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Abstract—This paper presents a comprehensive and gen-
eral optimization-based home energy management controller,
incorporating several classes of domestic appliances including
deferrable, curtailable, thermal, and critical ones. The opera-
tions of the appliances are controlled in response to dynamic
price signals to reduce the consumer’s electricity bill whilst
minimizing the daily volume of curtailed energy, and therefore
considering the user’s comfort level. To avoid shifting a large
portion of consumer demand toward the least price intervals,
which could create network issues due to loss of diversity,
higher prices are applied when the consumer’s demand goes
beyond a prescribed power threshold. The arising mixed integer
nonlinear optimization problem is solved in an iterative man-
ner rolling throughout the day to follow the changes in the
anticipated price signals and the variations in the controller
inputs while information is updated. The results from different
realistic case studies show the effectiveness of the proposed con-
troller in minimizing the household’s daily electricity bill while
preserving comfort level, as well as preventing creation of new
least-price peaks.

Index Terms—Automated demand response (ADR), building
energy management, demand response, dynamic pricing,
home energy management systems, optimization-based
controller.

I. INTRODUCTION

DEMAND response [1], which is defined as “the changes
in electric usage of end-use customers from their nor-

mal consumption patterns in response to changes in the price
of electricity” [2], is considered as a viable option in future
distribution networks to facilitate the connection of low car-
bon technologies, in particular at the domestic level, without
the need for reinforcement. Indeed, time-differentiated pricing
signals can be deployed to provide incentives for consumers
to curtail/defer their electricity use, thus releasing capacity to
connect more low carbon technologies [3]–[5].

However, in order to achieve these potential benefits from
demand response programs, a certain level of automation
is required to reduce both the uncertainty in the consumer
response to price signals and the complexity for the consumers
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to react to the fluctuating daily electricity prices. This is called
automated demand response (ADR) [6].

The design of domestic ADR is combined with key chal-
lenges that have not yet been adequately addressed in the
literature. For example, the centralized or semi-centralized
control schemes in [7] and [8] to find the best scheduling
for home appliances in multiple dwellings could be imple-
mented in relatively small microgrids. However, their appli-
cation in the context of large distribution networks would
prove challenging. Therefore, more advanced decentralized
controllers are needed at the residential premises [4]. On
the other hand, although optimization-based ADR approaches
have been developed in [7]–[19] to minimize electricity pay-
ments, the relevant formulations do not provide comprehensive
and generic modeling for all home appliances categories. More
specifically, the models in [8] and [12]–[15] consider only
deferrable appliances while the formulation in [11] is limited
to thermal appliances. A new group of appliances whose oper-
ation is noninterruptible, e.g., washing machines (WMs), is
modeled in [7] and [16]. However, these models are limited to
individual cycles and additional constraints would be needed to
avoid overlapping between cycles. Advanced models are pro-
posed in [9], [17], and [18] to control all the deferrable and
thermal in addition to noninterruptible appliances. However,
none of the aforementioned studies except [7], [8], and [19]
consider critical (noncontrollable) appliances. Modeling of
these appliances is crucial to provide adequate assessment of
the potential benefits of ADR for both consumers (for bill
reduction) and utilities (for peak shaving).

Despite its potential benefits, ADR may also have a negative
impact on load diversity [20] which might potentially result
in creating new peaks at least price intervals [9], [11], [16]
and overloaded network component. In this respect, although
minimization of hourly demand or of the peak-to-average
demand ratio as in [7] and [8] may reduce the peak demand,
this may not necessarily be below a certain power threshold
that could create congestion and voltage issues (i.e., power
threshold is not explicitly modeled); in addition, this control
design approach is not simultaneously applied with minimiza-
tion of energy cost. References [10], [17], [18], and [21]–[23]
cope with this challenge by limiting the demand at each time
interval below a predetermined power threshold. However, this
may lead to frequent disconnections thus breaching consumer
satisfaction and consequently discouraging the participation
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in ADR programs. Similarly, a flexible pricing approach is
applied in [12]–[14] and [19] using inclining block rate, but
the use of integral energy thresholds rather than power ones
renders the problem inadequate to address network constraints
issues.

Curtailable appliances could provide further flexibility to
manage demand below the needed power threshold. However,
although direct load control (DLC) models [22] are plentiful,
none of the ADR-optimization-based approaches available in
the literature provide the relevant formulation required to
avoid unnecessary curtailment. In fact, in order to boost ADR
business cases it is critical to consider consumer satisfaction
(e.g., volume of curtailed energy) in addition to minimizing
electricity payments while preserving consumption diversity.
In this context, a multiobjective optimization problem is
proposed in [9], [11], [13], [14], and [16]–[18] to maximize
consumer satisfaction and minimize electricity bills. However,
such trade-off problems may not be practically applicable since
it is difficult for consumers to provide the cost for breaching
their preferences in a reasonable way. Indeed, the most likely
known information is the consumer’s willingness to pay.

