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ABSTRACT
Gesture analysis has been widely used for developing new
methods of human-computer interaction. The advancement
reached in the gesture analysis area is also motivating its
application to automate tasks related to discourse analysis,
such as the gesture phases segmentation task. In this paper,
we present an initiative that aims at segmenting gestures,
especially considering the “units” – the larger grain involved
in gesture phases segmentation. Thereunto, we have cap-
tured the gestures using a Xbox KinectTMdevice, modeled
the problem as a classification task, and applied Support
Vector Machines. Moreover, aiming at taking advantage
from the temporal aspects involved in the problem, we have
used several types of data pre-processing in order to consider
time domain and frequency domain features.

Categories and Subject Descriptors
I.5.4 [Pattern Recognition Applications]: Computer vi-
sion; I.2.7 [Natural Language Processing]: Discourse

General Terms
Design, Experimentation

Keywords
Gesture Analysis, Gesture Segmentation, Gesture Unit, Sup-
port Vector Machine, Temporal Modeling

1. INTRODUCTION
Recently, there has been an increasing interest in gesture

analysis research. Most research in this area focus on devel-
oping new methods for human-computer interaction, based
on the recognition of a pre-defined set of simple gestures
or reduced scopes within sign language. Also, some studies
investigate multimodal interaction, combining gesture and
speech, for instance.

Moreover, gesture analysis may be also used for developing
tools aiming at helping linguists to analyze the interaction
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between speech, gestures, and discourse. These tools could
automate some laborious or time-consuming tasks within
their process of gesture analysis. One of these tasks is the
segmentation of gesture phases.

According to Kendon [5], a person may make one or sev-
eral movement excursions within a discourse. These excur-
sions refer to moving the hands from some position of rest to
some region in the space where the main movement occurs,
and then turning back to some position of rest. This entire
excursion is called gesture unit, while the positions between
these excursions are called rest positions. A gesture unit
may be segmented in gesture phases, that can be: prepa-
ration, in which the hand moves to the position where the
gesture content must be expressed; pre-stroke hold, which is
a brief pause at the end of preparation phase; stroke, which
contains the peak of effort of the gesture and express its
semantic content; post-stroke hold, which is a brief pause
at the end of the stroke; and retraction, in which the hand
returns to the rest position.

In Kita et al [6], it is also suggested that pre-stroke hold,
stroke and post-stroke hold compose an expressive phase,
which also can be composed by a single independent hold,
that is, a pause that express the semantic content of the
gesture. Finally, both Kita et al [6] and Kendon [5] consider
the concept of gesture phrase. However, since there is not
a consensus about this concept – Kita et al [6] claim that
it corresponds to all phases surrounding a single expressive
phase (which would include retraction), while Kendon [5]
defines it as a segment containing preparation and expressive
phase; and it is usually not used for segmenting gestures,
we will not consider the concept of gesture phrase in our
analysis. The hierarchy of gesture phases based on Kita et
al [6] is illustrated in Figure 1.

Figure 1: Hierarchy of gesture phases according
to Kita et al [6], comprising gesture unit, gesture
phrase, and gesture phases.
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The gesture phases segmentation is important for inves-
tigating issues such as the synchrony between speech and
gestures, analysis related to gesture categorization, or how
discourse is produced. Also, it could be used in methods for
human-computer interaction, for segmenting the expressive
phase that must be analyzed.

In this context, it is necessary to mention that there are
difficulties regarding gesture segmentation tasks which come
from linguistic area. Some issues about gestures are not
well-defined in linguistics researches, such as: if we must
analyze the two hands movements as an unique information
unit, or if each hand produces distinct information; or how
can we interpret movements that occurs in the rest position.
Nevertheless, there is some degree of disagreement between
gesture segmentations made by two different human coders1,
what can raise important questions about how to evaluate
the automated methods, as we will discuss later, in this text.

This paper aims at presenting an initiative for segment-
ing gesture phases, focusing on the segmentation of gesture
units, that is, classifying frames within a video in rest posi-
tion or gesture, which represents a first step towards gesture
phases segmentation. In order to accomplish this task, we in-
vestigate the use of Support Vector Machines (SVM) and the
application of several pre-processing methods for extract-
ing time-domain, frequency-domain, and time-frequency do-
main features, aiming at benefiting from temporal aspects
of the problem. The organization of this paper is as fol-
lows: some related studies are presented in Section 2; some
concepts about SVM are described in Section 3; Section 4
describes our phase gesture segmentation approach, includ-
ing the dataset used in the experiments; the experiments
parameters and the reached results are presented in Sec-
tion 5; Section 6 presents a comparison between our ap-
proaches and related works; and Section 7 presents our final
considerations.

