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ABSTRACT 

Global thermal performance modeling of Pulsating Heat Pipes (PHPs) requires local, spatio-temporally coupled, flow and heat transfer information 
during the characteristic, self-sustained thermally driven oscillating Taylor bubble flow, under different operating conditions. Local hydrodynamic 
characteristics such as velocities, lengths, shapes and profiles of bubbles and slugs, their dynamic contact angles, thickness of the liquid film that 
surrounds the bubbles, enhanced mixing/ flow circulation within the liquid slugs and net pressure drop along the flow, etc., are needed to predict 
local heat transfer and thus, the global thermal performance. In this paper, we systematically review the experimental, theoretical/analytical, and 
modeling methodologies to predict these hydrodynamic properties in unidirectional two-phase Taylor bubble flows, in the context of Pulsating Heat 
Pipes. Indeed, there is little literature available for oscillating Taylor bubbles flows. In view of the state-of-the-art, we therefore recommend some 
directions and perspectives for furthering research on understanding and modeling PHPs.  
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1. INTRODUCTION 

With the advances in mini/micro fabrication techniques, many 
applications have emerged which utilize single-phase or two-phase 
flows in such mini/micro geometries to achieve specific goals. Finding 
and delineating transport mechanisms in such systems is a major 
challenge and research impetus has greatly increased in this direction 
so as to achieve systems with better control and improved efficiency. 

One such device which utilizes self-excited thermally driven two-
phase flow oscillations for enhanced passive heat transfer is a Pulsating 
Heat Pipe (PHP), also referred to as an Oscillating Heat Pipe (OHP). 
This device has attracted considerable research in recent past due to its 
simplicity, ease of manufacture, favorable operating conditions under 
specified boundary conditions, vis-à-vis other conventional heat pipes. 
The transport mechanism of this ‘simple’ device also poses an excellent 
opportunity to understand its complex internal two-phase thermo-
hydrodynamics [Akachi, 1990; Akachi et al., 1996; Khandekar, 2004; 
Vasiliev, 2005; Zhang and Faghri, 2008]. 

The basic structure of a typical pulsating heat pipe consists of a 
meandering capillary tube having no internal wick structure, as shown 
in Figure 1-a. The inside diameter of the tube is sufficiently small 
(Bocrit ~ 1.84; see Section 2) such that surface tension dominates and 
capillary slug flow is maintained [Khandekar et al. 2003; Zhang and 
Faghri, 2008]. It can be designed in at least three ways, namely: (i) 
open loop system, (ii) closed loop system and (iii) closed loop with 
additional flow control check valve(s) as shown in Figure 1-b. The 
closed loop system allows flow circulation while there is no such 
possibility in the open loop configuration. 

The entire essence of a PHPs thermo-mechanical physics lies in 
the closed (constant volume), two-phase, bubble-liquid slug system, 
spontaneously formed inside the tube bundle, at the time of filling the 
device, due to the dominance of surface tension. This tube bundle 
receives heat at one end and is cooled at the other end. Temperature 
gradients give rise to temporal and spatial pressure disturbances due to 
resulting phase-change phenomena, i.e. generation and growth of 
bubbles in the evaporator and simultaneous collapse of bubbles in the 
condenser. The bubbles act as pumping elements, transporting the 
entrapped liquid slugs in a complex oscillating-translating-vibratory 
fashion, resulting in self-sustained thermally driven flow oscillations 
and ensuing highly efficient passive heat transfer thereof. In addition to 
the latent heat, considerable amount of sensible heat transfer also 
occurs in a PHP. While sweeping the evaporator section, a liquid slug 
accumulates heat, which is eventually transferred to the condenser. 

The fundamental transport processes that occur inside the PHP can 
be visualized, based on Figure 1-c, which suggests the various forces, 
and heat and mass transfer processes acting on a unit cell of liquid-slug 
vapor-bubble, as formed inside the PHP. These primary processes are:  

• The flow pattern in a PHP may be broadly categorized as capillary 
slug flow, which is characterized by: (a) the flow pattern is ‘generally’ 
axisymmetric, at least in vertical flows (in horizontal flows, there will 
be some asymmetry depending on the Bond number, as explained later 
in Section 4), (b) the velocity of vapor bubbles relative to liquid slug is 
somewhat faster [Fairbrother and Stubbs, 1935; Harmathy, 1960; 
Suo and Griffith, 1964; Wallis, 1969; Fukano and Kariyasaki, 1993; 
Thulasidas et al., 1995; Angeli and Gavriilidis, 2008]. 
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Fig. 1: (a) Schematic of a typical pulsating heat pipe (b) design 

variations of a PHP (c) Taylor bubble train in a vertical 2 mm 
tube and the forces and transfer processes acting on a unit-cell 
[Khandekar, 2010]. 