Another key challenge is to provide solutions for potential
changes in the controller inputs during the day, in particular
the price signal. None of the previous studies mentioned above
except [9], [12], and [19] cope with the uncertainty challenge.

In this paper, a general and comprehensive formulation for
an optimization-based ADR controller to be implemented in
a home energy management system is proposed to optimally
coordinate the operation for different types of domestic appli-
ances in response to dynamic electricity prices. The model
considers the classifications of home appliances proposed
in the previous studies, namely, deferrable, noninterruptible
(with multicycle operations) and thermal (considering the rel-
evant thermodynamic equations) appliances in addition to
critical and fully curtailable ones. The proposed ADR aims
to reduce the consumer’s electricity bill below a desired level,
whilst increasing their comfort.

The main original contributions of this paper, bridging the
gaps relative to previous paper, can be summarized as follows.

1) Scheduling of appliances according to both market price
signal and price penalties associated to violations of
power thresholds aimed at preserving network consump-
tion diversity (i.e., to avoid creating peaks at least price
intervals) without compromising consumer’s comfort
(in particular in terms of volume of energy curtailment).

2) Inclusion of overlaying price signals and general formu-
lation of the relevant response model to limit the build-
ing’s aggregated power consumption. In this respect,
the formulations in [9]–[11] and [15]–[18] can be seen
as sub-cases of the models introduced in this paper
(by simply relaxing some of the constraints presented).

3) Modeling of fully curtailable appliances and inclusion of
consumer’s comfort in the optimization problem without
the need for defining the costs of breaching consumer’s
preference (as proposed in most literature). The opti-
mization aims to increase the consumer comfort in
an iterative manner up to a level that minimizes the
electricity bill below a specified one.

4) Rolling operation of the controller throughout the day to
follow the changes in the anticipated controller inputs,
aimed at preserving operational constraints within limits
as well as achieving the controller objectives.

The corresponding mixed integer nonlinear prob-
lem (MINLP) is implemented in the Advanced Integrated
Multidimensional Modeling Software (AIMMS) high-level
optimization environment [24] (see Section III for details).

The rest of this paper is structured as follows. Section II
presents the main elements of the ADR controller. The rel-
evant formulations and algorithms are given in Section III.
Case studies to validate the proposed models are presented in
Section IV. Finally, the conclusion is drawn in Section V.

II. ELEMENTS OF ADR

To clarify the proposed control scheme to schedule home
appliances during the course of a day, the main ADR elements
and an overview of the controller decision making algorithm
are presented in the following sections.

A. Home Appliances Classifications

Home appliances are classified into five categories, accord-
ing to the appliance type and the consumer preference.

1) Deferrable Appliances: It includes all appliances whose
starting time can be shifted across the day in response
to price variations, whilst achieving the required energy
use within a single day. These appliances can also be
broken into two technology groups: a) nonflexible; and
b) flexible.

i) Nonflexible Deferrable Appliances: It includes all
appliances that have to follow a predefined power
profile during the operation cycle and cannot be
interrupted. For example, laundry appliances such
as WMs have to complete a 120-min operation
cycle during rinse mode.

ii) Flexible Deferrable Appliances: It includes
deferrable appliances whose power profile can
be managed during the operation, either by
interrupting it or reducing its power usage. For
instance, the charging rate of plug-in electrical
vehicle (PEV) can be flexibly controlled.

2) Thermal Appliances: The power consumption can be
controlled to maintain the temperature within the pre-
ferred dead-band, for example space heating. In this
paper, the ADR model considers the thermodynamic
and the intertemporal characteristics for this type of
appliances.

3) Curtailable Appliances: This type includes those appli-
ances that can be switched off without the need to turn
them on later. The consumer can assign the priorities to
operate those appliances.

4) Critical Appliances: The operations of this type of appli-
ances are uncontrolled and have to be preserved without
intervention.

B. Controller Inputs

The controller receives as inputs the forecasted outdoor tem-
peratures and price signals for the upcoming 24 h period, as
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Fig. 1. Decision-making algorithm of ADR.

well as corresponding updates during the day together with
the user settings. In addition, at each time step the price is
associated with a power threshold to preserve the diversity
among the consumers and thus avoids potential creation of
network operational problems such as overloads which could
result from shifting significant portions of the demand toward
the least price intervals. When the dwelling demand exceeds
the threshold, the corresponding price will be increased. The
controller inputs are updated several times during the day; for
example, the price signal received from the utility is updated
every 3 h. Therefore, the controller has to reschedule the oper-
ation of the appliances in response to the updated information
in a rolling fashion.