2. RELATED WORKS
There are several studies about gesture phase segmenta-

tion in linguistic area [5, 6, 11]. Unfortunately, we have
not found many studies focusing on the automation of these
tasks. However, it is possible to note that there is a re-
cent interest in this problem, since the only two studies that
focus on segmenting all gesture phases are from 2007 and
2011. These studies focus on segmenting phases within ges-
ture units: Martell and Kroll [10] consider only gesture units
(not explaining how gesture units were segmented), which
are analyzed using Hidden Markov Model aiming at defining
a phase (preparation, stroke, hold, and retraction) to each
frame; Ramakrishnan [13] detects rest position by analyzing
frequent positions within the video, obtaining 87% of pre-
cision and 4% of false positive rate, and applying SVM to
classify if a priori detected inflexion frames – i.e., points of
transitions between phases – correspond to the beginning of
a preparation, stroke, hold, or retraction phase.

Also, there are studies that focus on specific tasks within
gesture phase segmentation. For instance, Gebre et al [2]
aim at detecting gesture strokes, obtaining an average of
47.24% of precision and 34.41% of recall; and Bryll et al [1]
apply a heuristic method to detect hand holds in natural
conversation, reaching 82% of precision and 86.4% of recall.

1Coder is the name given to the person who segments ges-
ture phases within the discourse in Kita et al [6].

Other studies use some knowledge about gesture phase
segmentation to produce more realistic animations. Ma-
jkowska et al [9] use Dynamic Time Warping to identify
gesture phases, based on their velocity and acceleration pro-
files, aiming at improving the alignment between hand and
body animation. Levine et al [7] also use gesture phases
segmentation as an intermediate step in order to improve
language animations.

Additionally, Tsai and Lin [15] use a motion history anal-
ysis to detect gesture phases in order to provide information
for an online tracking technique; Wilson and Bobick [17]
use a Finite-State Machine to segment gestures in transition
phases (preparation and retraction) and strokes, aiming at
differing biphasic gestures – corresponding to gestures with
no transition phase – from triphasic gestures – gestures that
include transition and stroke phases. In this same work, rest
positions are determined heuristically, considering frequent
positions within the video, reaching approximately 82% of
precision and 79% of recall2.

Since these last studies [7, 9, 15, 17] do not focus on ges-
ture phase segmentation as their final goal, there are no
clear results for phases segmentation. However, they moti-
vate the study of gesture phase segmentation, by presenting
some useful applications.

3. SUPPORT VECTOR MACHINES
SVM is based on performing a nonlinear mapping on in-

put vectors from their original feature space into a high-
dimensional feature space, and optimizing a hyperplane ca-
pable of separating data in this high-dimensional feature
space [16].

Considering a training set with N samples, defined by
{xi, yi}Ni=1, where xi is an input, yi is an output, and yi ∈
{−1,+1}, the goal of SVM is finding an optimal classes sep-
aration hyperplane, which is given by h(xi) = wTϕ(xi)+ b,
where w is the optimal set of weights, b is the optimal bias,
and ϕ is the nonlinear mapping applied to input vectors.
SVM optimizes the hyperplane maximizing the distance be-
tween this hyperplane and its closest datapoints (xi), which
corresponds to minimizing w using, for example3:

min φ(w, b, ξ) =
1

2
w

T
w + C

N∑
i=1

ξi, (1)

where C is a regularization factor, and ξ is an error factor,
subject to

yi(w
T
ϕ(xi) + b) ≥ 1− ξ, i = 1, ..., N,

ξi ≥ 0, i = 1, · · · , N.

