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The uncertainties in reliability evaluation model are fundamentally classified into aleatory and epistemic
types. Aleatory uncertainty arises from the intrinsic randomness associated with a physical system, such
as components stochastic failure and repair process. Epistemic uncertainty, on the other hand, results
from an incomplete or inaccurate scientific understanding of the underlying process, such as component
reliability parameters uncertainty. It’s significant for risk based decision to distinguish the two kinds of
uncertainties and quantify their impacts on reliability analysis. In literatures, most of papers focused on
aleatory uncertainty, and only a few of them discussed the epistemic uncertainty. This paper is aimed to
address uncertainty analysis of reliability indices considering the randomness of reliability parameters.
Two goals are achieved in this paper. Firstly, the reliability indices are approximated through Taylor ser-
ies with high efficiency after component parameters change, and its accuracy is compared with rerunning
reliability evaluation. Secondly, to uncover the uncertainty propagation from input reliability parameters
level to reliability evaluation output level, two methods, i.e. Taylor series Approximation and Monte Carlo
simulation combined with nonparametric probability density estimation are proposed. Results obtained
for the RBTS and IEEE-RTS79 power systems are presented and the validity of the proposed methods is
verified.

� 2014 Elsevier Ltd. All rights reserved.
Introduction

Reliability evaluation of bulk power systems is a powerful tool
to quantify the risk of electric service interruption incurred by
uncontrollable and unpredictable failure events using uncertainty
analysis theory [1–4]. Through the comprehensive quantitative
analysis of the possibility and impact of the random failures, the
probabilistic measures of interruption risk for system or delivery
points can be identified by condensing contingency likelihood
and severity into probabilistic risk indices. The purpose of the
probabilistic risk evaluation for bulk power systems is to quantita-
tively assess the impacts of various kinds of random factors on
power systems performance, and provide valuable reference infor-
mation for risk management, risk control and risk based decision.
Using the probabilistic risk evaluation technology, not only the
coupling relation between the uncertain factors and system perfor-
mance can be uncovered, but also the system bottlenecks and
dominant random factors can be effectively revealed.

The reliability performance of a power system is often affected
by unavoidable uncertainties, and probabilistic uncertainty analy-
sis can quantify the effect of input random variables on the output
results of reliability evaluation model. The uncertainty in reliability
evaluation model is fundamentally classified into aleatory and epi-
stemic types. Quantitative uncertainty analysis has become an
integral and essential part of risk based design and decision mak-
ing, and the clear distinction of these two kinds of uncertainties
is useful for taking the reliability/risk informed decisions with con-
fidence [5–9]. The problem of acknowledging and treating uncer-
tainty is vital for practical usability of reliability analysis results
because the reliability indices mixing both the uncertainties means
that one cannot see how much of the total uncertainty comes from
epistemic and aleatory uncertainties.

Aleatory uncertainty is also termed in the literature as objec-
tive, irreducible, inherent, and stochastic uncertainty. It describes
the inherent randomness (variation) associated with a physical
system or environment, such as failure and repair time of equip-
ments in a power system. This type of uncertainty cannot be
reduced or eliminated because it is an intrinsic nature of the sys-
tem itself. Aleatory uncertainty is dealt with by probability theory.
Given the failure logic of system and probability density functions
of failure and repair time, sequential Monte Carlo simulation can
be used to obtain the probability density of reliability indices
[10,11], while analytical approach and nonsequential Monte Carlo
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simulation can be used to get the point estimation(usually the
expected value) of reliability indices.

However, both Monte Carlo simulation and analytical approach
are built on a number of model parameters that are based on what
is currently known about the physics of the relevant processes and
the behavior of systems. The model parameters, such as failure
rates and repair rates, are not exactly known because of deteriora-
tion or lack of data. This kind of uncertainty associated with state
of knowledge, is referred as epistemic uncertainty. Epistemic
uncertainty derives from some level of ignorance or incomplete
information about a system, and it’s reducible if more information
is collected. Because of this reason, it is also termed as reducible,
subjective, and model form uncertainty.

In the published literatures, aleatory uncertainty have been the
main focus of bulk power systems reliability evaluation, and only
few of them are involved in parameter uncertainty. The equipment
reliability parameters are the input data in system risk evaluation
and can be estimated or measured from historical failure statistics
using parameter estimation technique. The correctness and accu-
racy of the historical data is critical in risk evaluation, as we know
uncertainties or even errors in historical statistics are unavoidable.
An essential task in the parameter estimation is to reduce the
impacts of the uncertainties or errors and enhance the accuracy.
The parameter estimation methods can be divided into point,
interval and distribution estimations among which the distribution
estimation is the most sophisticated and can offer a probability dis-
tribution function (PDF) of a parameter. Using the probability dis-
tribution of input data can greatly enhance the accuracy in system
risk evaluation. It needs more calculation efforts and higher
requirements for assessment techniques when probability distri-
bution of input data are used, however, utilizing the approach pre-
sented in this paper this problem can be effectually solved with
nearly no extra computational effort.

The impact of parameter uncertainty must be addressed if the
analysis is to serve as a tool in the decision making process. To
uncover the impact of parameter uncertainty on reliability evalua-
tion results, two critical questions must be deeply explored.

� How do we characterize the uncertainty of equipment reliabil-
ity parameters?
� How does the uncertainty propagate from parameter level to

model output level?

There are several methods available in the literature to research
parameter uncertainty propagation such as evidence theory [7],
interval arithmetic [8], fuzzy arithmetic [9], classical probability
theory, and so on. They are different from each other, in terms of
characterizing the input parameter uncertainty and also in kind
of propagation from parameter level to model output level.
Because the most widely known and developed methods are avail-
able within the mathematics of probability theory, in this paper
before the uncertainty analysis can be performed a description of
model parameters uncertainty must be available, i.e., failure rate/
repair rate are characterized by a probability distribution and then
how they are propagated to the system level is investigated. So the
above questions are turned into how to get the analytical expres-
sion of the reliability indices with respect to reliability parameters
and how to obtain the PDF of reliability indices when PDFs of reli-
ability parameters are given.