C. Overview of the ADR Decision-Making Algorithm

The proposed ADR aims to find the best scheduling of the
controllable appliances across a finite time horizon of a single
day to minimize the daily bill below the consumer willing-
ness to pay whilst achieving maximum satisfaction level. In
this paper, the consumer’s satisfaction level is represented by
the percentage volume of the daily energy curtailment relative
to the potential energy consumption of the curtailable appli-
ances. This satisfaction level, formulated as a constraint in
the optimization problem to limit the volume of energy cur-
tailment, it is assessed iteratively by the ADR controller to
achieve a desired electricity payment at the end of the day.
More specifically, at the first iteration the satisfaction level
is initially set to unity (i.e., no curtailment is allowed) and
the corresponding energy payment is found. If this is higher
than the predefined one, then a new iteration is performed by
increasing the allowable volume of curtailment e.g., by 25%.
This process continues until the maximum desired payment
is achieved or the curtailable appliances are all switched off
(see Algorithm 1). Accordingly; the consumer’s willingness to
pay enables identifying bounds on the maximum satisfaction
level, consequently making it easier for the consumer to select
the best alternative rather than defining the cost of breach-
ing each consumer’s comfort. In this respect, the optimization
problem is run iteratively as shown in Fig. 1 by reducing
progressively the normalized satisfaction level until the bill
falls below the desired payment.

However, the capability of ADR to achieve the desired
payment depends on the controller inputs (in particular, mar-
ket price signals and controllable appliances). Therefore, even
adopting a zero satisfaction level (e.g., switching off all cur-
tailable appliances), the minimum bill might not go below the
desired payment. Therefore, in practice and based on the mar-
ket price signals and the other controller inputs, the controller
may provide the consumer with a set of electricity payment
and the corresponding satisfaction levels. The user can then
select the best alternative.

To follow the changes in the controller inputs during
the day (intraday), the controller is triggered repetitively to
reschedule the operation of the appliances in response to
the update in the utility price signal, outdoor temperature,
and consumer preferences. This improves energy bill reduc-
tion, user’s satisfaction, and preserving operational constraints
within limits (e.g., indoor temperatures).

III. MODELING OF ADR

This section presents the modeling of ADR elements to
schedule the operation of home appliances across a horizon
of a single day, which is denoted by K (indexed by k) and it
is segmented into N equal time slots.

A. Domestic Appliances Modeling

1) Nonflexible Deferrable Appliances: Each nonflexible
appliance d ∈ D has to complete M cycles of sequential
operations within a day, where each operation o ∈ O has to fol-
low a predetermined power profile. Therefore, the optimization
engine aims to find the best starting time for each appliance
operation by allocating the value 1 to the corresponding time
slot in the binary variable xd

k,o and according to the following
set of constraints.

The starting time for each operation should not deviate
from the consumer preference time to begin the operation
αd

o by more than �d
o time units. Therefore, the allowance

time to start each operation should be within the interval
λd

o ≡ [αd
o − �d

o, α
d
o + �d

o], and subject to
∑

k∈ λd
o

xd
k,o = 1 ∀d ∈ D, o ∈ O (1)

xd
k,o = 0, ∀ k ∈ K\λd

o, d ∈ D, o ∈ O. (2)

All the operations should complete a full cycle τ d
o before

the end of the day (at time step N − 1); therefore, the
last feasible time to start any operation should be before
(N−1− τ d

o ). Further, the starting time for each operation
should not lie within other operation cycle as given in (3),
to prevent overlapping of multiple operations for the same
appliance

∑

k∈λd
o

(
xd

k,o − xd
k,o−1

)
ϕ

k
≥ τ d

o−1 ∀d ∈ D, o ∈ O (3)

where ϕk represents the ordinal number relative to the time
set K. The power profile pd

k,o is a shifted version of the
predetermined profile and it is mathematically formulated as
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the convolution between the predetermined profile pd
l,o and the

binary decision variable (starting time) xd
k,o as given in

pd
k,o =

N−1∑

l=0

pd
l,o xd

k−l+1,o ∀k ∈ K, ∀d ∈ D, o ∈ O (4)

where L (indexed by l) is an alias for the time horizon set K.
Although this type of appliances has been modeled in differ-

ent approaches (e.g., [7], [16]), these are limited to individual
cycles and additional constraints are needed to avoid overlap-
ping between cycles, as modeled here. In fact, the formulation
of the power profile and multioperation cycles provides sub-
stantial improvement relative to [9], [17], and [18].

2) Flexible Deferrable Appliances: For flexible deferrable
appliances f ∈ F, the controller has to achieve the required
energy usage E f (i.e., kWh) within a particular time interval
λ f ≡ [α f , β f ], which is preset by the consumer, for example
to fully charge the PEV before the departure time β f . This
is accomplished through controlling the power consumption
in each time interval between zero (off) and the rated power
P f ,rated. Hence, the power consumption p f

k is subject to the
following constraints [13]:

∑

k∈λ f

24

N

(
p f

k

)
= E f ∀f ∈ F (5)

p f
k ≤ P f ,rated ∀k ∈ λ f , f ∈ F (6)

p f
k = 0, ∀k ∈ K\λ f , f ∈ F. (7)

3) Thermal Appliances: For thermal appliances indexed by
h, the controller has to find the corresponding power consump-
tion ph

k at each time interval to preserve the indoor temperature
T(in)

k between the user preferred temperature settings T(+,−)

during the active periods in which the consumer turns the
appliance on.