Applying Lagrangian method in Eq. (1), we obtain

max L1(α) =
N∑

i=1

αi −
1

2

N∑
i,j=1

αiαjyiyj〈ϕ(xi) · ϕ(xj)〉, (2)

subject to

2Values for precision and recall were not provided explicitly
in Wilson and Bobick [17]. These values were estimated
by the authors of the present paper, through the analysis
of the figure comparing the human-labeled video with the
automatic labeled video.
3Considering a soft margin optimization using a 1-norm.
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N∑
i=1

αiyi = 0,

C ≥ αi ≥ 0 for i = 1, 2, · · · , N,

where α are Lagrangian multipliers. Solving the problem
in Eq. (2), it is possible to solve the problem in Eq. (1),
since w can be defined in terms of α [3]. In Eq. (2), a kernel
function K(xi,xj) can be used to represent the dot product
〈ϕ(xi) · ϕ(xj)〉, performing an implicit nonlinear mapping.
In this paper, we consider Radial Basis Function (RBF) as
kernel function, which is given by

K(xi,xj) = exp

(
‖xi − xj‖2

2δ2

)
, (3)

where δ is the RBF parameter.

4. PHASES GESTURE SEGMENTATION
In this section, we present a definition of gesture phases

segmentation problem and a description of the dataset used
in the experiments.

4.1 Problem Definition
In this work, a video represented by a sequence of frames

S = {f1, f2, · · · , fnf} is input to a segmentation strategy
aiming at identifying gesture phases. The segmentation
problem consists in receiving the representation of a frame
fi as input and classifying these frames as one class among
ci = {E,P, S,H,R}, corresponding to rest, preparation,
stroke, hold, and retraction.

We have divided this classification problem into smaller
subproblems:

1. Classifying rest positions: input fi ∈ S, and output
ci = {E,G}, where G ⊃ {P, S,H,R} corresponding to
gesture units. This is the main focus of this paper.

2. Classifying holds: input fi ∈ SG, where SG ⊃ G, and
output ci = {H,D}, where D ⊃ {P, S,R} correspond-
ing to dynamic phases.

3. Classifying strokes: input fi ∈ SM , where SM ⊃ M ,
and output ci = {S, T}, where T ⊃ {P,R} correspond-
ing to transition phases.

4. Classifying preparation and retraction: input fi ∈ ST ,
where ST ⊃ T , and output ci = {P,R}.

Figure 2 illustrate our strategy for dividing the classifica-
tion problem into subproblems.

Figure 2: Strategy for classifying gesture phases.

4.2 Dataset and Data Representation
The data consists in streams of gestures made by a per-

son telling a story, captured by an application based on Mi-
crosoft Xbox KinectTM. The storytelling is motivated by

comics, shown to the storyteller before the capture session.
As the comics theme is commonly known by the storytellers,
the storytelling is an easy task.

In this case, the Xbox KinectTMdevice is used to capture
the RGB frames and, for each frame, the 3D positions of
six points of interest in the storyteller body (hands, wrists,
head, and spine). Our dataset consists in two different
videos of the same person telling two different stories. Ta-
ble 14 presents the information about the two videos. There
are 3012 frames, and each frame of these videos was labeled
by one human coder, in order to allow building and validat-
ing our segmentation approach.

Video Length Frames#
Rest

Position# Gesture Unit#

1 60s 1747 698 1049
P S R H
146 656 208 39

2 40s 1264 493 771
P S R H
180 431 106 54

#: number of frames: in the whole video; corresponding to rest
position and gesture unit; and corresponding to each phase.

Table 1: Information about the videos used for
training and testing.

In order to represent the videos in an adequate way to be
processed by the classification algorithm, the information
about 3D position was used to create a normalized vector
representation: for each frame, the position of hands and
wrists is subtracted from the position of the spine, and this
new 3-dimensional position is divided by the distance be-
tween head and spine.

From the normalized vector representation, new informa-
tion was created by estimating velocity and acceleration
measures. For the velocity, the estimation is given by

vi,i−d =
∆ri,i−d

ti − ti−d

,

where t is the timestamp of frame i, d is the displacement
in frames, and ∆r(i,i−d) is the Euclidean distance between
normalized 3D position of the interest point at frame i and
at frame i− d. The acceleration is estimated through

ai,i−1 =
vi − vi−1

ti − (ti−1)
.

Also, the proposed approach considers a windowed strat-
egy, using information from past and/or future frames to
represent each frame of interest due to the intrinsic tempo-
ral aspects of gesture phases segmentation problem. Fig-
ure 3 illustrates the windowing technique; each cell of the
window contains the left hand (lh) and right hand (rh) ve-
locity or acceleration information, depending on what is the
considered measure.