Through sensitivity analysis of reliability indices with respect to
equipment failure and repair rates, the first order Taylor series of
reliability indices at the mean values of component reliability
parameters can be achieved [12,13]. So the reliability indices can
be analytically calculated with high accuracy after reliability
parameters are slightly changed. But the results using first order
Taylor series have larger error if reliability parameters have signif-
icant changes. To improve the accuracy, the second-order partial
differentials of reliability indices with respect to reliability param-
eters and then the second order Taylor series are deduced in this
paper.

After the approximate analytical expressions of reliability indi-
ces are developed, how to obtain the PDFs of reliability indices
assuming the PDFs of reliability parameters are known become a
vital step for parameter uncertainty analysis. Using the second
order Taylor series, the reliability indices can be regarded as ran-
dom sums consisting of both linear and quadratic items of uncer-
tain reliability parameters. To avoid the direct convolution of the
PDFs of the reliability parameters, several methods are presented
in literatures, such as saddlepoint approximation [6], Gram–Char-
lier’s expansion [14], and characteristic function method [15].
However there is a common limitation among these methods that
the constituent items in the random sum must be mutually inde-
pendent random variables, which is true for first order Taylor ser-
ies but invalid for second order Taylor expansion because the linear
item and quadratic item are correlated with each other. Because of
the above reason a new approach termed as nonparametric prob-
ability density estimation has been applied to solve this problem
in this paper.

The aim of this work is to develop an efficient and accurate
method, which is expected to have the approximate accuracy as
Monte Carlo simulation depicted in section IV, but with much
higher efficiency. The proposed method is detailed in the following
section.

This paper is organized as follows. Section II gives the mathe-
matical description of parameter uncertainties for bulk power sys-
tems reliability evaluation model. Section III describes the first and
second order derivatives of reliability indices with respect to com-
ponent reliability parameters. Section IV depicts the fundamental
principle to evaluate probability distribution of reliability indices
through nonparametric probability density estimation technique,
and two methods are presented there, i.e. Taylor series approxima-
tion and Monte Carlo simulation. The study results and the effec-
tiveness of the proposed approach are illustrated in Section V.
The conclusion drawn from the analysis is provided in Section VI.
Details are provided in Appendix.

Mathematical description of epistemic uncertainty

The reliability index Y can be expressed with the joint function
of aleatory and epistemic uncertainties.

Y ¼ RðU;VÞ; ð1Þ

where
U
 set of all epistemic uncertainties (uncertain reliability
parameters known as failure rate kand repair rate l),
V
 set of all aleatory uncertainties (stochastic variables
associated with component failure or repair, i.e. the time
to failure and the time to repair),
R
 computational model for reliability evaluation considered
as a deterministic function of both uncertainties
mentioned above,
Y
 reliability index.
R represents the computational model which describes the

functional relationship between reliability index Y and both uncer-
tainties for bulk power reliability evaluation, and it’s a black-box
and computationally expensive because it’s too complicated for
us to derive its explicit functional form. From (1), we can see that
reliability index Y is actually a random variable affected by both
aleatory and epistemic uncertainties. When holding the epistemic
variables U fixed at a value u, i.e. U = u, the resulting output Y is a
function of the aleatory uncertainties V solely.
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In the available literature, most of them carry out researches
under the assumption that U are constants (usually the mean val-
ues lU of the component reliability parameters), and then YjU = lU

is evaluated and analyzed. YjU = lU is still a random variable, and
its conditional probability distribution,which quantifies the corre-
sponding aleatory uncertainty in Y, can be attained through
sequential Monte Carlo simulation and its conditional expected
value E(YjU = lU) can be estimated by either Monte-Carlo simula-
tion or analytical approach. However, up to now few of papers have
been presented to investigate the impact of parameter uncertain-
ties U on reliability index Y. As we know, when the epistemic vari-
ables U are fixed at a specified value u, the expected value
E(YjU = u) is a constant value uniquely determined by u. When
each uncertain reliability parameter Ui is viewed as a random var-
iable with known probability density distribution that can be esti-
mated or measured from the historical record, statistical analysis,
or engineering judgment, obviously uncertainty of reliability
parameters U cause stochastic variation in the E(YjU = u). Because
U is a stochastic vector representing parameter uncertainties, the
expression E(YjU) which denotes the conditional expectation as
function of the epistemic uncertainties U should also be seen as a
random quantity.

EðY Uj Þ ¼ gðUÞ: ð2Þ

Therefore, the principal aim of parameter uncertainty analysis
is to determine the subjective probability distribution of the condi-
tional expectation E(YjU), which provides visual specification of
quantitative uncertainty analysis. In traditional bulk power system
reliability evaluation, E(YjU) denotes the conventional reliability
indices as follows, which are expected indices essentially.

LOLP ¼
X
x2X

If ðxÞPðxÞ; ð3Þ

LOLF ¼
X
x2X

ðIf ðxÞ
Xm

k¼1

kin
x ðkÞÞPðxÞ; ð4Þ

EENS ¼ 8760
X
x2X

If ðxÞLCðxÞPðxÞ: ð5Þ

LOLP, LOLF and EENS are loss of load probability, loss of load fre-
quency and expected energy not supplied respectively. X is system
state space. A system state can be represented by a vector x = {S1,
S2, . . ., Sm}, where Sk is the state of the kth component and m is
the number of components. For notational simplicity we assume
that the system components only have two states and Sk = 0 indi-
cates the kth component is in down state, otherwise Sk = 1 shows
the kth component is in up state. The indicator function If(x) is used
to identify the failed system state. If system is in failure state
If(x) = 1, if not, If(x) = 0. Lc(x) is load shedding amount under failure
state x. kin

x ðkÞ is the incremental transition rate of component k [12].

kin
x ðkÞ ¼ ð1� SkÞlk � Skkk; ð6Þ

where lk and kk are repair rate and failure rate of component k.
P(x) is the probability of system state x. If component failures

are independent random variables, P(x) is given by the product
of the probabilities of each component as follows.