The dwelling temperature (in ◦C) T(in)
k+1 at each time step

k +1 is calculated using the dynamic energy balance equation
in (8), which relates the indoor and the outdoor temperature
between two successive time steps

T(in)
k+1 = ε T(in)

k + (1 − ε)

(
T(out)

k ∓ COP · ph
k

A

)
∀k ∈ K, h ∈ H.

(8)

The thermal model is run with (+) for heating and
(−) for cooling and with the following inputs: 1) out-
door temperature T(out)

k (◦C); 2) the inertia factor ε; 3) the
thermal conductivity A (kW/◦C); and 4) the coefficient of
performance (COP) [11]. The inertia factor depends on the
time constant of the system and the adopted control period
(e.g., 15 min), and its value could for instance be inferred from
historical data. The COP is the ratio of the heat exchanged with
the indoor ambient to the required input electrical energy [25].

4) Curtailable Appliances: The controller manages the
power consumption pi

k for curtailable (interruptible) appliances
i ∈ I by controlling their operational status si

k at each time
step (on/off) as in

pi
k = si

k Pi,rated Occi
k ∀k ∈ K, i ∈ I (9)

where Occi
k is a binary parameter that represents the

preferred periods of operating the curtailable appliances,
and Pi,rated is the appliance rated power. It is once again
worth noting that the modeling of curtailable appliances has
been widely adopted in DLC models; however, none of
the ADR-optimization models have developed the relevant
formulation.

5) Critical Appliances: The noncontrollable appliances
c ∈ C represent those appliances which need to be operated
without restrictions. In this paper, the daily power consump-
tion for all critical appliances are aggregated and modeled as
a lumped demand pc

k, which can be predicted from historical
profiles.

B. Intraday Operation Constraints

As the controller activates several times during the day to
follow the input updates, new constraints are included in the
model to consider implicitly the last control actions and pre-
serve appliance constraints such as preventing interrupting the
WM during its operation cycle. In this context, in order to pre-
vent interrupting nonflexible deferrable appliances during their
operation cycles and avoid scheduling toward time slots prior
to the current triggering time (k ≤ k(real)), the binary deci-
sion variables xd

k,o for k ≤ k(real) is enforced to equal the last

control sequence (xd
k,o)

(0)
that was produced by the controller

during the last call of the optimization engine as given in

(
xd

k,o

)
=

(
xd

k,o

)(0) ∀k ≤ k(real), d ∈ D, o ∈ O. (10)

Similarly, for other controllable appliances the power con-
sumptions before the current time steps k(real) are enforced to
equal the power consumption produced by the last call of the
optimization engine as given in

p f ,h,i
k =

(
p f ,h,i

k

)(0) ∀k ≤ k(real), f ∈ F, h ∈ H, i ∈ I. (11)

The constraints given in (10) and (11) provide improvement
relative to the predictive ADR controller in [9] and [12],
which neglects the past control actions in the next decision.

C. Dynamic Price Modeling

It is assumed that the price signal is received from the
electricity market and then it is superimposed by a power
threshold, which for instance reflects the available capac-
ity (headroom) in the distribution networks [4]. As from (12),
when the aggregated demand p(total)

k of controllable and non-
controllable appliances is below the threshold demand Pl, the
electricity market price ak is applied. When demand exceeds
this threshold, a higher electricity price bk is applied as
a penalty to prevent the controller from shifting most of
the demand to least market price intervals. With such mod-
eling of the price signal the ADR problem is represented
as MINLP

	k

(
p(total)

k

)
=

{
ak: p(total)

k ≤ Pl

bk: p(total)
k > Pl

}
(12)
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Fig. 2. ADR controller architecture.

where, the power consumptions p(total)
k at each time interval

for the five appliance categories is given in

p(total)
k =

∑

o ∈ O, d ∈ D,

f ∈ F, h ∈ H, i ∈ I, c ∈ C

pd
k,o + p f

k + ph
k + pi

k + pc
k.

(13)

This price formulation is completely general and includes
the design in [9], [11], and [16] whose price is independent of
the demand level (bk = ak) and in [10], [17], and [18] that use
hard constraint on the total power demand. Although flexible
price design is adopted in [15], only a simplified version of
flexible deferrable appliances is considered. All the mentioned
mixed integer linear programming studies can be formulated
as special cases of our model.