5. EXPERIMENTS AND RESULTS
The experiments have been carried out in order to verify

the performance of SVM model in the gesture phase segmen-
tation problem, modeled as a classification task. All exper-
iments were performed using MATLABR© with the toolbox

4Some frames were not considered because they represented
changes in rest position. Interpreting these changes is still
an open research problem within Gesture Studies.

48



Figure 3: Example of window with 7 frames and
fourth frame as frame of interest.

Spider5. We have applied a SVM algorithm available in
the toolbox, using C = 100 and RBF kernel function (see
Eq. 3), considering kernel parameters (δ) from 2−6 to 24,
varying by one the exponent of the powers of two6. In or-
der to accomplish the requirements of training and test of
the classification model, we have used a balanced version of
video #1 for training each binary problem, and the entire
video #2, unbalanced, for testing. The datapoints were ob-
tained using the windowing procedure with 1 to 80 frames7,
centered in the frame of interest.

5.1 Feature Representation Analysis
Firstly, different tests were executed aiming at finding the

best parameters to represent the gestures for the segmenta-
tion tasks. These parameters are: point of interest (hand
and/or wrist); position of the frame of interest; time dis-
placement for calculating velocity; and measured feature
(velocity and/or acceleration). This last parameter (mea-
sured feature) is evaluated in all these initial tests. Other
tests were run, but the results presented here fixes best pa-
rameters found in order to analyze each parameter individ-
ually.

Points of Interest Analysis

In this work, we have considered four main points of inter-
est to represent the spacial displacement that characterize
the gesture: left and right hands, and left and right wrists.
However, in this work, left and right hands are considered
together, as “hands”, as well as left and right wrists are con-
sidered together, as “wrists”. In order to evaluate the rep-
resentation power of each pair of points of interest, we have
carried out experiments to compare them. Table 2 presents
classification errors reached in such experiments8, where it is
possible to observe the superior representatives power when
only the hands are used. In these tests, we have fixed d = 3,
using past frames only, and frame of interest in the middle
of the window.

Position of the Frame of Interest Analysis

5An object-oriented environment for ma-
chine learning in MATLABR©, available at
http://people.kyb.tuebingen.mpg.de/spider/main.html.
6Whenever the best result for a test was obtained with δ =
2−6, new tests were run with δ from 2−8 to 2−7 in order to
evaluate if smaller values of δ were needed.
7Similar to the choice of δ, whenever a test reached its best
results with a window size close to 80, new tests were run
considering window size until 120, 150, or 180 frames, in
order to verify if larger windows were needed.
8The first number in parentheses, for all tables in Section 5,
refers to the window size for which the smaller error was
reached. The second, expressed in powers of two in order to
differ from window size, refers to the RBF parameter used
to obtain the best SVM model.

Velocity Acceleration Both

Hands 10.5 (46, 2−1) 16.2 (28, 2−2) 12.9 (40, 20)
Wrists 10.8 (52, 2−1) 18.2 (46, 2−1) 15.7 (73, 21)

Both 10.7 (79, 20) 16.3 (34, 2−1) 13.5 (34, 20)

Table 2: Classification errors (in %) considering the
two main points of interest: hands, wrists, or both.

Gesture phases represent the temporal structure of ges-
ture. Thus, gesture phase segmentation is intrinsically a
temporal task. From this, we have supposed that it was
necessary to analyze information of neighboring frames, jus-
tifying our windowed procedure to compose our datapoints.
Our initial hypothesis was that it is important to analyze
previous and posterior frames. However, we have also tested
considering only previous frames. Results shown in Table 3
corroborate our initial hypothesis. In these tests, we have
fixed d = 3, using past frames only, with hands as point of
interest.

Classification Error
Position Velocity Acceleration
Middle 10.5 (46, 2−1) 16.2 (28 , 2−2)

End 17.8 (19 , 2−3) 23.1 (3 , 2−5)

Table 3: Classification errors (in %) using different
positions for the frame of interest.

Time Displacement Analysis

As mentioned in Section 4.2, a parameter d referring to
the time displacement is considered for estimating veloc-
ity information. Ramakrishnan [13] estimates velocity for a
frame t by considering the displacement between frame t−5
and t+5 (i.e. d = 5), arguing that this practice would avoid
the noise produced by calculating velocities over consecutive
frames.

