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Abstract—A novel dynamic particle swarm optimization 
algorithm based on chaotic mutation (DCPSO) is proposed to 
solve the problem of the premature and low precision of the 
common PSO. Combined with linear decreasing inertia weight, 
a kind of convergence factor is proposed based on the variance 
of the population’s fitness in order to adjust ability of the local 
search and global search; The chaotic mutation operator is 
introduced to enhance the performance of the local search 
ability and to improve the search precision of the new 
algorithm. The experimental results show finally that the new 
algorithm is not only o f greater advantage of convergence 
precision, but also of much faster convergent speed than those 
of common PSO (CPSO) and linear inertia weight PSO 
(LPSO).
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I. In t r o d u c t io n

Particle Swarm Optimization (PSO) is a population- 
based random search strategy and an adaptive optimization 
algorithm developed by Dr. Eberhart and Dr. Kennedy in 
1995[1]. Because o f the unique search mechanism, excellent 
convergence performance and easy realization, the algorithm 
has obtained rapid development and has been widely used in 
many fields since it was proposed [2-4].

Although particle swarm optimization algorithm has been 
developing rapidly, it is also of the problem o f the premature 
and low precision. In order to solve the problem, a novel 
dynamic particle swarm optimization algorithm based on 
chaotic mutation is proposed in the paper. Combined with 
linear decreasing inertia weight, a kind of convergence factor 
is proposed based on the variance of the population’s fitness 
in order to adjust the ability o f local search and global search; 
the chaotic mutation operator is introduced to enhance the 
performance of the local search ability and to improve the 
search accuracy o f the new  algorithm. The simulation results 
show the new  algorithm has much better performance on the 
convergence rate and convergence accuracy.

II. C o m m o n  PSO A l g o r it h m  (CPSO)
a n d  S o m e  R e l a t e d  C o n c e p t

In the PSO algorithm, the locations of particles present 
the potential solution. Each particle searches the optimal
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solution in the problem space according to its own 
experience and the experience o f the other particles in the 
search space.

Let D  be the dimension o f the search space, 

X i =  (x1 , x2 , • • •, x'D ) is noted as the current position of

i th particle o f swarm, Vi =  ( v j , v2, • • •, v'D ) is noted as the
thrate o f the velocity for the i  particle o f swarm, and

P  =  ( p j , p 2 , •••, p D ) is noted as the best position by

which it has ever visited. g  is noted as the index o f the best
particle among the particles in the population.

Pg =  ( p 1g , p2g, • • •, pD  ) is noted as the best position by

which the swarm have never visited. In basic P S o  model, the 
particles update their velocities and positions with following 
formulas:

v d ( t  +  j )  =  w v d ( t ) +  c iri ( p d -  x d ( t ))  (1)

+ c 2r2( p g -  x d ( t ) ) . 

x d ( t  +  j )  =  x d ( t )  +  v d ( t  +  j ) . (2)

where i  =  1 ,2 ,..., N  , d  = 1,2, • • •, D  . c1 and c2 are

positive constants, called cognitive and social coefficient
respectively, r1 and r2 are two random numbers, t  is the

iteration number. The inertia weight w  is considered critical 
for the convergence of the PSO. A  large w  facilitates the 
global search while a small w  facilitates the local search. 
Through a great amount o f experiments, literature [5] 
proposed a linear decreasing inertia weight approach 
(LDIW), which significantly improved the algorithm 
performance.

In the search processing of P S o , if  some particles find a 
current optimal location, other particles will move close to it 
rapidly. But if  the current optimal location is local optimal 
solution, particle swarm will not search the global optimal 
a gain, the algorithm will fall into the local best, this 
phenomena is called premature convergence. In order to 
track the state of particle swarm, we give the definition o f the 
variance o f the population’s fitness:
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Definition 1[6] Let n  be the number o f particle swarm, 

f  is the fitness o f i th particle, f avg is the current average

fitness o f particle swarm, 7  is the variance of the
2

population’s fitness, then 7  can be defined as

7 f  -  fJ  i J  aa v g \  2

f
(3)

where f  =  — Z  f , f  is the normalization factor,
n  i=1

which can limit the magnitude of 7 2 , the value of f  is 
calculated as follows:

f  = m a x  j 1, m ax { | f  -  f avg |} } , i  e  [1, n ] . (4)

From definition 1, it can be seen that the variance 7 2 of 
the population’s fitness reflects the convergence degree o f all 
particles in the population. The smaller the variance 7 2 is, 
the more convergent the particle swarm is. On the contrary, 
the particles are at the random search stage. Thus we can 
judge the convergence rate o f particle swarm based on the 
change of the variance of the population’s fitness between 
adjacent two generations. Next in this paper, we give a new 
definition o f convergence ratio of the population:

Definition 2 Let 7 2+1 be the current variance o f the

population’s fitness, 7 2 be the variance o f the population’s 

fitness o f last generation. p  is noted as the convergence 
ratio o f the population, then p  can be defined as follows:

P = .
7

(5)

From the definition 1, the variance of the population’s 
fitness 7  2 reflects the convergence degree of all particles in 
the population. Therefore, the convergence ratio reflects the 
change o f the convergence degree, in other words, it reflects

the convergence speed. The smaller 7  is, the higher the 
convergence degree is. If p  < 1 , particles tend to 
convergence, otherwise, particles are at the random search 
stage.

III. N o v e l  D y n a m ic  PSO A l g o r it h m  B a s e d  o n  
C h a o t ic  M u t a t io n  (DCPSO)

A. Dynamic Inertia Weight B ased on Convergence Factor
PSO algorithm searches the optimal solution in the 

problem space relying on the mutual cooperation and 
competition between groups. W hen the particles aggregate

around a local extremum, it is difficult to search the other 
region in the problem space, which leads to the so-called 
“premature convergence” phenomenon. Although the LDIW  
strategy has improved the convergence performance o f PSO 
algorithm effectively, the change of w  is only linear 
correlation with the iteration times, it can not adapt the 
complex and nonlinear characteristic o f the operation process 
o f algorithm.

Considering the convergence ratio reflect the speed of 
convergence, in order to make the particle swarm be 
convergent fast and accuracy, we design a random factor in 
this paper. W hile the convergence ratio is less than a certain 
value, the particles converges very fast, algorithm is easy 
getting in local optimum. At this situation, we increase the 
size o f inertia weight, allowing the particles have the 
opportunity to search the other region. Contrarily, if  the 
convergence ratio is greater than a certain value, particles 
converge slowly, even tend to become divergent. A t this 
time, by decreasing inertia weight, the local search ability 
and global search ability o f algorithm can be re-balanced to 
ensure the convergence rate. A t the same time, algorithm 
adopts random factor to adjust the linear inertia weight in 
order to ensure that the particles will not get into local 
optimum. Accordingly, we propose a novel dynamic inertia 
weight. The formula of w  is as follows:

w  — w
w  = randN um [  w max — i t e r —^ ------ — ]. (6)

i te r

randN um  =

r a n d \ - ^ , — 
2 P  P

1
rand  \ 1.0

P

i f  P  > Pm

i f  P < P m

else

. (7)

where P msK and P mm are given values, rand  I —  ,—
1 2P  P

denotes a random number among the area | —__ 1  | . It is
1 2P  P )

clear from the equation (6) ~  (7) when P >  P  , randN um
'  '  m ax

is less than one and w  is decreased, thus the local search

ability o f particles is enhanced. But, when P  < P min , the

convergence rate o f particles is fast, ran d N u m  is a random 
number more than one, w  is increased, particles search area 
is expanded to avoid local optimum. The algorithm 
performance is improved through the adjustment o f 
ran d N u m  .

B. Chaotic M utation Operator
Chaos is the essential characteristic o f the nonlinear 

system with randomness, ergodicity, regularity, as well as a 
series o f special properties1-7-1. By introducing chaotic
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mutation, there is a wider distribution o f particles to help 
particles jum p out the local minimum point and speed up to 
find the global optimum. Chaotic mutation to the particles 
can reduce the evolutionary generations o f algorithm, and 
find the optimal solution as soon as possible. Further more, 
the particles may be better after mutation operation. It can 
avoid local convergence and premature and it can improve 
search accuracy of the algorithm.

One-dimensional Logistic map is adopted as chaos model 
in mutation operator to improve the performance o f the 
algorithm:

n—1

y d ( t  + 1) =  u y d ( t ) (  — y d ( t ) ) 

t  =  1 ,2 ," •  Ya e ( 0 ,1 ) (8)

The chaotic mutation form is designed as follows:

^ d  ' ( t )  =  * d ( t ) + 7 d ( t ) Y d ( t ) .  (9)

where 7 d ( t ) =  7 0 e x p ( —u t ) , 7 0, u  are constants.

C. The Description o f  DCPSO
Step1: Initialize a population of particles with random 

positions and velocities in D  dimensions o f the problem 
space.