D. Problem Formulation

At each time the controller is triggered, the controller
inputs (including appliances classifications, outdoor temper-
atures, price signals, and consumer settings to operate the
appliances) are updated, as shown in Fig. 2. The controller
inputs include the preferred time interval to operate deferrable
appliances λd,f , the type of use for nonflexible deferrable and
the corresponding power profile pd

l,o, the required energy for
flexible deferrable appliances E f , the preferred indoor temper-
ature T(des) and the corresponding deadband T(+/−), the active
periods to use the thermal and curtailable appliances Occh,i

k ,
and the priority 
i to disconnect the curtailable appliances.
Then, the optimization engine is applied to find the best con-
trol sequences (decision variables), which includes the starting
time for nonflexible deferrable appliances xd

k,o, the daily power
consumption for flexible deferrable and thermal appliances
p f ,h

k and the operational states si
k (on/off) for curtailable appli-

ances, in order to minimize the electricity payment across the
time horizon K.

As shown in Fig. 1, the optimization is run iteratively to
minimize the electricity payment below the desired electricity
payment costdes. In order to do so, at each iteration j, the
objective function is formulated to minimize the electricity
bill across the time horizon K as given in

Min: costj =
∑

k∈K

(	k)

(
24

N
∗ p

(total)

k

)
. (14)

Algorithm 1 Iterative Algorithm for Cost-Comfort Tradeoff

1: Set the desired cost
(

costdes
)

and the controller inputs
2: Initialize the satisfaction factor to unity Sdes

j=1 = 1
3: Solve the MINLP problem Minimizing costj (14), subject
to the constraints (1-16)
4: While costj > costdes and Sdes

j > 0
5: Set Sdes

j = Sdes
j−1 − �

6: Solve MINLP problem again
7: End While

In addition to the constraints (1)–(11) and the price sig-
nal in (12) in Sections III-A and III-B, the objective function
is also subject to an inequality constraint to maintain the
satisfaction factor S above a satisfaction level Sdes

j

S ≥ Sdes
j . (15)

The satisfaction level is initially set to unity (i.e., Sdes
j=1 = 1)

at the first iteration and it is reduced progressively by � until
the cost falls below the desired one (i.e., costj ≤ costdes)
or when the satisfaction level reaches zero (Sdes

j = 0). The
satisfaction factor S is formulated in (16) to represent the per-
centage of the volume of energy curtailmentfrom curtailable
appliances. Curtailment is applied according to the appliances’
priority 
i which defined as integer between 1 and the num-
ber of curtailable appliances. Those with the smallest priority
values will be the first subject to curtailment

S = 1 −
∑

k ∈Ki∈I

(
ρ
i (

Pi,ratedOcci
k − pi

k

))

∑
k ∈Ki∈I

(
ρ
i (Pi,rated

)
Occi

k

) (16)

where ρ is large constant selected as the ratio of the largest
and the smallest rated power of curtailable appliances to ensure
that the smallest priority appliances will be curtailed first.

It is important to mention that unless such an iterative
approach is applied, no curtailable appliance will operate as
the cost minimization objective will push all of them off.

E. Practical Implementation and Algorithms

The proposed ADR formulation has been modeled
and solved using the mathematical programming language
AIMMS [24]. AIMMSs outer approximation algorithm (AOA)
is adopted to solve the arising MINLP problem. The AOA iter-
atively solves nonlinear programming (NLP) and mixed inte-
ger programming (MIP) models to find the best solution. In
particular, CONOPT and CPLEX solvers are used for NLP
and MIP models, respectively [26]. In order to obtain a good
(feasible) solution, the AOA has also been customized by
embedding a multistart algorithm [27] that solves the NLP
model for multiple initial conditions, so as to also avoid getting
trapped in local solutions.

Algorithm 1 summarizes the iterative process formulated in
AIMMS to find the maximum satisfaction [according to (16)]
required to minimize electricity payments below the desired
level. Algorithm 2 summarizes the steps and the constraints
adopted to trigger the ADR at day-ahead and throughout the
day (intraday) in response to changes in the controller inputs.
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Algorithm 2 Intraday Operation Algorithm
1: Set the controller inputs (k = 1, day ahead)
2: Call Algorithm 1 excluding the constraints (10-11)
3: Whilek < N (e.g., N = 96 for 15-min resolution)
4: If the controller inputs are updated Do
5: Set k = k(real)

6. Set the constraints (10-11)
7: Call Algorithm 1
8: End If
9: End While

IV. CASE STUDY APPLICATIONS

A. Description of the Case Studies

A daily 15-min load profile for a single dwelling is devel-
oped for the coldest day in January using the model in [28].
The model generates the profiles according to historical
data from U.K. home appliances’ energy usage and depending
on the number of active occupants, the season, and whether
it is a weekday or a weekend. Then, thermal and electri-
cal vehicle power profiles, which are not considered in [28],
are generated and included in the modified model according
to [29] and [30].