In our work, we have evaluated different values for d, con-
sidering two approaches: using past frames only (t − d); or
using past and future frames (t+d and t−d). Since the dif-
ference between best results for both approaches was not sig-
nificant, we have decided to consider only past frames since
this approach requires a smaller window. Table 4 presents
classification errors with d = 1, 3, 5 and 7, considering both
approaches. In these tests, we have fixed hands as point
of interest, with the frame of interest in the middle of the
window. From these results, we have chosen to use d = 3.

Velocity Acceleration
d Only past Past and Only past Past and

future future

1
12.9

(38, 2−2)
12.6

(51, 2−1)
17.3

(48, 20)
19.8

(29, 2−1)

3
10.5

(46, 2−1)
10.2

(80, 2−1)
16.2

(28, 2−2)
13.9

(38, 2−2)

5
11.1

(58, 2−1)
12.7

(16, 2−5)
16.9

(30, 2−2)
13.0

(26, 2−3)

7
12.3

(50, 2−1)
11.8

(20, 2−5)
12.4

(33, 2−2)
13.6

(28, 2−3)

Table 4: Classification errors (in %) considering dif-
ferent values for d, only past frames or past and
future frames.

Time-Domain Features Analysis

In our initial windowed approach, all features from frames
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within the window are put together into a vector represen-
tation. However, it is also possible to extract time-domain
features from the window in order to represent each frame.
The time-domain features used in this work are described
for eletromiogram signals in Phinyomark et al [12], and are
briefly described in Table 5. As it can be seen in this table,
extracting these time-domain features have not improved
the performance obtained by using all features in a vector
representation.

Time-Domain Feature Descriptions Error
Sum of all components of the signal 13.5 (31, 21)
Mean of all components of the signal (M) 13.5 (30, 21)
M using a weighting window function 18.4 (19, 22)
M using a continuous weighting window function 20.6 (10, 20)
Sum of squared components of signal (S) 15.0 (25, 21)
Squared root of S 14.2 (25, 21)

Cumulative length of the waveform 25.4 (3, 2−7)
over the time segment

Table 5: Classification errors (in %) using different
time-domain feature extraction approaches.

Frequency Domain Features Analysis

We have applied an one-dimensional Discrete Fourier Trans-
form (DFT) for each signal (considering left hand and right
hand signals separately) and a bi-dimensional DFT (con-
sidering left and right hand as two dimensions of the same
signal), obtaining amplitudes for each ranges of frequencies.
We have used these sequences of amplitudes as input for
SVM model, obtaining 13.93% of error with a window of
26 frames for one-dimensional DFT (RBF parameter: 2−1),
and 12.37% of error with a window of 32 frames for bi-
dimensional DFT (RBF parameter: 2−1).

Time-Frequency Domain Features Analysis

For extracting time-frequency domain features, we have
used Discrete Wavelet Transform with Daubechies 4 (db4),
considering decomposition levels from 1 to 3, using only com-
ponents D1, D2, and D3, respectively. From these compo-
nents, we have calculated mean and standard deviation (SD)
in order to represent data, as in Lima and Coelho [8]. Ta-
ble 6 presents the results using such features. Similarly to
time-domain feature results, time-frequency domain features
have not improved the performance of the classifier model
which considers the entire window as input.

Features D1 D2 D3

Mean 15.3 (23, 2−2) 17.5 (23, 2−2) 19.1 (23, 2−1)
SD 17.4 (28, 2−2) 18.1 (26, 2−2) 19.3 (30, 2−2)

Mean and SD 14.1 (39, 2−6) 15.3 (26, 2−6) 15.8 (15, 2−7)

Table 6: Classification errors (in %) using Discrete
Wavelet Transform.

5.2 Final Classifier Analysis
From these results, we have chosen to make a deeper anal-

ysis of the classifier model build with windowed data con-
taining frames represented by hands velocity, with frame
in the middle of the window as frame of interest. In the
sequence of this section, we present some figures to illus-
trate the conclusions that this final experiment allowed us
to reach.

Figure 4: Classification error for classifier models
varying the sizes of window.

First, Figure 4 shows that temporal aspects impact per-
formance indeed, since classification error is bigger with no
window (i.e., an“one frame window”) or small windows. The
best performance is achieved with 46 frames in the window.