P xð Þ ¼
Ym
k¼1

PðSkÞ ¼
Ym
k¼1

Sklk

kk þ lk
þ ð1� SkÞkk

kk þ lk

� �
: ð7Þ

From (3)–(5) we can see that LOLP, LOLF and EENS are nonlinear
functions of component reliability parameters. As this is a typically
combinatorial problem, reliability evaluation of bulk power system
is computationally extensive and time consuming. Because of the
computational burden it’s very difficult to research the impact of
parameter variations on reliability indices.
The simplest evaluation of the epistemic distribution of
E(YjU = u) is through Monte Carlo simulation (MCS). This method
requires that the each of the reliability parameters involved to be
assigned a probability distribution that characterizes the possible
variation. The random values from these distributions are sampled
and arrive at an estimate of the uncertainty of reliability indices. A
large computation effort is required for the MCS method. One real-
istic solution of this problem is to perform sensitivity analysis of
reliability indices with respect to reliability parameters [12,13].
Through sensitivity analysis, (3)–(5) can be expressed as first order
Taylor series expansions, and reliability indices can be directly cal-
culated with high accuracy after reliability parameters have minor
changes. However, for a system with poor reliability (3)–(5) are
sometimes highly nonlinear, the approximate treatment using first
order Taylor series may induce unacceptable error. For this reason,
in order to efficiently and accurately estimate the uncertainty
involved in the reliability indices computation, this paper explored
the second order Taylor series at the mean values of random reli-
ability parameters, which is more preferable option than the above
one, and the general expression of the reliability indices E(YjU) in
(2) is as follows.

EðY Uj Þ ¼ gðUÞ

� gðlUÞ þ
XN

i¼1

@g
@Ui

����
lU

Ui � lUi

� �

þ 1
2!

XN

i¼1

XN

j¼1

@2g
@Ui@Uj

�����
lU

Ui � lUi

� �
Uj � lUj

� �
; ð8Þ

where l ¼ ½lU1
;lU2

; . . . ;lUN
�T is the vector of mean values of

U = [U1, U2, . . ., UN]T, g(lU) is conditional mean of reliability indices,
which can be calculated from (3)–(5) either by MCS or enumeration
method with reliability parameters U fixed at its mean values
lU. Based on (8), the mean value of reliability indices can be
calculated by

EðEðY Uj ÞÞ ¼ EðgðUÞÞ � gðlUÞ þ
1
2

XN

i¼1

r2
Ui
� @

2g

@U2
i

�����
lUi

: ð9Þ

From (9), it can be seen clearly that the mean value E(g(U)) for
reliability indices g(U) is larger than the conditional expectation
g(lU) when uncertainty of reliability parameter is involved.

It should be noted that the second-order partial derivatives of
reliability indices with respect to reliability parameters must be
calculated before we can use (8). The next section gives the deriva-
tion of the first and second-order partial derivatives.

First and second order partial derivatives of reliability indices

Partial derivatives of LOLP

Based on the idea of conditional probability, LOLP can be repre-
sented by the following formula and the details are listed in the
Appendix.

LOLP ¼ li

ki þ li
ðKð1Þi � Kð2Þi Þ þ Kð2Þi ; ð10Þ

Kð1Þi ¼
X

x2X;Si¼1

If ðxÞ
Ym

k¼1;k–i

PðSkÞ; ð11Þ

Kð2Þi ¼
X

x2X;Si¼0

If ðxÞ
Ym

k¼1;k–i

PðSkÞ; ð12Þ

where Kð1Þi is the LOLP under the condition that component i is
always in up state. Similarly, Kð2Þi is conditional LOLP when it is
given that component i is in down state forever. For a specified
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power system, Kð1Þi and Kð2Þi are constants between 0 and 1 and can
be evaluated simultaneously with the reliability indices in the reli-
ability assessment process, so (10) can be referred to as the analyt-
ical expression of LOLP, which has only two variables li and ki.
Because component i is always in failure state for Kð2Þi , it can be con-
cluded that Kð2Þi � Kð1Þi P0. Utilizing (10), the following first-order
and second-order partial differentials can be easily deduced.

@LOLP
@ki

¼
ai Kð2Þi � Kð1Þi

� �
ki þ li

; ð13Þ

@LOLP
@li

¼
ui Kð1Þi � Kð2Þi

� �
ki þ li

; ð14Þ

@2LOLP
@k2

i

¼ 2ai

ðki þ liÞ
2 Kð1Þi � Kð2Þi

� �
; ð15Þ

@2LOLP
@l2

i

¼ 2ui

ðki þ liÞ
2 Kð2Þi � Kð1Þi

� �
; ð16Þ

@2LOLP
@ki@li

¼ ki � li

ðki þ liÞ
3 Kð2Þi � Kð1Þi

� �
; ð17Þ

@2LOLP
@ki@kj

¼ ai

ki þ li

@Kð2Þi

@kj
� @Kð1Þi

@kj

 !
¼ aj

kj þ lj

@Kð2Þj

@ki
�
@Kð1Þj

@ki

 !
; ð18Þ

@2LOLP
@ki@lj

¼ ai

ki þ li

@Kð2Þi

@lj
� @Kð1Þi

@lj

 !
¼ uj

kj þ lj

@Kð1Þj

@ki
�
@Kð2Þj

@ki

 !
; ð19Þ

@2LOLP
@li@lj

¼ ui

ki þ li

@Kð1Þi

@lj
� @Kð2Þi

@lj

 !
¼ uj

kj þ lj

@Kð1Þj

@li
�
@Kð2Þj

@li

 !
; ð20Þ

where ai, ui are availability and unavailability of component i
respectively.

Partial derivatives of LOLF

Based on the same principle, the analytical expressions and par-
tial differentials of LOLF with respect to reliability parameters can
be deduced like LOLP.

