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Abstract—In molecular communication (MC) systems, the
expected number of molecules observed at the receiver over time
after the instantaneous release of molecules by the transtter
is referred to as the channel impulse response (CIR). Knowtige
of the CIR is needed for the design of detection and equaliziin
schemes. In this paper, we present a training-based CIR estia-
tion framework for MC systems which aims at estimating the
CIR based on theobserved number of molecules at the receiver

law of diffusion [3]. Finding C(a,t) analytically involves
solving partial differential equations and depends oniahit
and boundary conditions. Therefore, one possible approach
for determining the CIR, which is widely employed in the
literature [4], is to first derive a sufficiently accurate biaal
expression forC(a,t) for the considered MC channel from
Fick’'s second law, and to subsequently integrate it over the

due to emission of asequence of known numbers of molecules
by the transmitter. In particular, we derive maximum likeli hood
(ML) and least sum of square errors (LSSE) estimators. We als
study the Cramer Rao (CR) lower bound and training sequence
design for the considered system. Simulation results confin the
analysis and compare the performance of the proposed estirtian
techniques with the CR lower bound.

I. INTRODUCTION

Recent advances in biology, nanotechnology, and
medicine have enabled the possibility of communication in
nano/micrometer scale environmerits [1]. Thereby, empbpyi
molecules as information carriers, molecular commurneati
(MC) has quickly emerged as a bio-inspired approach for
man-made communication systems in such environments. In
fact, calcium signaling among neighboring cells, the use of
neurotransmitters for communication across the synajfit c
of neurons, and the exchange of autoinducers as signaling
molecules in bacteria for quorum sensing are among the
many examples of MC in naturg][1].

A. Motivation

The design of any communication system crucially depends
on the characteristics of the channel under consideration.
MC systems, the impact of the channel on the number of
observed molecules can be captured by the channel impulse
response (CIR) which is defined as tlegpected number
of molecules counted at the receiver at timeafter the
instantaneous release of a known number of molecules by
the transmitter at timg = 0. The CIR, denoted by:(t),
can be used as the basis for the design of equalization and
detection schemes for MC systenis [2]-[4]. For diffusion-
based MC, the released molecules move randomly according
to Brownian motion which is caused by thermal vibration
and collisions with other molecules in the fluid environment
Thereby, the average concentration of the molecules atemgiv
coordinatea = [a,, ay, a;] and at timet after release by the
transmitter, denoted bg(a, t), is governed by Fick’s second
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receiver volumey*ec, i.e.,

1)

é(t) = /// C(a,t)da,da,das.
acVre

However, this approach may not be applicable in many prac-
tical scenarios as discussed in the following.

The CIR can be obtained based dd (1) only for the
special case of a fullfransparent receiver where it is
assumed that the molecules move through the receiver as
if it was not present in the environment. The assumption
of a fully transparent receiver is a valid approximation
only for some particular scenarios where the interaction
of the receiver with the molecules can be neglected.
However, for general receivers, the relationship between
the concentratiorC(a,t) and the number of observed
molecules:(¢t) may not be as straightforward.

Solving the differential equation associated with Fick’s
second law is possible only for simple and idealistic
environments. For example, assumingpaint source
located at the origin of amnbounded environment and
impulsive molecule release](a, t) is obtained as 4]

S NT™ Bl molecule
)= —— _lar ) |molecues
Clat) (47 Dt)*/? eXp( 4Dt> { m? j 2

where N™* is the number of molecules released by the
transmitter at = 0 and D is the diffusion coefficient of
the signaling molecule. Howevet,(a,t) cannot be ob-
tained in closed form for most practical MC environments
which may involve difficult boundary conditions, non-
instantaneous molecule release, flow, etc. Additionally,
as has been shown inl[5], the classical Fick's diffusion
equation might even not be applicable in complex MC
environments as physicochemical interactions with other
objects in the channel, such as other molecules, cells, and
microvessels, are not accounted for.