Domestic home appliances are classified into the pro-
posed model categories. The deferrable nonflexible category
includes 2 kW WM. The user prefers to operate the WM
twice a day with duty cycles of 150 and 75 min. The cor-
responding preferred starting times for each operation cycle
are 18:00 and 21:00. The flexible deferrable appliance cate-
gory includes 4 kW smart PEV charger. The corresponding
charging profile should be controlled to fill the daily depleted
energy of 6 kWh during the interval from the 18:00 (arrival
time) until 10:00 (departure time). Thermal appliances include
a 3.5 kW space heater with inertia factor ε = 0.98, thermal
conductivity A = 0.45 kW/◦C and the COP set to 2.5. The
user prefers maintaining the indoor temperature close to 19 ◦C
within a dead-band of 2 ◦C during the intervals 17:00–09:00.
For the curtailable category, the consumer allows switching
off the 2 kW oven and 3 kW hob appliances, considering the
hob as last resort for curtailment. The consumer prefers to
operate the oven and the hob concurrently during the periods
18:30–21:30 and 06:00–07:00.

Fig. 3(a) shows the adopted price signal which represents
the electricity market price and then it is superimposed by
a 4 kW power threshold to reflect the distribution network
capacity. A penalty of four times the market price at each
time interval is selected to penalize the violation beyond the
power threshold in particular at the minimum market price
(1.8 p/kWh). This is calculated to obtain price at the mini-
mum intervals higher than maximum (6 p/kWh). In practice,
this higher price level should reflect the impact the consumer
makes on network investment at each time (so-called dynamic
distribution use of system charge [4]). The uncontrolled load
profile is plotted in Fig. 3(b). It can be seen that the peak
demand is 16 kW, which occurs at 18:30 when the PEV, the
thermal unit and the WM are operating concurrently. The load

Fig. 3. (a) Hourly daily market price signal ad. (b) 15-min daily load profile
for a single dwelling.

exceeds the power threshold for 35% of the day. The opera-
tion of domestic appliances according to the user preference
without any form of control would lead to total daily energy
consumption of 87 kWh and with payment of £13.5.

In this section, the operation of the proposed controller is
first demonstrated in response to the day-ahead price signal.
The controller searches for the maximum satisfaction level
(minimum curtailed energy) to achieve electricity payment
below a desired payment level of £3.5 as a restrictive assump-
tion to user willingness to pay. Then, the intraday operation
is investigated against changes in the controller inputs during
the day. This includes the update of the price signal and the
forecast of the outdoor temperature. The impact of combining
the price signal with a power threshold is also presented in
terms of the daily peak demand and the load factor. In addi-
tion, the minimum electricity payments and the corresponding
satisfaction levels are presented to provide bounds on the fea-
sible range of the desired payment. Finally, the proposed ADR
scheme is investigated for 30 residential profiles, realistically
generated according to U.K. statistics, to show the effective-
ness of the controller in reducing electricity payment and peak
demand for various inputs. The price signal in Fig. 3(a) is
adopted for all the different profiles.

B. Day-Ahead Controller Operation

In order to demonstrate the importance of adopting compre-
hensive modeling of home appliances, the controller will be
first presented when only one category is controlled in addition
to curtailable appliances. Then, all the controllable appliances
are considered in the ADR to assess the impact of consider-
ing more controllable appliances on the electricity payment
and the consumer satisfaction.

1) Control of Deferrable and Curtailable Appliances: The
controller has to find the best starting time of the WM oper-
ation cycles and the PEV charging profile. The controller
reschedules the WM operations to start at 13:00 and 2:00 as
shown in Fig. 4(a). Those starting times are coincident with
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Fig. 4. Daily load profile for (a) WM and (b) PEV, before and after
controlling deferrable and curtailable appliances.

the maximum headroom below the threshold demand (4 kW).
It is worth noting that if smaller waiting time is adopted,
the electricity payment will increase to satisfy the constraints
from (1) to (4).

On the other hand, the PEV is shifted to start charging at
21:45 and fully charging the battery before the departure time
10:00 A.M. as shown in Fig. 4(b). Note, the controller utilizes
the flexibility of the PEV departure time to spread the charg-
ing process over 12 h compared to 1.5 h in a “dumb” strategy
where charging starts immediately at the arrival time using the
rated charging capacity. In this case, the controller resorts to
curtail all the curtailable appliances by adopting zero satisfac-
tion level results in switching off the oven and the hob whilst
achieving £6.9 daily electricity bill.

It should be highlighted that the ability to continuously con-
trol the PEV charging rate depends on the availability of the
technology [31]. However, since the model is already formu-
lated as MINLP, also an on-off charging binary control strategy
could be readily implemented in the controller.

2) Control of Thermal and Curtailable Appliances: The
power profiles of thermal appliances and the indoor temper-
ature before and after the adoption of the proposed ADR
controller are presented in Fig. 5. In the case with no control
(w/o control), the use of thermal appliances is only limited to
the time intervals with active occupancy. On the other hand,
the ADR controller control the power usage of thermal appli-
ances throughout the day (including with no occupancy) to
minimize the electricity payment whilst keeping the indoor
temperature during the occupancy intervals within the pref-
erence limits 17–21 ◦C. Nevertheless, the daily electricity bill
can only be reduced down to £4 (still higher than desired) and
again with switching off all the curtailable appliances.