LOLF ¼ kiliðK
ð2Þ
i � Kð1Þi Þ

ki þ li
þ liðK

ð3Þ
i � Kð4Þi Þ

ki þ li
þ Kð4Þi ; ð21Þ

Kð3Þi ¼
X

x2X;Si¼1

If ðxÞ
Xm

j¼1;j–i

kin
x ðjÞ

 ! Ym
k¼1;k–i

PðSkÞ; ð22Þ

Kð4Þi ¼
X

x2X;Si¼0

If ðxÞ
Xm

j¼1;j–i

kin
x ðjÞ

 ! Ym
k¼1;k–i

PðSkÞ; ð23Þ

where Kð3Þi and Kð4Þi are conditional LOLF under the assumption that
component i is always in success state and failure state respectively.
The following partial differentials can be derived from (21).

@LOLF
@ki

¼ a2
i ðK

ð2Þ
i � Kð1Þi Þ �

aiðKð3Þi � Kð4Þi Þ
ki þ li

; ð24Þ

@LOLF
@li

¼ u2
i ðK

ð2Þ
i � Kð1Þi Þ þ

uiðKð3Þi � Kð4Þi Þ
ki þ li

; ð25Þ

@2LOLF
@k2

i

¼ �2a2
i ðK

ð2Þ
i � Kð1Þi Þ

ki þ li
� 2aiðKð4Þi � Kð3Þi Þ

ðki þ liÞ
2 ; ð26Þ

@2LOLF
@l2

i

¼ �2u2
i ðK

ð2Þ
i � Kð1Þi Þ

ki þ li
þ 2uiðKð4Þi � Kð3Þi Þ

ðki þ liÞ
2 ; ð27Þ

@2LOLF
@ki@li

¼ 2aiuiðKð2Þi � Kð1Þi Þ
ki þ li

� ðki � liÞðK
ð3Þ
i � Kð4Þi Þ

ðki þ liÞ
3 ; ð28Þ
@2LOLF
@ki@kj

¼ a2
i

@Kð2Þi

@kj
� @Kð1Þi

@kj

 !
� ai

ki þ li

@Kð3Þi

@kj
� @Kð4Þi

@kj

 !

¼ a2
j

@Kð2Þj

@ki
�
@Kð1Þj

@ki

 !
� aj

kj þ lj

@Kð3Þj

@ki
�
@Kð4Þj

@ki

 !
; ð29Þ
@2LOLF
@ki@lj

¼ a2
i

@Kð2Þi

@lj
� @Kð1Þi

@lj

 !
� ai

ki þ li

@Kð3Þi

@lj
� @Kð4Þi

@lj

 !

¼ u2
j

@Kð2Þj

@ki
�
@Kð1Þj

@ki

 !
þ uj

kj þ lj

@Kð3Þj

@ki
�
@Kð4Þj

@ki

 !
; ð30Þ
@2LOLF
@li@lj

¼ u2
i

@Kð2Þi

@lj
� @Kð1Þi

@lj

 !
þ ui

ki þ li

@Kð3Þi

@lj
� @Kð4Þi

@lj

 !

¼ u2
j

@Kð2Þj

@li
�
@Kð1Þj

@li

 !
þ uj

kj þ lj

@Kð3Þj

@li
�
@Kð4Þj

@li

 !
: ð31Þ
Partial derivatives of EENS

EENS ¼ li

ki þ li
ðEð1Þi � Eð2Þi Þ þ Eð2Þi ; ð32Þ

Eð1Þi ¼ 8760
X

x2X;Si¼1

If ðxÞLCðxÞ
Ym

k¼1;k–i

PðSkÞ; ð33Þ

Eð2Þi ¼ 8760
X

x2X;Si¼0

If ðxÞLCðxÞ
Ym

k¼1;k–i

PðSkÞ; ð34Þ

where Eð1Þi and Eð2Þi are conditional EENS under the assumption that
component i is always in success state and failure state respectively.
Through (32) the following partial differentials can be obtained.

@EENS
@ki

¼ aiðEð2Þi � Eð1Þi Þ
ki þ li

; ð35Þ

@EENS
@li

¼ uiðEð1Þi � Eð2Þi Þ
ki þ li

; ð36Þ

@2EENS
@k2

i

¼ 2ai

ðki þ liÞ
2 ðE

ð1Þ
i � Eð2Þi Þ; ð37Þ

@2EENS
@l2

i

¼ 2ui

ðki þ liÞ
2 ðE

ð2Þ
i � Eð1Þi Þ; ð38Þ

@2EENS
@ki@li

¼ ki � li

ðki þ liÞ
3 ðE

ð2Þ
i � Eð1Þi Þ; ð39Þ

@2EENS
@ki@kj

¼ ai

ki þ li

@Eð2Þi

@kj
� @Eð1Þi

@kj

 !
¼ aj

kj þ lj

@Eð2Þj

@ki
�
@Eð1Þj

@ki

 !
; ð40Þ

@2EENS
@ki@lj

¼ ai

ki þ li

@Eð2Þi

@lj
� @Eð1Þi

@lj

 !
¼ uj

kj þ lj

@Eð1Þj

@ki
�
@Eð2Þj

@ki

 !
; ð41Þ

@2EENS
@li@lj

¼ ui

ki þ li

@Eð1Þi

@lj
� @Eð2Þi

@lj

 !
¼ uj

kj þ lj

@Eð1Þj

@li
�
@Eð2Þj

@li

 !
: ð42Þ

It should be emphasized here that in the above equations the
partial differentials of Kð1Þi � Kð4Þi and Eð1Þi � Eð2Þi with respect to kj

and lj are similar to the traditional reliability indices and all of
them can be calculated in the reliability evaluation process. In
other words, Kð1Þi � Kð4Þi , Eð1Þi � Eð2Þi and their partial differentials
can be treated as a new kinds of reliability indices. The analytical
expressions of the partial differentials for Kð1Þi � Kð4Þi and
Eð1Þi � Eð2Þi are listed in the Appendix.
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Evaluating uncertainty of reliability indices

