains. Such variants could be asso-
ciated with phage insertion at specific genomic locations.

Dissemination of stx phages outside the intestine

Despite the difficulties in detecting and isolating free stx
phages, some studies have described their occurrence in
cattle faeces, river water and sewage (Muniesa et al., 2004b;
Dumke et al., 2006; Oot et al., 2007; McDonald et al.,
2010), demonstrating the circulation of these phages in the
environment. It has been shown that stx phages can persist
longer than their host bacteria in an aquatic environment
(Muniesa et al., 1999; Allué-Guardia et al., 2014). In addi-
tion, some stx phages have a high ability to tolerate expo-
sure to certain disinfectants and can maintain their
infectivity under food-processing conditions (Muniesa
et al., 1999; Kajiura et al., 2001; Rode et al., 2011).

Considering the role of these phages as vectors of stx genes,
conditions that augment the replication and release of stx
phages could facilitate the spread of stx genes. Some studies
have shown that transmission of stx phages may occur in
water (Imamovic et al., 2009), in various food matrices
(e.g. milk, orange juice, salad and ground beef) (Imamovic
et al., 2009; Picozzi et al., 2012) and also in biofilms
(Solheim et al., 2013).

STEC strains may encounter several factors in the environ-
ment that could activate the lytic cycle of stx phages. The
fact that different stx phages can be differentially induced
should be taken into account in future studies to allow a
better understanding of factors that enhance stx phage
dissemination.

Human STEC infections and stx phages

Shiga toxins are considered the main virulence factor of
STEC and it is accepted that the pathogenicity of STEC in
humans depends on phage-regulated Stx production.
Moreover, Tyler et al. (2013) showed that Stx2 production
and disease in an enterohaemorrhagic E. coli mouse model
were directly related to induction of the 933W prophage.
However, the stx phage characteristics that contribute to
both high virulence and variation in disease severity are
poorly understood.

In a recent study, Tozzoli et al. (2014a) performed a
microarray analysis of O157 STEC strains from Italy,
comparing some strains isolated from human infections
and others from animal sources. Interestingly, they found
that the stx2 phage was the major source of variability
between the two groups. They identified two polymorphic
regions, one between the gam and cII genes, associated with
lytic and lysogenic cycles, and the other between roi and s.

Another phage region that shows diversity and could be
related to the pathogenicity of STEC is the Q gene, which

codes for a transcriptional antiterminator that controls
expression of late phage genes in lambdoid phages. This
gene is generally present amongst stx phages and located
upstream of the stx genes (Smith et al., 2007, 2012).
Amongst the stx phages carried by O157 strains, two Q
variants have been described: Q933 and Q21. Moreover, a
relationship between the Q allele and the level of stx
expression has been suggested (LeJeune et al., 2004; Ahmad
& Zurek, 2006; Zhang et al., 2010; Mellor et al., 2012).
Recently, Steyert et al. (2012) observed phylogenetic diversity
of stx phages in an analysis of Q sequences, identifying seven
clusters amongst 15 selected strains. The Q sequences
associated with the highest level of stx expression were found
to be clustered together.

To evaluate the association between stx phage induction
and disease, it is also important to take into account the
possible role of intestinal factors, which may also vary
amongst hosts. Currently, little is known about the effect of
the specific conditions of mammalian hosts on the
induction of stx prophages (Livny & Friedman, 2004; Łoś
et al., 2009). Oxidative stress has been suggested as one of
the conditions that may occur in the intestine of an
infected human and could influence the induction of stx
phages (Łoś et al., 2010). This idea is supported by in vitro
experiments that show that hydrogen peroxide and neutro-
phils increase Stx2 production (Wagner et al., 2001), and by
the fact that stx phages are induced in cultures of STEC
strains treated with hydrogen peroxide (Łoś et al., 2009,
2010). However, human microbiota and their secreted
products can inhibit Stx production (Gamage et al., 2003,
2006; de Sablet et al., 2009). Gamage et al. (2003, 2006)
suggested that susceptibility of the intestinal flora to stx
phages could exert either a protective or an antagonistic role
in STEC disease and they proposed that toxin production by
intestinal flora may represent another strategy of patho-
genesis. Recent studies on the mechanisms that could be
involved in stx expression in vivo (Bentancor et al., 2013a, b)
have shown that stx2 can be transcribed and translated in
mammalian cells, producing biologically active Stx. The toxin
could therefore be produced after the uptake of stx phages
into eukaryotic cells, but the mechanisms by which the phages
are taken up and the DNA transcribed remain unclear.