. Even if an expression fof(a,t) can be obtained for a

particular MC system, e.gl](2), it will be a function of
several channel parameters such as the distance between
the transmitter and the receiver and the diffusion coef-
ficient. However, in practice, these parameters may not
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be known a priori and also have to be estimated [€], [7€. Contributions
This complicates finding the CIR based 6(a, t). In contrast to[[B]-[14], in this paper, we directly estimate

Fortunately, for most communication problems, includinf'® CIR based on the channel output, i.e., the number of
equalization and detection, only thexpected number of molecules obs_erved at the receiver. To the be;t of _the aithor
molecules that the receiver observed at the sampling tinfg¥owledge, this problem has not been studied in the MC
is needed[[3],[[4]. Therefore, knowledge of how the averadéerature, yet. In particular, we present a training-th&3R
concentration is related to the channel parameters is &timation framework which aims at estimating the CIR based
required, and hence, the difficulties associated with éegiv ON f[he_ detected number of molecules at the receiver due to the
C(a, ) can be avoided by directly estimating the CIR. Analytemission of a sequence of known numbers of molecules by the
ical expressions for the CIR for specific assumptions for tfEansmitter. To this end, we first derive the optimal maximum
transmitter, channel, and receiver are available in teeaiure. likelihood (ML) CIR estimator. Subsequently, we obtain the
For example, the CIR for an unbounded environment andSgooptimal least sum of square errors (LSSE) CIR estimator
fully absorbing receiver is given if[8]. However, for gealer Which entails a lower computational complexity than the
channel environments and receivers, a simple closed-foli estimator. Additionally, we derive the Cramer Rao (CR)
expression for the expected number of observed molecut&gnd which constitutes a Iowgr bound on the estimatiorrerro
&(t) may not exist. Even if such an expression can be derive@riance of any unbiased estimator. We also study training
it is only valid for a particular MC environment and is stillSeéquence design for the considered MC system. Simulation
a function of several unknown parameters. Motivated by tfesults confirm the analysis and evaluate the performance of
above discussion, our goal in this paper is to develop“&e proposed estimation techniques with respect to the CR
general CIR estimation framework for MC systems which i@wer bound. _ _ .
not limited to a particular MC channel model or a specific Notations: We use the following notations throughout this

receiver type and does not require knowledge of the chanR@per: E.{-} denotes expectation with respect to random
parameters. variable (RV)z and[z]* = max{0, z}. Bold capital and small

letters are used to denote matrices and vectors, respgctive
1 and 0 are vectors whose elements are all ones and zeros,
respectively,A” denotes the transpose &f, |a|| represents
B. Related Work the norm of vectom, [A],,,, denotes the element in the-th
row andn-th column of matrixA, tr{ A} is the trace of matrix
In most existing works on MC, the CIR is assumed t@, diag{a} denotes a diagonal matrix with the elements of

be perfectly known for receiver desighl [Z-[41.1[9]. In thevectora on its main diagonalydiag{A} is a vector which
following, we review the relevant MC literature that focds®  contains the diagonal entries of matrik, eig{A} is the

channel characterization. Estimation of the distance éetva set of eigen-values of matriA, A > 0 denotes a positive

transmitter and a receiver was studied(ih [5], [7] for diffies semidefinite matrixA, anda > 0 means that all the elements
MC. In [10], an end-to-end mathematical model, includingf vectora are non-negative. AdditionallyPoiss(\) denotes

transmitter, channel, and receiver, was presented, aritllin [ a Poisson RV with mean, andBin(n, p) denotes a binomial
a stochastic channel model was proposed for flow-based a@d for n trials and success probabiligy

diffusion-based MC. For active transport MC, a Markov chain

channgl model was derived ih [12]. Add_itionally, a unify_ing Il. PROBLEM FORMULATION
model including the effects of external noise sources atat-in . . , .
symbol interference (ISI) was proposed for diffusive MC in In this section, we first present the conS|dered_ MC. channel
[13]. In [14], the authors analyzed a microfluidic MC channesr‘Odel’ and subsequently, formulate the CIR estimation {prob
propagation noise, and channel memory. However, the faicu :