Second, Figure 5 illustrates the Receiver Operating Curve
(ROC), which relates false positive rate (x axis) and recall
(y axis), for some models with windows of 40 to 58 frames9.
As we can see, the window with 46 frames also presents a
good performance, presenting 89.32% of recall and 10.44%
of false positives.

Figure 5: ROC graph for some classifiers models
with fixed parameters and with windows of 40 to 58
frames.

Also, we have run a holdout test with this configuration
10 times in order to verify the stability of our approach. We
have obtained an average error of 11.09%, with standard
deviation of 0.33%, indicating that our approach is indeed
stable.

From a linguist point of view, it can be interesting to
analyze the nature of errors, in order to better interpret the
automated segmentation results. Still considering our best
classification model results, from 128 incorrectly classified
frames:

• 12 frames (9.38%) compose two really small segments
of rest position, with 8 frames and 4 frames;

• 76 frames (59.38%) consist of consecutive errors in the
beginning or in the end of the segment, i.e., in the
transition between phases. Figure 6 shows an example
of transition error;

9This range was chosen for containing the greater number
of consecutive results in the lower quartile considering clas-
sification errors.
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• 40 frames (31.25%) are internal errors (incorrect clas-
sification that do not belong to the transition between
segments), from which 38 frames correspond (or are
close) to hold phases – phases with velocity profile
similar to rest positions; while the remaining 2 frames
(1.56%) had no apparent difficulty in analyzing.

Figure 6: Example illustrating transition errors.

Finally, instead of analyzing errors for each frame, it is
possible to analyze the errors for each segment of rest po-
sition or gesture unit. In this approach, a segment is con-
sidered wrong when it has more than 20% wrong frames
as internal errors; or more than 40% wrong frames within
all segment. Consecutive incorrectly classified frames in the
transition of the frame are considered deviations. Table 7
presents errors for each segment. It is important to high-
light that, from three wrong segments of rest position, two
correspond to really small segments, with 4 and 8 frames.

Class
Total
Segments

Wrong
classified
segments

Average
start
devia-
tion (in
frames)

Average
end de-
viation
(in
frames)

Rest position 9 3 4.5 1.1
Gesture unit 9 1 4.1 0.1

Table 7: Errors considering segments of each class.

5.3 Preliminary Results for Gesture Phase Seg-
mentation

We have also performed some preliminary experiments for
segmenting hold, stroke, and preparation phases. Our strat-
egy, as mentioned on Section 4.1, consists in binary classi-
fiers. In Table 8, initial results reached for other classifiers
models are shown, all built with the same parameters ap-
plied in the best classifier to gesture unit segmentation.

Study # Frames σ Precision Recall F-score
Hold 6 0.016 75.6 57.4 65.3
Stroke 65 0.25 70.2 88.6 78.4
Preparation 88 2 96.0 83.6 89.4
Retraction 88 2 67.8 90.8 77.6

Table 8: Preliminary results for phase gesture seg-
mentation.

Also, as we have balanced our training sets, there were few
examples of hold and non-hold to train our classifier. This
practice may explain the low F-score for hold segmentation.
This result may be improved by using other strategies to
balance classes, or by expanding our dataset.

6. COMPARISON WITH RELATED WORKS
In Section 2, we present some related studies. Most of

them do not present results for gesture unit segmentation.

However, Ramakrishnan [13] presents some results for iden-
tifying rest position, and it is possible to deduct the results
for Wilson and Bobick [17]. Table 9 compares our results
with these studies, considering the precision, recall and F-
score measures.

Study Precision Recall F-score
Our approach 84.3 89.3 86.7
Ramakrishnan [13] 87 96 91.3
Wilson and Bobick [17] 82 79 80.5

Table 9: Comparison between our approach and re-
lated studies for gesture unit segmentation.

It is important to highlight that: (a) the approaches in Ra-
makrishnan [13] and Wilson and Bobick [17] rely on finding
frequent hand positions within the video, while ours intend
to find a velocity pattern for rest position; (b) all studies use
different videos, so it is not possible to evaluate the degree
of difficulty for each study.

Concerning to other gesture phases, it is more difficult
to compare our preliminary results with previous results in
literature, since studies use different strategies.

Firtly, it is important to highlight that, in our work, we
use a strategy in order to obtain transition frames, i.e.,
frames containing preparation and retraction phases, and
then we identify preparation and retraction among these
transition frames. That means that we have one result
for separating preparation and retraction, differently from
other studies which segment both preparation and retrac-
tion frames from the entire gesture unit.