3) Control of Deferrable, Thermal and Curtailable
Appliances (Full ADR): In this case, controlling thermal appli-
ances allows scheduling the operation of PEV and WM toward
the least price intervals between 01:30 and 03:00 thus reduc-
ing the electricity payment. This is due to the flexibility of

Fig. 5. (a) Daily power profile and (b) indoor temperature for the thermal
appliance, without (w/o) and with control of the operation of thermal and
curtailable appliances.

Fig. 6. Daily load profile for (a) thermal appliance and (b) whole single
dwelling after applying full ADR.

distributing the power usage of thermal appliances during the
day as shown in Fig. 6(a) whilst preserving the temperature
constraints. The daily load profile after applying full ADR is
presented in Fig. 6(b). In the iterative process, the controller
starts with unity satisfaction level to minimize electricity pay-
ment which results in payment of £7. Then, the satisfaction is
decreased gradually until the desired energy payment is below
the £3.5. This is only applied at satisfaction level of 0.45,
which shows an improvement in the performance from zero
satisfaction level in the previous sections. In this context, the
oven and the hob are allowed to operate for 11% and 68%,
respectively of their occupied time intervals since the hob has
the highest priority to operate. It can be seen also that for most
of the day the total demand is below 4 kW (power threshold)
due to controlling more appliance categories. However, viola-
tion exists for few time intervals when demand includes critical
appliances and in the case of low outdoor temperature.
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Fig. 7. (a) Daily load profile. (b) Accumulative cost for day ahead and
intraday sechduling for an update in the price at 17:45.

C. Intraday Controller Operation

In this section, intraday operation is presented to demon-
strate the effectiveness of the proposed controller to cope
with the updates in the price signals and the controller inputs
through rescheduling the appliances and modifying the satis-
faction level to achieve the desired electricity bill at the end
of the day. In this context, the price signal and the outdoor
temperature are updated at 17:45 and 23:45, respectively.

1) Updated Price Signal: The updated forecasted price
at 17:45 indicates that the price between the midnight and
6:00 A.M. is tripled compared to the day-ahead ones. Unless
the controller reschedules the operation, the electricity pay-
ment at the end of the day will exceed the desired payment of
£3.5 by 57%. Therefore, the controller is triggered to resched-
ule the appliances operation. It can be seen in Fig. 7(a) that
the controller shifts portion of the loads toward the new least
price intervals between 23:00 and 00:00. For example, the sec-
ond operation of the WM is committed to start the job earlier
of 3 h than the day-ahead schedule at 23:00. Furthermore,
the satisfaction level is reduced from 0.45 in the day-ahead
to 0.25, which leads to increase the daily energy curtailments
though the curtailable appliances being turned off between
18:30 and 21:30. This new rescheduling preserves the elec-
tricity payment at the end of the day below the desired
payment as shown in Fig. 7(b). However, although the cost
is increased during the least price intervals, the overall elec-
tricity payment at the end of the day is maintained below the
desired one.

2) Update Outdoor Temperature: At 23:45, a new update
of the outdoor temperature forecast is provided. It indicates
a reduction in the forecasted temperature between midnight
and 6:00 A.M. by 3 ◦C compared to the day-ahead forecast.
Based on this, and the last scheduling carried out at 17:45,
the indoor temperature would violate the minimum user pref-
erence indoor temperature of 17 ◦C during the occupancy
intervals between 06:00 and 09:00, as shown in Fig. 8(a). To
cater for this, the controller is triggered to find new schedule

Fig. 8. (a) Indoor temperature. (b) Daily load profile in response to update
in the price at 17:45 and the outdoor temperature at 23:45.

TABLE I
ADR PERFORMANCE FOR SINGLE DWELLING

for the appliances. The corresponding new load profile is
presented in Fig. 8(b). It can be also seen that the demand
is increased slightly between 03:00 and 06:00 to preserve the
indoor temperature within limits during the occupancy inter-
vals. However, to maintain the cost below the desired one, all
the curtailable appliances during this period are not allowed to
operate thus the satisfaction level is reduced from 0.25 to zero.

D. ADR Performance-Single Dwelling

This section presents the impact of combining the market
price signal with a power threshold. Three metrics are used to
assess the performance of the proposed ADR; the daily peak
demand, the duration of violating the threshold (percentage of
time intervals in the day whose demand levels are above the
4 kW power threshold) and the load factor.

The metrics are compared when threshold is not applied.
Results are presented in Table I and for different satisfac-
tion levels. From the utility perspective, the threshold power
allows a dramatic reduction in the peak demand and the per-
centage of time intervals whose demand is higher than the
power threshold. Furthermore, the load factor is dramatically
improved which may lead to better utilization of the network
assets. However, these potential benefits may be reduced when
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Fig. 9. Daily load profile using price signal with and without 4 kW power
threshold for a single dwelling.

consumers are not concerned about the electricity payments,
for example at satisfaction level of 0.75.