[6], [7], [TO]-[14] is either channel modeling or the estiioa

of channel parameters, i.e., the obtained results are retttyi A. System Model

applicable to CIR acquisition. We consider an MC system consisting of a transmitter, a
In contrast to MC, for conventional wireless communicachannel, and a receiver. At the beginning of each symbol
tion, there is a rich literature on channel estimation, ydior  interval, the transmitter releases eitféf* or zero molecules,
linear channel models and impairment by additive white Gause., ON-OFF keying is performed. In this paper, we assume
sian noise (AWGN), seé [15], [16], and the references therethat the transmitter emits only one type of molecule. The
Channel estimation was also studied for non-linear and/@eased molecules propagate through the medium between th
non-AWGN channels especially in optical communicatioitansmitter and the receiver. We assume that the movements
For example, for a photon-counting receiver, a linear timef individual molecules are independent from each othee Th
invariant channel model with Poisson noise was considerszteiver counts the number of observed molecules in each
in [17] and a non-linear channel model with Poisson noisgmbol interval. We note that this is a rather general moalel
was investigated in[[18]. However, the MC channel modéhe MC receiver which includes well-known receivers such as
considered in this paper is neither linear nor impaired ke transparent receivéerl [4] and the absorbing receiver [8]
AWGN and is also different from that im [18]. Therefore, the Due to the memory of the MC channel, inter-symbol
results known from conventional wireless communicatiom amterference (1SI) occurs[13],[14]. In particular, 19k&
not directly applicable to MC. communication is only possible if the symbol intervals are



chosen sufficiently large such that the CIR fully decays testimation are given by
zero within one symbol interval which severely limits the L L
transmission rate and results in an inefficient MC systerﬁ[L] = Poiss (c15[L]) + Poiss (cos[L — 1]) +---

design. Therefore, taking into account the effect of ISI, we +Poiss (¢ s[1]) + Poiss (ca)  (5a)
assume the following input-output relation for the MC syste r[L + 1] = Poiss (¢1s[L + 1]) + Poiss (¢as[L]) + - - -
L +Poiss (¢1.s[2]) + Poiss (¢,)  (5b)
=S alk] + calk], 3) |

=1
wherer|k] is the number of molecules detected at the receivefl /] = Poiss (€15[K]) + Poiss (cos[K — 1]) +---
in symbol intervalk, L is the number of memory taps of +Poiss (¢ s[K — L + 1]) 4+ Poiss (¢,) . (5¢)
the channel, and;[k] is the number of molecules observe
at the receiver in symbol intervat due to the release of
s[k—1+1]N™ molecules by the transmitter in symbol interva
k —1+ 1, wheres[k] € {0,1} holds. Therebyg;[k] can be
well approximated by a Poisson RV with mean[k — [ + 1],
i.e., k] ~ Poiss(¢slk —1+1]), see [2], [8]. Moreover,
culk] is the number of external noise molecules detected

the receiver in symbol intervak but .npt released- by th?the CIR may change from one block to the next due to e.g.
transmitter. Noise molecules may originate from interfgri

. change in the distance between transmitter and receiver.

sources which employ the same type of molecule as the o : .

; 0 summarize, in each block, the stochastic mode[ln (3) is
considered MC system. Hencg,[k] can also be modeled as . _ Co ; -

. . . _ characterized by and our goal in this paper is to estimate
a Poisson RV, i.e.gy[k] ~ Poiss (¢,), whereé, = E {cy[k]}. :

L ) . based on the vector of random observations
Remark 1: From a probabilistic point of view, we can

assume that each mqlecule released by thg transmmer in 1. CIR ESTIMATION
symbol intervalk — [+ 1 is observed at the receiver in symbol hi i derive th q ,
interval & with a certain probability, denoted kpy. Thereby, In this section, we derive the ML an , LS_SE (_est|mators as
the probability thatn molecules are observed at the receivé’}'e" as the CR lower bound for CIR estimation in MC.
in symbol intervalk due to the emission o™ molecules o
in symbol intervalk — [ + 1 follows a binomial distribution, A- ML CIR Estimation
i.e., n ~ Bin(N™, p;). Moreover, assumingv™ — oo while The ML CIR estimator chooses the CIR which maximizes
N™p, £ ¢ is fixed, the binomial distributiorBin(N™, p;) the likelihood of observation vectar [19]. In particular, the
converges to the Poisson distributidtviss(c;) [19]. This ML estimator is given by
is a valid assumption in MC since the number of released AL _ 6
molecules is often very large to ensure that a sufficient rermb ™ = argmax fr(r[€,s). ©6)