The role of stx phages in STEC pathogenicity impacts
directly on therapeutic approaches to treating STEC infec-
tions. First, unlike most other bacterial infections, the
treatment of human STEC infection with some antibiotics
may have adverse clinical consequences (Wong et al., 2000;
Zhang et al., 2000; McGannon et al., 2010) due to the effect
of several antibiotics on stx phage induction and Shiga
toxin production (Yee et al., 1993; Kimmitt et al., 1999,
2000; Matsushiro et al., 1999; Zhang et al., 2000). Although
some in vitro studies show that certain antibiotics eliminate
STEC without triggering the phage lytic cycle, they do not
necessarily imply the elimination of Stx production in the
intestine (McGannon et al., 2010). Additionally, several
types of stx phage should be included in the studies to
generalize results.

Shiga toxins and stx phages
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Table 1. Characteristics of stx phages whose complete sequences have been submitted to the GenBank

All the information is presented as available in the GenBank accession or its linked reference.

stx phage Genome size

(kbp)

stx type

or subtype

Strain host GenBank

accession no.
Integration

site

Name Serotype Origin

933W 61.7 stx2 wrbA EDL933 O157 : H7 NA AF125520

VT2-Sa 60.9 stx2 NA Sakai RIMD 0509894 O157 : H7 Japan outbreak AP000363

VT1-Sakai 47.9* stx1 yehV Sakai RIMD 0509952 O157 : H7 Japan outbreak AP000400

VT2-Sakai 62.7* stx2 wrbA Sakai RIMD 0509952 O157 : H7 Japan outbreak AP000422

CP-933V 48.9* stx1 yehV EDL933 O157 : H7 Hamburger, outbreak of haemorrhagic colitis, HUS AE005174D

P27 42.6 stx2e yecE 2771/97 ONT : H2 Patient with diarrhoea AJ298298

Stx2w-I 61.8 stx2 wrbA Okayama O-27 O157 : H7 Japan outbreak AP004402

Stx1w 59.9 stx1 NA Morioka V526 O157 : H7 NA AP005153

Stx2w-II 62.7 stx2 NA Morioka V526 O157 : H7 NA AP005154

CP-1639 NA stx1 NA 1639/77 O111 : H- Patient with bloody diarrhoea AJ304858

BP-4795 57.9 stx1 yehV 4795/97 O84 : H4 Patient with diarrhoea AJ556162

86 60.2 stx2 NA DIJ1 O86 : H- Japan AB255436

Min27 63.4 stx2 NA Min27 O157 : H7 Piglet with diarrhoea, China EU311208

2851 57.2 stx2c sbcB CB2851 O157 : H7 Human FM180578

1717 59.9* stx2c sbcB EC970520 O157 : H7 NA FJ188381

YYZ-2008 52.7* stx1 NA EC970520 O157 : H7 NA FJ184280

NA 62.3 stx2 argW EC4115 O157 : H7 Human, at the time of spinach outbreak, USA CP001164D

NA 57.2 stx2c sbcB EC4115 O157 : H7 Human, at the time of spinach outbreak, USA CP001164D

EC026_P06 55.5 stx1 wrbA 11368 O26 : H11 Patient with diarrhoea, Japan AP010953D

ECO103_P15 53.9 stx1 prfC 12009 O103 : H2 Sporadic case of diarrhoea, Japan AP010958D