Fig. 9 illustrates the relevant daily load profiles. It can be
seen that adopting price signals without threshold creates new
peak demand of 8.9 kW during the period 01:00–03:00 A.M.
compared to 4 kW in the original profile before demand
response. When the power threshold is applied, the demand is
managed below 4 kW for most of the time intervals. However,
there is need to extend this analysis to more consumers to
assess the effectiveness to manage network constraints.

From the consumer perspective, the violation above the
power threshold for few time intervals demonstrates the
flexibility offered by the adopted price design to cater for
the critical appliances and maintain the operational con-
straints within limits. This flexibility has not being considered
in [10], [17], [18], and [21]–[23] where the total demand is
limited up to the power threshold. Therefore, the home appli-
ances will be tripped during 2% to 23% of the day which in
turn may discourage the penetration of ADR.

Table I also represents the set from which the consumer
can identify the desired electricity payment. In practice, the
controller may provide this matrix when the controller inputs
have been updated. In this case study, the minimum feasible
desired electricity payment is £2.3 for the day but it will be
combined with switching off all the curtailable appliances.

E. Case Study-Group of 30 Dwellings

The proposed ADR scheme is applied here to 30 daily res-
idential profiles generated from the model in [28] for a week
day in January and according to U.K. statistics on number of
occupants per dwelling.

Electrical vehicle (EV) profiles are also produced according
to the U.K. statistics of users’ driven distance (e.g., 30 miles
average), arrival times (average 18:00), and departure
times (08:00) [29], [30], [32]. EV chargers of 3 and 4 kW
are adopted and uniformly distributed among the profiles. In
addition, thermal power profiles are produced according to
the outdoor temperature of the coldest U.K. winter day in
January. The preferred indoor temperature is in the range
of 18 and 22 ◦C according to the U.K. statistics and with
allowance of 3 ◦C [33]. The ratings of thermal appliances are
3.5, 4.5, and 5.5 kW, also uniformly distributed among the
profiles. The feasible waiting time for nonflexible shiftable
appliances (e.g., WMs) is distributed uniformly within 5 h
from the starting time generated in the model. The desired
satisfaction levels are also uniformly distributed from 0 to 1.

Fig. 10. Performance indicators for 30 users with and without control.
(a) Daily electricity bill (£). (b) Peak power (kW). (c) Percentage of time
intervals in the day whose demand levels are above the 4 kW power threshold.

Fig. 10 shows the benefits of the proposed ADR scheme
according to the performance metrics in Section IV-D.

From the results, the energy payments [Fig. 10(a)] are
reduced significantly by an average of 68% for all the pro-
files; peak demand is also reduced below the 4 kW threshold
in 57% of the cases [Fig. 10(b)], while the time intervals whose
demand is exceeding the 4 kW threshold [Fig. 10(c)] is also
reduced for all the profiles from an average of 25% to 4.5%.
Also, the load factor is improved for all the profiles from an
average of 30% to 43%. It can also be seen that the potential
benefits from ADR are smaller for profiles whose controller
inputs do not provide enough flexibility to go below the 4 kW
threshold. For example, the first profile (profile number 0)
has relatively high critical demand of 8 kW that cannot be
reduced further (although ADR manages to reduce the peak
from over 12 kW). Nonetheless, ADR reduce the dwelling’s
energy payment from £9.2 to £3.5 and its duration of exceed-
ing the peak from 28% to 11.5%, as well as improve its
load factor slightly by 4%. This also shows the importance
of modeling the critical appliances not to overestimate ADR
benefits.

V. CONCLUSION

A comprehensive optimization-based ADR controller has
been proposed to optimally coordinate the operation of dif-
ferent types of domestic appliances to reduce the consumer’s
electricity bill below a predefined desired threshold whilst
maintaining their comfort. The modeling of home appliances
has been extensively developed to include all the classifica-
tions proposed in the literature. The proposed ADR scheme
applied to an individual dwelling demonstrates the importance
of adopting comprehensive modeling of home appliances
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to exploit the flexibility within each appliance category. In
particular, the realistic modeling of critical (uncontrollable)
appliances provides adequate assessment of ADR without
overestimating its value. Furthermore, the adoption of a gen-
eral and flexible price design through the application of
electricity rates higher than the market price signals to penalize
the violation of a given power threshold can limit the cre-
ation of a new peak at the least price intervals while still
not compromising consumer’s comfort. Finally, the results
reveal the importance of rolling operation of the proposed con-
troller throughout the day to follow the changes in the price
signal and the outdoor temperature. This results in minimiz-
ing the electricity bill while avoiding violation of the indoor
temperature preference.

The model has also been applied to 30 residential profiles.
The results show the effectiveness of the controller to reduce
the electricity payment and peak demand under various condi-
tions, as well as the importance of modeling critical appliances
so as not to overestimate the benefits from ADR.

Work in progress aims at assessing the implications of the
proposed ADR schemes for network pricing.
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