c>0
of molecules reaches the receiver. The same reasoningappli o . .
¢ pF{Ne assume that the observations in different symbol interva

to the noise molecules. . . - , )
Unlike the conventional linear input-output model for chanzi:e independent, i.ex[k] is independent of k] for k 7 k'

nels with memory in wireless communication systems [15 ’h|s assumpttl_on IS Va“dl n practlcfff(_a '.f thtT t|||T1e |nte£\éllglw§e?
[16], the channel model if(3) is not linear singlg — [ + 1] O conseculive samples IS sulliciently large, [3] for a

does not affect the observatiofi] directly but via Poisson detailed discussion. Moreover, frol (3), we observe il

RV ¢[k]. However, theexpectation of the received signal is IS asum of Poisson RVS. Henagk] is also a Poisson RV with .
linearly dependent on the transmitted signal, i.e. its mean equal to the sum of the means of the summands, i.e.,

r[k] ~ Poiss(7[k]) with 7[k] = éa+ >, cs[k—14+1] = &Tsy,

(il:or convenience of notation, we defime = [r[L],7[L +
}],...,r[K]]T and¢ = [¢1,62,...,¢1,c)7, and fr(r|c,s)
is the probability density distribution (PDF) of obsereeti
r conditioned on a given channel and a given training
sequence. We assume that the dire, remains unchanged
or a sufficiently large block of symbol intervals during whi

R estimation and data transmission are performed. Howeve

B Lo B ands, = [s[k],s[k — 1],...,s[k — L + 1],1]7. Therefore,
(k] = E{r(k]} =Y _aslk -1+ 1] + ca. (4)  f.(r|e,s) is given by
. l:1. K (o1 \"[k T
We note that for a gives[k|, in general, the actual number folrle,s) = H (€"sk) " exp (—c"sp) @)
of molecules observed at the receivel], will differ from o feies r[k]!

the expected number of observed moleculgk], due to the

intrinsic noisiness of diffusion. Maximizing f.(r|c,s) is equivalent to maximizing

In(fr(r|c,s)) since In(-) is a monotonically increasing
function. Hence, the ML estimate can be rewritten as

B. CIR Estimation Problem AML _
¢ = argmax g(c) where (8)
Let s = [s[1],s[2],...,s[K]]T be a training sequence of ez0
length K. Here, we assume continuous transmission. There- A o o
fore, in order to ensure that the received signal is onlyctéie 9(e) = Z [_ c’sy, + rlk]ln (¢"sk) }
by the training sequence and not by the transmissions in k=L

previoug Symbm intervals, we only empleyk], k > L, for with a slight abuse of notation, in the following, we referviector ¢ as
CIR estimation. Thereby, th& — L + 1 samples used for CIR the CIR althought also contains the mean of the noise



To present the solution of the above optimization probleAlgorithm 1 ML/LSSECIR Estimatec't/cLSSE

rigorously, we first define some auxiliary variables. Lét= initialize A,, = F and solve@)/(I2) to find ¢’
{A1, As,..., Ay} denote a set which contains all possible if ¢ > 0 then
N = 2L+1 1 subsets of seF = {1,2,---,L,n} except lSetéML =cf[cHE =¢”
_ B} else
the empty set. Hered,,, n iA1,2,...24N, denotes then for VA, £ F do
th subset ofA. Moreover, letc~ ands;™ denote reduced- Solve @)/(2) to find &4
dimension versions of andsy, respectively, which contain if ¢A» > 0 holdsthen
only the elements o€ ands; whose indices are in sed,, Set the values of the elementsd5t", whose indices
respectively. are in A, _qual to the values of the corresponding
Lemma 1: The ML estimator of the CIR for the considered %ez'”fe‘?g_ts inc” and the remaining elements equal
MC channel is given by Angnthm 1 whe.re the following non- Savee® in the candidate set
linear system of equations is solfetr different.A,, else
K " Discarde4n
r A end if
————— —1|s;" =0. 9)
; [(CAn)TSﬁn ] end for