It is the case of Martell and Kroll [10], that identifies all
phases within the gesture unit. This study presents a low
F-score for hold detection (36%), and F-scores of 54%, 59%,
and 67% for preparation, stroke, and retraction, respec-
tively. As they identified that hold phase introduces many
errors, their next tests consider a segmentation in prepara-
tion, stroke, and retraction phases only. In this case, their
best method presents a F-score of 56%, 68%, and 79% for
preparation, stroke, and retraction, respectively.

Ramakrishnan [13] also presents a method for segment-
ing preparation, stroke, retraction, and hold within a ges-
ture unit. However, Ramakrishnan [13] applies a strategy in
which points corresponding to a possible transition between
phases are detected and then classified as the beginning of
a specific phase. Therefore, metrics for evaluating results
rely on correctly labeled segments and average deviations in
the beginning or in the end of each segment. Thus, if we
disregard deviations and consider errors for segments (and
not for frames, as our method does), the method of Ramakr-
ishnan [13] would obtain F-scores of 95.3%, 79.9%, 74.3%,
and 85.7%, for hold, stroke, preparation, and retraction, re-
spectively. Considering a similar strategy for evaluating our
results (described in Section 5.2), we obtain F-scores of 75%,
64.7%, and 85.7% for identifying holds, strokes, and prepa-
ration, respectively.

Also, Gebre et al [2] identifies strokes within a video,
reaching a low F-score (38.71%), and Bryll et al [1] iden-
tifies holds within a video, reaching a F-score of 84.14%.

7. CONCLUSIONS
This paper has presented a strategy for gesture phase

recognition using SVM, focusing on solving gesture unit seg-
mentation problem, which consists in segmenting rest posi-
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tion from gesture units within a recorded discourse. Our
strategy divides the problem into smaller binary problems,
starting from identifying gesture units, and then advanc-
ing to identifying gesture phases (holds, strokes, preparation
and retraction).

In this work, we have investigated gesture unit segmen-
tation problem through several tests, aiming at finding the
best parameters for a SVM classifier in order to distinguish
rest position from gesture unit. The investigated parameters
were: point of interest; position of the frame of interest; time
displacement for calculating velocity; and measured feature.
Also, we have explored time domain features, frequency do-
main features, and frequency-time domain features aiming
at improving results for our first model. However, the best
result was achieved by using a SVM classifier trained with: a
simple windowed datapoint; window with 46 frames; hands
as point of interest; velocity as measured feature, consider-
ing a time displacement of 3 past frames; and considering
the 23rd frame as the frame of interest for classification.

Another important aspect to consider is the level of dis-
agreement of human coders in the same task. Two coders
have labeled video #1 in order to evaluate this level of dis-
agreement. In video #1, coders have disagreed in 4.01%
of the frames for gesture unit segmentation task. This dis-
agreement corresponds to transition errors, and to the iden-
tification of really small rest position segments. Actually,
for the latter case, one coder has identified the segment as
rest position and the other coder has identified the same seg-
ment as gesture unit. These two kind of errors summed up
to 68.8% of all errors of our model, i.e., 7.2% of all frames.
That is, only 3.29% of all frames present errors which are
not common in the task made by human coders.

Although it is not possible to directly compare the results
– due to the use of different videos in each analysis, different
metrics for evaluation [13], and to different specification of
the problems [1]; the comparison of our results with related
works shows that our approach is promising.

For gesture unit segmentation, although Ramakrishnan
[13] presents better results, his approach is based on a heuris-
tic which consists on identifying frequent hand positions
within the video. Thus, his approach may depend on the
behavior of the speaker. Our approach is based on veloc-
ity profiles and, since rest position generally consists in seg-
ments of the video where the hand presents little or no move-
ment, velocity profiles seem to be a more reliable feature for
identifying rest positions.

For gesture phases segmentation, our preliminary tests
present interesting results, which are further explored in or-
der to obtain more effective conclusions.

The next steps in our research include: (a) validating the
results considering other human coders; (b) evaluate all pa-
rameters for each gesture phase segmentation problem; and
(c) apply other SVM methods that consider temporal rea-
soning within SVM model, such as SVM with recursive ker-
nels [4] and Support Vector Echo-State Machines [14].
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