Taylor series approximation

Using the partial differentials deduced in the previous section
and (8), the first-order and second-order Taylor expansions of reli-
ability indices (3)–(5) can be got, and then the approximate results
of reliability indices can be also directly obtained when multi-com-
ponent parameters have changed. Now another question arises,
given the PDFs of reliability parameters, how can we evaluate
the PDFs of the reliability indices? When first-order Taylor expan-
sion is employed, the reliability indices can be treated as a linear
combination of uncertain parameters U. With the assumption that
the random deviations of reliability parameters are small enough
so that reliability indices obtained by first-order Taylor approxima-
tion are accurate adequately, based on the additivity of normal dis-
tribution we can conclude that the reliability indices also follow
normal distribution with mean value E(g(U))=E(E(YjU))=g(lU) and
variance V(g(U)) when reliability parameters follow normal distri-
bution and are mutually independent. This idea has been adopted
in the mean value first order Second Moment (MVFOSM) approach
[6] for probabilistic uncertainty analysis.

VðgðUÞÞ ¼ VðEðYjUÞÞ �
XN

i¼1

@g
@Ui

����
Ui

 !2

r2
Ui
: ð43Þ

However, reliability parameters may follow different probabil-
ity distributions, and above all reliability parameters may vary lar-
gely so that the linear approximation of reliability indices may be
inaccurate, thus MVFOSM may lead to poor accuracy in spite of its
high efficiency. Except MVFOSM, first order reliability method
(FORM) and first order Saddlepoint Approximation (FOSA) [6] also
use the first order Taylor series approximation to be the perfor-
mance function g(U). Such approximation may not accurately cap-
ture the nonlinearity of g(U), and thus may not be suitable for the
situations where highly nonlinear performance functions are
involved.

In the available literatures, in order to avoid the direct convolu-
tion some useful approaches have been presented to compute
approximate PDF for random function g(U), such as saddlepoint
approximation [6], Gram–Charlier series [14], and characteristic
functions-based approach [15]. However, all these methods are
only suitable for first-order Taylor series of g(U), in which each
item in the random sum must be independent of each other. As
for the second-order Taylor series, the linear items and quadratic
items are correlated with each other, so the above methods are
invalid for it. Although Karl Pearson’s system of frequency curves
can be used to compute approximate percentage points of intracta-
ble or empirical distributions based on the knowledge of its first
four moments [16,17], the determination of the most suitable Pear-
son distribution is troublesome. Moreover, the accuracy is limited
because moments higher than four are ignored in Pearson curves.

The most attractive method used in statistical literature for
modeling probability density distribution from sample points is
the nonparametric probability density estimation [18–20].

Let X1, X2, . . ., Xn denote a sample of size n of a reliability index
which is a random variable with density f(x). The probability den-
sity estimation of f(x) at the point x is given by

f̂ hðxÞ ¼
1

nh

Xn

i¼1

K
x� Xi

h

� �
; ð44Þ

where the smoothing parameter h is known as the bandwidth and
in practice the kernel function K() is generally chosen to be a uni-
modal probability density function symmetric about zero. The ker-
nel K satisfies the conditions.
Z 1

�1
KðxÞdx ¼ 1; ð45ÞZ 1

�1
xKðxÞdx ¼ 0; ð46ÞZ 1

�1
x2KðxÞdx ¼ l2ðKÞ > 0: ð47Þ

It’s well known that the performance of kernel density estima-
tion depends crucially on the value of bandwidth h instead of the
kernel function K, so Gaussian kernel (standard normal distribu-
tion) is usually a popular option in practice. f̂ h will inherit all the
continuity and differentiability properties of the kernel K, so that
if K is the normal density function, then f̂ h will be a smooth curve
having derivatives of all orders.

The statistical properties of kernel density estimator are shown
as follows.

Biasðf̂ hðxÞÞ ¼ Eðf̂ hðxÞÞ � f ðxÞ ¼ h2

2

 !
l2ðKÞf

00ðxÞ þ oðh2Þ; ð48Þ

Varðf̂ hðxÞÞ ¼ Eðf̂ hðxÞ2Þ � ðEðf̂ hðxÞÞÞ
2
¼ f ðxÞRðKÞ

nh
þ o

1
nh

� �
; ð49Þ

MISEðf̂ hÞ ¼ E
Z 1

�1
ðf̂ hðxÞ � f ðxÞÞ

2
dx

� �

¼
Z 1

�1
Biasðf̂ hðxÞÞ

2
dxþ

Z 1

�1
Varðf̂ hðxÞÞdx

¼ h4

4
l2ðKÞ

2Rðf 00Þ þ 1
nh

RðKÞ þ o
1

nh

� �
þ oðh4Þ; ð50Þ

AMISEðf̂ hÞ ¼
h4

4
l2ðKÞ

2Rðf 00Þ þ 1
nh

RðKÞ; ð51Þ

where

RðKÞ ¼
Z 1

�1
K2ðxÞdx; ð52Þ

Rðf 00Þ ¼
Z 1

�1
ðf 00ðxÞÞ2dx: ð53Þ

From (48)–(50), it can be seen that we face the familiar trade-off
between variance and bias because the bias and variance of the
kernel density estimator cannot be reduced simultaneously. We
would surely like to keep both variance and bias small but increas-
ing h will lower the variance while it will raise the bias (decreasing
h will do the opposite). Minimizing the MISE (mean Integrated
Squared Error) which is the integration of the sum of variance
and squared bias, represents a compromise between variance
and bias. Ignoring higher order terms of MISE, an approximate for-
mula for the MISE, called AMISE (asymptotic mean Integrated
Squared Error), can be given as (51). The bandwidth that minimizes
the AMISE is given by.

hAMISE ¼
RðKÞ

l2ðKÞ
2Rðf 00Þ

" #1=5

n�1=5: ð54Þ

Eq. (54) gives the optimal bandwidth minimizing AMISE, but it’s
still difficult to directly use it because Rðf 00Þ is an unknown part as
the unknown f(x).