ECO103_P12 62.6 stx2 argW 12009 O103 : H2 Sporadic case of diarrhoea, Japan AP010958D

ECO111_P16 29.7 stx1 ssrA 11128 O111 : H- Sporadic case of diarrhoea, Japan AP010960D

ECO111_P11 48.1 stx2 yecE 11128 O111 : H- Sporadic case of diarrhoea, Japan AP010960D

NA NA stx2 argW TW14359 O157 : H7 Patient, spinach-associated outbreak, USA CP001368D

NA NA stx2c sbcB TW14359 O157 : H7 Patient, spinach-associated outbreak, USA CP001368D

NA NA stx1 yehV Xuzhou21 O157 : H7 HUS patient from 1999 outbreak, China CP001925D

NA NA stx2 wrbA Xuzhou21 O157 : H7 HUS patient from 1999 outbreak, China CP001925D

VT2w_272 66.0 stx2 NA 71074 O157 : H7 NA HQ424691

TL-2011c 60.5 stx2 wrbA NVH-734 O103:H25 HUS patient, enterohaemorrhagic E. coli outbreak, Norway JQ011318

P13374 60.9 stx2a wrbA CB13374 O104:H4 Sprouted seeds, Germany HE664024

NA 68.7 stx2a wrbA 2011C-3493 O104:H4 Patient with HUS, USA CP003289D

NA 68.5 stx2a wrbA 2009EL-2050 O104:H4 Bloody diarrhoea, Republic of Georgia CP003297D

NA 68.5 stx2a wrbA 2009EL-2071 O104:H4 Bloody diarrhoea, Republic of Georgia CP003301D
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Second, the phage regulation of Stx production allows the
use of novel therapeutics, like anti-induction strategies,
which would not be directly bactericidal, but might lessen
the risk of serious complications, such as HUS (Keen,
2012). Consequently, there are studies aimed at detecting
conditions that repress phage induction. Nejman et al.
(2011) have shown that plasmids derived from stx phages
are not able to replicate in amino acid-starved bacteria,
and Nowicki et al. (2013) have studied the mechanism
responsible for the inhibition of stx phage replication
under amino acid starvation, identifying the role of the
ppGpp alarmone. Nejman-Faleńczyk et al. (2012) have
suggested that reducing food consumption during illness,
or even fasting, and providing minerals and citrate could
be an option to manage STEC infections as they found that
these conditions can delay and diminish the efficiency of
phage particle formation. However, the authors also pointed
out that such results correspond to a study involving only
one phage. Bearing in mind the variability that exists
amongst stx phages, more work is needed to generalize these
conclusions.

Concluding remarks

In addition to Shiga toxin diversity, there is heterogeneity
amongst the phages that carry stx genes and regulate their
expression. Studies report differences in structure, genomic
organization, response to different inducing agents and
insertion site specificity. As a result, phage variability may
affect the virulence of STEC strains.

In addition to its role in STEC pathogenicity, the diversity
of stx phages could influence the dissemination of stx genes
and the emergence of new STEC strains – events that at the
same time can be promoted by other factors, such as
certain environmental conditions.

There is still much to learn about the virulence of STEC
strains and the characteristics and behaviour of stx phages,
particularly those from non-O157 strains. We consider that
studies on STEC virulence and epidemiology need to take
into account the diversity of Shiga toxins and stx phages,
not only to choose methodological approaches but also to
draw conclusions. Moreover, the variability in phage
induction and Shiga toxin production should be consid-
ered when evaluating treatments for STEC infections.
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Łoś, J. M., Łoś, M. & Węgrzyn, G. (2011). Bacteriophages carrying

Shiga toxin genes: genomic variations, detection and potential

treatment of pathogenic bacteria. Future Microbiol 6, 909–924.
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