Choosec™/c*%E equal to thatc® in the candidate set
Proof: The problem in [(B) is a convex optimization  C which maximizesg(c)/minimizes |||

problem in variablec because(c) is a concave function i end if

and the feasible set> 0 is linear inc. In particular]n (c”'s;)

is concave since”'s, is affine and the log-function is concave

[20, Chapter 3]. Thereforg,(c) is a sum of weighted concavenoise mean are non-zero, i.e.;> 0. Thereby, the consistency

termsr[k]In (¢”'s;) and affine termg”'s;, which in turn yields property of ML estimation[[19, Chapter 4] implies that under

a concave functior [20, Chapter 3]. For the constrained@onvsome regularity conditions, notably that the likelihoodais

problem in [), the optimal solution falls into one of thecontinuous function o€ and thatc is not on the boundary of

following two categories: the parameter s&t> 0, we obtainE {c""} — ¢ asK — oo.
Sationary Point: In this case, the optimal solution is foundn other words, the ML estimator is asymptotically unbiased

by taking the derivative of(c) with respect tac and setting Therefore, for large values df, the ML estimator becomes

¢ = ¢ ands] = s, which leads to[{9) ford, = F. sufficiently accurate such that none of the elementg“bfis

Note that this stationary point is the global optimal saunti zero. In this case, Algorithm 1 reduces to directly solvily (

of the unconstrained version of the problem[ih (8), i.e., whdor A, = F.

constraintc > 0 is dropped. Therefore, #” is in the feasible

set, i.e.,c” > 0 holds, it is also the optimal solution of theg, | SSE CIR Egtimation

. . ) _ ,]_'
constrained problem iri{8) and hence, we obigin=c”. The LSSE CIR estimator chooses tlgatvhich minimizes

Boundary Point: In this case, for the optimal solution, SOM&, . <um of the square errors for the observation veetor
of the elements of are zero. Since it is not a priori known . ! ~
Thereby, the error vector is defineda@s-r—E {r} =r—Sc¢

which elements are zero, we have_ to con5|de£l all pos&%-ﬁeres — [s1,8041,...,sx]T. In particular, the LSSE CIR
cases. To do so, we use auxiliary variatités ands; " where . :

o o ~ estimate can be written as
setA,, specifies the indices of the non-zero elements. dfor
a givenA,,, we formulate a new problem by substitutiag~ c“SE — argmin ||e||* = ||r — Se||*. (10)
and skA" for ¢ andsy, in (8), respectively. The solution of the €20
new problem is now a stationary point not a boundary poinThe square of the norm of the error vector is obtained as
since a boundary point implies that some of the elements of 9 T B o
¢~ are zero which yields a contradiction because we assumed lelf*= tr {ee” } = tr {(r — Se)(r — Se)" }
thatc*» includes the non-zero elements @f The stationary =tr{S"See” } —2tr {r"Sc} +tr {rr"}, (11)

oint of the new problem can be found by taking the derivative . .
gf g(e&An) with rzspect toe» which Iea{is to [%]9)_ Here. if where we used the following properties of the tracelA} =

o - .
¢» > 0 does not hold, we discard”~, otherwise, it is a tr{A”} andtr {AB} = tr {BA} [2I]. The LSSE estimate

: . . is given in the following lemma where we use the auxiliar
candidate for the optimal solution. Therefore, we construc g Ang A, y

the candidate ML CIR estimate, denoted &#", such that Matrix S4» = [s7, sy, ..., 85"
AN L . ' Lemma 2: The LSSE estimator of the CIR for the consid-
the elements o&®" whose indices are il,, are equal to the o . )
. g . .~ ered MC channel is given by Algorithm 1 where for a given
values of the corresponding elementgih: and the remaining A .
P . setA,,, ¢ is obtained as
elements are equal to zero. The resultiif' is saved in the
candidate sef. Finally, the ML estimate¢™, is given by that ¢ = ((sAn)TsAn)_l (84)Tr, (12)
c® in setC which maximizesy(c).
The above results are concisely summarized in Algorithm
which concludes the proof. |
Remark 2: Let us assume a priori that all taps and the

1 Proof: The optimization problem if{10) is convex since
lle||? is quadratic in variablee, STS = 0 holds, and the
feasibility setc > 0 is linear inc [20, Chapter 4]. Hence,
the constrained convex problem [n110) can be solved using a
2The system of nonlinear equations [ (9) can be solved usimgdard SiMilar methodology as was used to find the ML estimate in
mathematical software packages such as Mathematica. Lemma[l. This leads to Lemnia 2. [ |