In order to get the optimal bandwidth h, some methods are pre-
sented such as Cross-Validation, Silverman’s Rules of Thumb (ROT),
and Plug-in methods (PM). Because the ROT method is relatively
easy and widely used, it’s adopted in this paper.

Let IQR and r denote the interquartile range and standard devi-
ation of reliability indices, respectively. Take the kernel function
K() to be the usual Gaussian kernel and assume that the underlying
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distribution f is normal, Silverman [20] showed that (54) can be
reduced to

hAMISE ¼ 1:06rn�1=5 ð55Þ

or

hAMISE ¼ 1:06ðIQR=1:34Þn�1=5 ¼ 0:79IQRn�1=5: ð56Þ

Furthermore, Silverman recommended reducing the factor 1.06
to 0.9 so as not to miss bimodality and using the smaller h esti-
mated by (55) and (55). This rule is commonly used in practice
and is often referred to as Silverman’s reference bandwidth or Silv-
erman’s rule of thumb. It’s given by

hROT ¼ 0:9An�1=5; ð57Þ

where A = min{sample standard deviation, (sample interquar- tile
range)/1.34}.

In order to evaluate the PDFs of the reliability indices under the
assumption the PDFs of reliability parameters are given, we pro-
pose the following solution steps.

Step (1) Use the mean failure rate k and mean time to repair r
(reciprocal of the mean repair rate, that is 1/l) of system
components as input parameters, and then perform bulk
power systems reliability evaluation. The expected
value of reliability index and its first-order and sec-
ond-order partial differentials with respect to failure
rates and repair rates can be got using Eq. (10)–(42).

Step (2) Treat the failure rate and time to repair of system com-
ponents as random variables, and draw random num-
bers from the given PDFs for these reliability
parameters. In these random numbers convert the times
to repair into repair rates through their reciprocal rela-
tion, and then the random sample Ui = [U1, U2, . . ., UN]
for reliability parameters can be determined.

Step (3) Use Eq. (8) and random sample Ui, the reliability index
Xi = E(YjUi) = g(Ui) can be approximately computed.

Step (4) Repeat Step (2) and Step (3) for n times, and the random
sample of size n of reliability index, i.e. X1, X2, . . ., Xn, are
obtained. Then calculate the IQR and r through random
sample X1, X2, . . ., Xn.

Step (5) Use Eq. (57) to obtain the optimal bandwidth hROT for
kernel density estimation of reliability index

Step (6) Conduct the kernel density estimation using equation
(44), and then the PDF for reliability index E(YjU) can
be achieved.

Step (7) As is well known, the expected value E(E(YjU)) and var-
iance V(E(YjU)) or standard variance Std(E(YjU)) can be
directly available from the above PDF.

Monte Carlo simulation

The natural straightforward approach is to repeat reliability
evaluation many times, each time with randomly selected values
from the subjective probability distributions of the reliability
parameters. The results are then summarized in form of probability
distribution functions representing the effect of parameter uncer-
tainties on outcomes of reliability evaluation model.

Given the PDFs for various uncertain reliability parameters, to
discover the law of propagation of parameter uncertainty through
the reliability evaluation model, a two-phase simulation approach
is proposed here. Although this method will suffer from huge com-
putational burden unavoidably and will not be a practicable option
in practical engineering application, it can be served as a bench-
mark case to verify the validity and accuracy of Taylor series
approximation method. The algorithm procedure is depicted as fol-
lows, which are somewhat different from the above described
solution steps for Taylor series approximation approach.

Step (1) Characterize the uncertainty of reliability parameters by
an appropriate probability distribution, which can be
lognormal distribution, normal distribution, triangular
distribution or empirical distribution from engineering
experts.

Step (2) Draw samples from the PDFs for reliability parameters
of system components by any sampling approach, like
crude or Latin-hypercude sampling approach, and the
random sample Ui = [U1, U2, . . ., UN] of reliability param-
eters can be obtained. This action takes place in the first
stage of the two-phase algorithm, which provides input
data for the later reliability evaluation.

Step (3) Treat the epistemic parameters as constants inside the
second stage, i.e., the sampled values from step 2 are
passed on to the second stage. In this stage the bulk
power systems reliability evaluation will be rerun to
quantify the effect of aleatory uncertainties using the
sampled reliability parameters as their distributional
parameters, then the reliability index Xi can be obtained
accurately.

Step (4) Repeat Step (2) and Step (3) for n times until the coeffi-
cient of variation (CV) from sample data of reliability
index X1, X2, . . ., Xn is smaller than the predefined
threshold value or until n is larger than a reasonably
large value, thus the random sample of size n for reli-
ability index are obtained.

Step (5) Use Eq. (57) to obtain the optimal bandwidth hROT for
kernel density estimation of reliability index.

Step (6) Conduct the kernel density estimation using equation
(44), and then the PDF for reliability index E(YjU) can
be achieved.

Step (7) Get the expected value E(E(YjU)),variance V(E(YjU)) and
standard variance Std(E(YjU)) using the PDF obtained
in Step 6.

However, this two-phase simulation approach needs to run reli-
ability evaluation for a number of times, so it’s complex and expen-
sive to run even for a small power system, and the computational
effort makes it impractical, but it can provide reference results
(benchmark) for comparison with Taylor series approximation pro-
posed in this paper.
Study results

In order to verify the performance of the proposed method, reli-
ability evaluation is conducted using the RBTS test system [21]
under the peak load condition. State enumeration method is used,
and line outages, generating unit outages, and combined generat-
ing unit and line outages have been considered up to 4th, 6th
and 5th levels respectively. Firstly the variation tendency of reli-
ability indices is observed below when failure rate k and mean
time to repair MTTR (inverse of repair rate l) of all the system
components simultaneously change into k times of their original
values, where k is between 0.75 and 1.25. The annualized reliabil-
ity indices after parameters changed are obtained by three ways:
first-order Taylor series approximation(Linear Approximation),
second-order Taylor series approximation (Quadratic Approxima-
tion) and rerunning reliability evaluation with the modified
parameters(Actual Value). Results are shown Fig. 1–3.