Step2: Evaluate the fitness o f each particle in the swarm.
Step3: Compare each particle’s fitness and its personal 

best position p b e s t  . If its fitness is better, replace 

p b e s t  with its fitness.
Step4: Compare each particle’s fitness and the global 

best position g b e s t  . If  its fitness is better, replace 

g b e s t  w ith its fitness.
Step5: Calculate the variance o f the population’s fitness 

and convergence ratio, and then calculate the inertia weight 
according to expression (6).

Step6: Execute chaotic mutation to each particle 
according to expression (9).

Step7: Updating the positions and velocities o f particles 
by using (1) and (2).

Step8: Stop the iteration process if a given stopping 
criterion is met. Otherwise, go to step2.

IV. P e r f o r m a n c e  T e s t

A. Parameter Setting
Four non-linear functions appeared in [8] are selected 

here to test the optimization effect of the given algorithm, 
which are usually used to check the performance of some 
algorithm. The four functions are the Sphere function, 
Rosenbrock function, Rastrigrin function and Griewank 
function described respectively by equation (10) - (13):

f 2 (x) = Z  [100  X (Xi+1 — X  )2 +  ( Xi — 1 )2 ] . (11)
i=1
n

f 3(x) =  Z  ( x f  — 1 0 c o s ( 2 n x i ) + 1 0 ) .  (12)

+ 1 .  (13)

i=1

f 4 (x) =  — 1—  Z  x f  — T T  c o s  
4 0 0 0  j - t  i 4=f

I iL I 
\> T i)

Three types o f algorithms CPSO, LPSO and DCPSO 
have been adopted to get the optimal solution of the above­
mentioned four functions. Experimental parameters are given 
as follows: c 1 = c 2 =2, w max and w min are 0.9 and 0.41 2 max min
respectively, population size n  =50, the functional 
dimensions of all experiments are D  =10, the max iteration 
number is I te rM a x  =100. The error limits of objective 
functions are 1.0e-18. The search spaces of variables are [-4, 
4]. In this paper, the function value is the fitness value. Each 
case o f the processes has been repeated for fifty times.

B. Test Results and Discussion
Use the following appraising indexes to analyze 

experiment result: M ean Best Fitness (MBF) and Standard 
Deviation (SD). MBF indicates the precision that the 
algorithm can get within given iterated times, and it reflects 
the algorithm’s convergence velocity. SD reflects the 
algorithm’s stability and robustness. The experiment result is 
shown at TABLE I .

It is easy to see that both MBF and SD obtained from 
DCPSO is much better than the results which are obtained 
from the common PSO (CPSO) and from linear inertia 
weight PSO (LPSO). MBF indicates that the new  algorithm 
can get better optimum result and have preferable 
convergence precision. SD indicates that the deviation of the 
optimum fitness result o f the new algorithm is comparatively 
less. It indicates the new algorithm have better stability and 
robustness.

Fig.1-4 show the evolutionary curves o f the mean 
function values of the four cases respectively. From the

TABLE I. Mean Best Value and Standard 
Deviation of The Optimal Value for Fifty Trials

f1 (  x )  =  Z - (10)

Function Method MBF SD

Sphere
CPSO 4.748642 5.485242
LPSO 0.789054 0.326184

DCPSO 1.7152e-007 8.1654e-008

Rosenbrock
CPSO 372.7252 1135.844
LPSO 236.0047 425.1348

DCPSO 0.610096 0.156843

Rastrigrin
CPSO 60.93297 40.21548
LPSO 50.05334 28.15627

DCPSO 0.594582 0.292514

Griewank
CPSO 0.300323 0.258467
LPSO 0.162782 0.095215

DCPSO 0.003456 0.000158
i=1
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Fig. 1-4, it is clear that not only the DCPSO has great 
advantage o f convergence precision over CPSO and LPSO, 
but also it can be convergent much faster than CPSO and 
LPSO.

W e can see that in the earlier stage, both CPSO and 
LPSO trend to be convergent. But in the later, CPSO is easy 
to get in local optimal points. LPSO have the trend to be 
convergent, but because o f the inefficient iteration in the 
latter, it can hardly get the global optimum in the given 
iterated times. Because o f the regulation of the convergence 
factor and chaotic mutation, DCPSO can get convergence 
quickly and reach the global optimum through its own 
regulatory mechanism.

V. C o n c l u s io n

A  kind of convergence factor is proposed based on the 
variance o f the population’s fitness in order to adjust the 
local search and global search ability combined with linear 
decreasing inertia weight. The chaotic mutation operator is 
introduced to enhance the performance of the local search 
ability and to improve the search precision of the new 
algorithm. The experimental results show that the DCPSO 
algorithm has higher convergence precision and faster 
convergence rate, and can avoid premature convergence 
effectively, compared with the CPSO and LPSO algorithm.
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