Remark 3: The LSSE estimator employs in fact a lineaby éﬁ}ESE = (STS)71 Sr, which can be used as the basis for
filter to computec?~, i.e., ¢*» = F4»r where FA» = either a computer-based search or even a systematic approac
((S*“H)TS*“H)_1 (S4=)T. Moreover, since the training se-to find good training sequences. Moreover, this upper bound
quences is fixed, matrix F4» can be calculated offline andis tight as K — oo since ¢"*t > 0 holds and we obtain
then be used for online CIR estimation. Therefore, the ealceS® = 3%, In Fig.[3, we show numerically that even for
lation of ¢~ for the LSSE estimator il (12) is considerablyhort sequence lengths, this upper bound is not loose.
less computationally complex than the computation-6f for Defining the estimation error ae/>® = ¢ — ¢, the
the ML estimator in[(P) which requires solving a system ofxpected square error norm is obtained as

nonlinear equations.
g Eree {22}

C. CR Lower Bound = Ers {tr{(é _ (STS)_I STr) (é _ (STS)—l STr)T}}
The CR bound is a lower bound on the variance of any unbi-

ased estimator of a deterministic paraméiter [19]. In paldgic — [Em{tr{(STs)—l STreTS (STS)—I}

under some regularity conditions, the covariance matriaryf

unbiased estimate of parameterdenoted byC(c), satisfies —9tr {érTS (STS)—l} 4t {é‘—:T} } (16)
CE)-T" (e =0, (13) | | |

Next, we calculate the expectation ovér,c¢) in (@8) in
where I(c) is the Fisher information matrix of parametefyo steps, first with respect to conditioned one and then

vectorc where the elements df(c) are given by with respect toc. To this end, we us&x {tr {AXB}} =
B *In{ f:(rlc,s) tr {AEx {X} B}, which is valid for general matriceA, B,
L(©)];;= ~Erpc {W} (14) andX, andEy {xx?} = AX" + diag{A}, which is valid for

- o . ] multivariate Poisson random vectatswvith covariance matrix
We note that for a positive semidefinite matrix, the d|agon@l(x) = diag{\}. Hence,E {”eLSSEH2} can be calculated as
. . 2~ 1 /= . ’ up

elements are non-negative, i.§C(c) —I"'(c)],, > 0. e

. . . A ’ LSSE
Therefore, for an unbiased estimator, |.[E.{é} = ¢ holds, EeErfe {”eup I }
with the estimation error vector defined @s- ¢ — ¢, the CR B Ter =1 &T feeT T Ty —1
bound provides the following lower bound on the sum of the — [Ec{tr{(s S) 8 (Scc 8 )S (S S) }

expected square errors Cotr {EETSTS (STS)A} t o feeT)

K 77171
2 —1 (a1 SkSj -1 . _ -1
Erc {llel?} > tr {I"" (©)} =tr lz E] . (15) +tr{(STS) STdiag {Sc} S (STS) } }
k=L )
T - T 7. —

Remark 4: We note that the ML and LSSE estimators in = Ee {tr{s (8's) " S'diag {SC}}}

Algorithm 1 are biased in general. Hence, the error varignce T 1 T\ 2T\ . T
. ' =trqS*vd S(S*S S -

of the ML and LSSE estimates may fall below the CR bound. r{ v lag{ ( ) }“C } ’
However, ask — oo, the ML and LSSE estimators becomee,\,here'ué = Ec{c}.
asymptotically unbiased, cf. Remaik 2, and the CR boundremark 5: The evaluation of the expression [I117) can be
becomes a valid lower bound. The asymptotic unbiasedn@ggmerically challenging due to the required inversion ofrira
of the proposed estimators is also numerically verified ®§7S especially when one of the eigen-valuess3fS is close

(17)

Section V, cf. Fig[lL. to zero. One way to cope with this problem is to eliminate all
sequences resulting in close-to-zero eigen-values forixnat
IV. TRAINING SEQUENCEDESIGN ST'S during the search. Formally, we can adopt the following