Using the actual value as a basis of comparison, it can be seen
from the results that the second-order Taylor series approximation
is more accurate than the first-order Taylor series approximation,



Fig. 2. EENS index of RBTS after k and MTTR of all components changed into k times
of their original values.

Fig. 3. LOLF index of RBTS after k and MTTR of all components changed into k times
of their original values.
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especially for LOLF index. As Fig. 3 shows, the result of second-
order Taylor series approximation is almost identical to the actual
value while the result of first-order Taylor series approximation
has relatively large errors. The reason lies in that the second-order
Taylor series approximation is practically a quadratic approxima-
tion of the nonlinear function E(YjU), while the first-order Taylor
series approximation is a linear approximation which results in a
line tangential at the point lU to render the actual relationship
between reliability indices E(YjU) and reliability parameters U. In
other words, the linear approximation is local. The error which
comes from linearization of the nonlinear function E(YjU) becomes
particularly noticeable when reliability parameters have large vari-
ations. For example, let k and MTTR of all components be 0.75
times of their original values, the LOLP and EENS indices calculated
by first-order Taylor series approximation become negative unex-
pectedly. It can be seen from this unacceptable error that first-
order Taylor series approximation is only suitable for the circum-
stance that reliability parameters have minor variations. In this
special case example, results from second-order Taylor series
approximation may also encounter somewhat errors because of
the extreme assumption of synchronous changes for all compo-
nents reliability parameters. In reality, the reliability parameters
are mutually independent random variables and the perfect corre-
lation for them does not exist, considering this point the second-
order Taylor series approximation can provide closer outcome to
rerunning reliability evaluation than what Fig. 1–3 shows.

It’s somewhat complicated to deduce the second-order partial
differentials of reliability indices with respect to reliability
parameters, in addition the linear items and the quadratic items
are correlated to each other in the second-order Taylor series, so
the first-order Taylor series is almost the primary option to address
the parameter uncertainty analysis. Because of the larger error
associated with the linearization and the second-order partial
differentials of reliability indices have already been successfully
derived in Section III, it’s more suitable and practicable to use the
second-order Taylor series to identify the impact of uncertain
reliability parameter U on reliability indices E(YjU).

To perform a quantitative uncertainty analysis, probability dis-
tributions must be assigned to each of the uncertain parameters.
The distributions may result directly from data obtained from a
proper experimental design, but usually subjective judgment must
be used to reflect the degree of belief that the unknown value for a
parameter lies within a specified range. Where data are limited but
uncertainty is relatively low, a range may be used to specify a uni-
form distribution. If there is knowledge about a most likely value
or midpoint, in addition to a range, a triangular distribution may
Fig. 1. LOLP index of RBTS after k and MTTR of all components changed into k times
of their original values.
be assigned. When the range of uncertainty is very large, a log-uni-
form or log-triangular distribution may be more appropriate than
the uniform or triangular distribution.

To investigate the validity of the proposed method, parameter
uncertainty analysis is implemented assuming uniform distribu-
tion (a, b), triangular distribution (a, c, b) and normal distribution
(l, r) for components reliability parameters. The lower bound a
and upper bound b for both of the uniform and triangular distribu-
tions are 0.5 and 1.5 times of the original reliability parameter val-
ues while the mode c for triangular distribution is 1.0 times of the
original value. For the normal distribution its mean value l and
standard variance r are 1.0 and 0.2 times of the original value. In
fact the proposed approach in this paper can accommodate any
desired PDFs, and the normal, uniform and triangular distribution
used here are only for case study. In realistic engineering applica-
tion, the type of PDF for reliability parameters can be determined
by historical data and expert judgment. When there is doubt about
the effect of different distributions, then different distributions
should be assumed and the effect analyzed.

In order to demonstrate the accuracy and efficiency of the pro-
posed method, the comparisons between the Monte Carlo simula-
tion and the Taylor series approximation are carried out with
sample size n = 2000. The expected value and standard variance



Table I
Expected value and standard deviation for LOLP indices of RBTS system under
triangular distribution.

Method Reliability
index

E(E(YjU)) Std(E(YjU))

Linear approximation LOLP 0.0089 0.0020
Quadratic approximation 0.0099 0.0017
Monte Carlo simulation

(CV = 0.43%)
0.0098 0.0019

Linear approximation EENS (MWh/
yr)

960.7 242.6

Quadratic approximation 1070.2 201.6
Monte Carlo simulation

(CV = 0.61%)
1051.2 228.7

Linear approximation LOLF (occ./yr) 4.0381 0.5396
Quadratic approximation 4.1846 0.5125
Monte Carlo simulation

(CV = 0.43%)
4.1537 0.5292

Table II
Expected value and standard deviation for reliability indices of RBTS system under
uniform distribution.

Method Reliability
index

E(E(YjU)) Std(E(YjU))

Linear approximation LOLP 0.0080 0.0029
Quadratic approximation 0.0101 0.0022
Monte Carlo simulation

(CV = 0.61%)
0.0096 0.0026

Linear approximation EENS (MWh/
yr)

861.2 357.8

Quadratic approximation 1090.6 264.7
Monte Carlo simulation

(CV = 0.69%)
1043.1 319.9

Linear approximation LOLF (occ./yr) 3.8994 0.7713
Quadratic approximation 4.2033 0.7120
Monte Carlo simulation

(CV = 0.41%)
4.1457 0.7546

Table III
Expected value and standard deviation for reliability indices of RBTS system under
normal distribution.