In the following, we present two different training sequencsearch criterion for training sequence design

designs for CIR estimation in MC systems. _
g y s* = argmin tr {S7vdiag {S (878) *sT}ul'}, (18)
sesS

A LSSE-Based Training Sequence Design whereS = {s|[z| >, Vaeecig{STS}} ande is a small

We first consider a training sequence design which migymper which guarantees that the eigen-values of mai
imizes anupper bound on the average estimation error for g.e not close to zero e.g., in Section V, we chaose10~°.
the LSSE estimator. First, we note that for training segaenc

design, the estimation error has to be averaged over both o )

andc since both are unknown, and hence, have to be modeléd!S-Frée Training Sequence Design

as RVs. Again, we assume a priori that alltaps and the  One simple approach to estimate the CIR is to construct a
noise mean are non-zero. Therefore, neglecting the infidmma training sequence such that ISl is avoided during estimatio
thate > 0 has to hold in[{10) yields an upper bound on th& this case, in each symbol interval, the receiver will abee
estimation error for the LSSE estimator. This upper bound isolecules which have been released by the transmitter in onl
adopted here for the problem of sequence design since tme symbol interval and not in multiple symbol intervals.
solution of [10) after dropping constraiat> 0 lends itself to To this end, the transmitter releas@&™ molecules every
an elegant closed-form solution for the estimated CIR giveh+ 1 symbol intervals and remains silent for the rest of the



symbol intervals. In particular, the sequencés constructed @ -10¢ 3 T SSE Estimation
as follows: < O ML Estimation
1, if k=ko 7 g~
s[k] = L7l 19
0, otherwise © ™ L=3
2 730§ 7
wherek € {1,..., K}, andk, is the index of the first symbol 5 . \/h
interval in which the transmitter releases molecules. \oeg, TR . \-b S
for this training sequence, the CIR can be straightforwardl § PR ..
estimated as E Ll NN ‘"
2 - - ~
ATSIF 1 s1s1F7] T (i ! \"‘ /\ﬁk
é :T[Z[r[k]—én | R R e B~ B S ~a
| l| rex, N 60} S, '~
< \ N N B,
é \ ‘N = \’.
AISIF ‘
=g 2 @ob) 2 LBy e S
kelkCy 10 20 30 40 50 60 70 80 90 100
Sequence Lengthi
whereK; = {k|*=keH € Z A k€ {1,...,K}}, Ko =
{klk—k AN = {1 K}} and + is needed to Fig- 1. Normalized estimation error meakleane, in dB vs. the training

lengthis, for L € {1,3,5
ensure that all estimated channel taps are non-negagve, i peduence feng or L € {1,3,5}.

¢ISIF > 0 holds.
random realizations of observation vectorWe observe that

the normalized error mean decreases as the sequence length
increases. Therefore, the ML and LSSE estimators are biased
In this section, we evaluate the performances of the difterefor short sequence lengths but as the sequence lengthsesiea
estimation techniques and training sequence designsafma| both the ML and LSSE estimators become asymptotically
in this paper. For simplicity, for the results provided iristh unbiased, i.e.E{c} — ¢ as K — oo. Furthermore, from
section, we generate the CtRbased on[{1) and¥2). However,Fig.[d, we observe that the error mean increases as the number
we emphasize that the proposed estimation framework is @dtchannel taps increases.
limited to the particular channel and receiver models agslm In Fig. [, we show the normalized estimation error vari-
in (@) and [2). We usd 1) anfll(2) only to obtair avhich is ance, Var,, in dB vs. the training sequence length, for
representative of a typical CIR in MC. In particular, we assu . € {1,3,5}. The parameters used in Figl. 2 are identical
a point source with impulsive molecule release aW&* = to those used in Figd1l. As expected, the variance of the
10, a fully transparent spherical receiver with radrlﬁsnm estimation error decreases with increasing training secgie
and an unbounded environment with = 4.365 x 10~19 m length. Moreover, fol. € {3, 5}, we observe that the variance
[9]. Additionally, we assume that the distance between tlod the estimation error for the LSSE estimator is slightigher
transmitter and the receiver is given ly| = |a] + @ nm than that for the ML estimator, whereas fior= 1, the variance
where|a| = 500 nm anda is a RV uniformly distributed in the of the estimation error for the LSSE estimator coincidewit
interval [—a, a]. The receiver counts the number of moleculethat of the ML estimator. These results suggest that thelsimp
once per symbol interval at timé,,,, = argmax, C(a,t) LSSE estimator provides a favorable complexity-perforogan
after the beginning of the symbol interval whef¢a,t) is tradeoff for CIR estimation in the considered MC system. For
computed based oif](2). The noise mean is chose, as short sequence lengths, the variances of the ML and LSSE
0.5max, C(a,t). Furthermore, the symbol duration and thestimators can even be lower than the CR bound as these
number of tapg. are chosen such thag; < 0.1¢;. estimators are biased and the CR bound is a valid lower
In order to compare the performances of the considerbdund only for unbiased estimators, see Hij. 1. However,
estimators quantitatively, we deflne the normalized meah aas K increases, both the ML and LSSE estimators become

V. PERFORMANCEEVALUATION

variance of the estimation errer=c — ¢ as asymptotically unbiased, see Fig. 1. Fig. 2 shows that, for
IE {e}” large K, the error variance of the ML estimator coincides with
Meane = ———-5 and (21) the CR bound and the error variance of the LSSE estimator
IE {e} i is very close to the CR bound. We note that for the adopted
v _E {llel’”} — IIE {e} |I” (22) training sequence, the matrix inversion requrredE (15nca
: IE {c} 12 ’ be computed foix = 10 and L = 5 since matrixy_,_, 3 s"sk

respectively. In Fig[Jl, we show the normalized mean dfas one zero eigen-value. Therefore, we do not report tlueval
the estimation errofMeane, in dB vs. the training sequenceof the CR bound for this case in Figl 2.

length, K, for L € {1,3,5}. The training sequences are Next, we investigate the performances of the optimal and
constructed by concatenatimgcopies of the binary sequencelSi-free training sequence designs developed in Section IV
[1100100101] of length 10, i.e., K = 10n. Furthermore, for Here, we employ a computer-based search to find the optimal
clarity of presentation, we assunde= 0 which corresponds sequence based on the criterion [n](18) where= 10~°.

to a time-invariant environment with deterministic CIR.eThWe consider short sequence lengths, i/&.,< 20, due to
results reported in Fig.]1 are Monte Carlo simulations wheexponential increase of the computational complexity @& th
each point of the curves is obtained by averaging dM¥r exhaustive search with respect to the sequence length.-More
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Fig. 2. Normalized estimation error varianééare, in dB vs. the training

sequence lengthiC, for L € {1,3,5}.
TABLE |
EXAMPLES OF OPTIMAL LSSE SEQUENCESOBTAINED BY A
COMPUTER-BASEDSEARCH FORL € {1,...,5} AND K € {10, 16}.

K =10 K =16

L =11 s =]1010101010]7 | s* =[0101010101010101]7
L=21s*=1[0010001110]7 | s* =[0110011101000001]T
L =31 s*=[0100001101]T | s* =[0101101101100000]T
L =4 | s* =[1010110000]7 | s* = [1111100001000100]%
L =5 |s*=][0110100010]7 | s* = [1001010011000000]7

Optimal Sequence, Analytical Upper Bound in (17)

= = = |S|-Free Sequence, Analytical Upper Bound in (17)
_al O Optimal Sequence, Simulation Result
ISI-Free Sequence, Simulation Result

Normalized Estimaion Error Varianc®ar., in dB

Sequence Lengtik

Fig. 3. Normalized LSSE estimation error variandére, in dB vs. the
training sequence lengtlk’, for L € {1,2,3,5}.

on the observed number of molecules at the receiver due to
emission of a sequence of known numbers of molecules by
the transmitter. We derived the optimal ML estimator, the
suboptimal LSSE estimator, and the CR lower bound. Further-
more, we studied both an optimal and a suboptimal training
sequence design for the considered MC system. Simulation
results confirmed the analysis and compared the performance
of the proposed estimation techniques with the CR lower
bound.

over, since there are 4+ 1 unknown parameters, we require at

leastL +1 observations for estimation, i.d, —L+1 > L+1
or equivalently K’ > 2L. In Table I, we present the optimal
sequences obtained fdére {1,2,3,4,5}, K € {10,16}, and
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