Method Reliability
index

E(E(YjU)) Std(E(YjU))

Linear approximation LOLP 0.0090 0.0021
Quadratic approximation 0.0098 0.0039
Monte Carlo simulation

(CV = 0.43%)
0.0096 0.0018

Linear approximation EENS (MWh/
yr)

965.9 257.5

Quadratic approximation 1074.7 487.5
Monte Carlo simulation

(CV = 0.48%)
1052.6 229.0

Linear approximation LOLF (occ./yr) 4.0458 0.5494
Quadratic approximation 4.2070 0.7204
Monte Carlo simulation

(CV = 0.28%)
4.1720 0.5175

Fig. 4. Probability distributions of EENS and LOLF index in the case of triangular
distribution of k and MTTR for RBTS.

Fig. 5. Probability distributions of EENS and LOLF index in the case of uniform
distribution of k and MTTR for RBTS.
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of LOLP, EENS, and LOLF index for RBTS system under different dis-
tributions are listed in Table I, II and III. It can be seen from these
tables the coefficient of variation (CV) are adequately smaller than
1% so that we can assume Monte Carlo simulation (MCS) with 2000
trials could catch the stochastic feature of the problem studied and
provide ‘‘true’’ results.

Using the results obtained from MCS approach with 2000 trials
as the basis, it is shown in Table I, II and III that second-order
Taylor series approximation (Quadratic Approximation) has appar-
ently smaller errors than first-order Taylor series approximation
(Linear Approximation) in estimating expected value E(E(YjU))
and standard variance std(E(YjU)) of reliability indices when con-
sidering parameter uncertainty. Besides E(E(YjU)) and std(E(YjU)),
the probability density distribution for E(YjU) can also be obtained
which are shown in Fig. 4–6.

From Fig. 4–6, it can be seen whatever distribution the reliabil-
ity parameters follow, the PDF curves obtained from Linear
Approximation method always lean to the left side when compar-
ing with Quadratic Approximation and MCS methods. This is espe-
cially obvious for uniform and normal distributions because the
distribution range of EENS index has extended wrongly to the neg-
ative domain. However when comparing results obtained from
Quadratic Approximation against those obtained from MCS, it
shows that PDF curves resulted from these two methods almost
have the identical distribution range and feature point such as
the central point. As Fig. 1–3 show, when there are larger varia-



Fig. 6. Probability distributions of EENS and LOLF index in the case of normal
distribution of k and MTTR for RBTS.

Fig. 7. Probability distributions of EENS and LOLF index in the case of modified
triangular distribution of k and MTTR for RBTS.

Fig. 8. Probability distributions of EENS and LOLF index in the case of triangular
distribution of k and MTTR for IEEE-RTS79.

Fig. 9. Probability distributions of EENS and LOLF index in the case of uniform
distribution of k and MTTR for IEEE-RTS79.
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tions in reliability parameters, reliability indices gained from Lin-
ear Approximation are smaller than actual values, especially when
a larger decrease of reliability parameters is encountered the Lin-
ear Approximation results become negative unexpectedly. Because
the distribution ranges for reliability parameters are actually
somewhat wide in this case study, these reliability parameters
are susceptible to large stochastic variation, and this is the true
reason why PDF curves obtained from Linear Approximation lean
to the left side or even lay on the negative side of the axis.

It can be extrapolated from the above that if these reliability
parameters have only small random perturbations around their
mean values, the PDF curves produced by Linear Approximation,
Quadratic Approximation and Monte Carlo simulation will almost
coincide with each other. Given the lower bound a and upper
bound b for triangular distribution (a, c, b) are 0.8 and 1.2 times
of its nominal values, the PDF curves are reported in Fig. 7, and it
validates this conclusion well.

To further clarify the difference between Linear and Quadratic
Approximation, reliability evaluation is also performed using the
IEEE-RTS79 test system [22]. Assuming the lower bound a and
upper bound b for triangular and uniform distributions are 0.5
and 1.5 times of the original reliability parameter values, the annu-
alized reliability indices are visualized in Fig. 8 and 9. It can be seen
again that the PDF curves produced by Linear Approximation tilt to
the right side because Linear Approximation always underesti-
mates reliability indices when reliability parameters vary.

Conclusion

To obtain adequate information about the adequacy and reli-
ability of a bulk power system, reliability parameters uncertainties
have to be considered in the reliability evaluation. To take uncer-
tainty of components work duration and outage duration into
account in the reliability evaluation procedure, this paper proposes
the Taylor series approximation approach combined with nonpara-
metric probability density estimation technique. Test results have
indicated that if the uncertain parameters considered can be mea-
sured or estimated, the distributions of reliability indices can be
accurately and efficiently evaluated with the proposed quadratic
approximation method.
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The proposed method is tested and verified by comparison with
results from the Monte Carlo simulation on RBTS. Using the results
obtained from Monte Carlo simulation as a reference basis, the pro-
posed quadratic approximation method can achieve similar results
with less effort in the numerical computations and has a better
performance than the linear approximation method. The informa-
tion about uncertainty of reliability indices obtained from the pro-
posed method will provide system planning and operation
engineers more confidence in system reliability and lead to less
need for conservative operation of the power grid.
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Analytical formula of LOLP and EENS with respect to reliability
parameters of component i
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In the above formula (A1.1), when define Kð1Þi and Kð2Þi as
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LOLP index can be expressed as

LOLP ¼ li

ki þ li
Kð1Þi þ
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ki þ li
Kð2Þi
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ki þ li
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By following the above method, the analytical formula of EENS
can be easily derived in the same manner as (A1.5), (A1.6) and
(A1.7).

EENS ¼ li
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Analytical formula of LOLF with respect to reliability
parameters of component i
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In the above formula (A2.1), when define Kð3Þi and Kð4Þi as
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Analytical expressions of the partial differentials for K ð1Þi � K ð4Þi

and Eð1Þi � Eð2Þi

From the equation (A1.2) and (A1.3), (A1.6) and (A1.7) and
(A2.2) and (A2.3), the partial differentials of Kð1Þi � Kð4Þi and
Eð1Þi � Eð2Þi with respect to kj and lj (failure rate and repair rate of
component j) can be further derived respectively
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