 

• Due to the capillary dimensions of the PHP tube, a train of liquid 
slugs and vapor bubbles having menisci on their edges is formed due to 
surface tension. Usually a liquid thin film exists around the bubbles 
(see Section 4.1). The contact angle of menisci, liquid thin film stability 
and its thickness depend on the fluid-solid combination and the 
operating parameters (see Section 3.2). 

• Liquid slugs and vapor bubbles move against the gravity vector, in its 
direction or at an angle to it, depending on the global PHP orientation 
and location of slugs/ bubbles in the up-header or down-header tubes. 

• The liquid slugs and vapor bubbles are subjected to pressure force 

1
F


and
2

F


 (see Figure 1), from the adjoining slugs/bubbles. These are 

not only caused due to phase-change mass transfer but also due to 
capillary forces. This is further explained in Section 4.1.1. 

• The liquid slugs and vapor bubbles experience internal viscous 
dissipation as well as wall shear stress. Their relative magnitude 

decides the predominant force to be considered (see Section 4.1). 

• The liquid slugs and vapor bubbles may receive heat, reject heat, or 
move without any external heat transfer, depending on their location in 
the evaporator, condenser or the adiabatic section, respectively. Most 
thermal transport occurs through the thin film and its dynamics plays a 
crucial role in the overall thermal transport (see Section 5.2). 

• In the evaporator, liquid slugs receive heat, which is simultaneously 
followed by evaporation mass transfer to the adjoining vapor bubbles or 
breaking up of the liquid slug itself, with creation of new bubbles in 
between, as a result of nucleate boiling in the slug flow regime; Psat and 
Tsat thus increase locally. Vapor bubbles may frequently come in  direct 
contact with the internal tube surface of the evaporator. In this case, 
saturated vapor bubbles receive heat via the liquid thin film 
surrounding them, which is simultaneously followed up by evaporation 
mass transfer from the film as well as the adjoining liquid slugs. Heat 
transfer under such conditions is strongly dependent on local film 
geometry as highlighted later in Section 5.3. The processes in the 
evaporator are repeated in a reverse direction in the condenser. 

• In the adiabatic section, while passing from the evaporator to the 
condenser, the train of vapor bubbles and liquid slugs is subjected to a 
series of complex heat and mass transfer processes. Essentially non-
equilibrium thermodynamic conditions exist whereby the high pressure, 
high temperature saturated liquid slugs/vapor bubbles are brought down 
to low pressure, low temperature saturated conditions existing in the 
condenser. If ideal adiabatic conditions are maintained, with no axial 
conduction of heat through the tube wall/ fluid itself, then an inherently 
irreversible isenthalpic process can accomplish this task. Internal 
enthalpy balancing in the form of latent heat takes place by evaporation 
mass transfer from the liquid slugs to the vapor bubbles whereby near 
saturation conditions tend to be imposed on the system during the bulk 
transit in the adiabatic section. In real systems, this transit is certainly 
much more complex with non-equilibrium metastable conditions 
existing throughout. 

It must be noted that there occurs no 'classical steady state' in PHP 
operation as far as the internal hydrodynamics is concerned. Instead, 
pressure waves and pulsations are generated in each of the individual 
tubes, which interact with each other, generating secondary and ternary 
reflections with perturbations. Many operating variables control these 
self-exited thermally driven oscillations [Khandekar, 2004].  

There are several important and unresolved issues with the present 
understanding of PHPs [Zhang and Faghri, 2008; Das et al., 2010-a]:  

(i) There is no comprehensive mathematical model to predict the PHP 
thermal performance for a given boundary condition.  

(ii) The understanding of heat transfer and pressure drop under self-
excited thermally driven oscillating two-phase flow inside capillary 
tubes is not convincing. The complete transport phenomena in the unit-
cell need to be resolved to predict global heat transfer parameters.  

(iii) Multiple unit-cells also interact with each other mutually; merger 
and coalescence of liquid slugs, breakage of Taylor bubbles under the 
impact of inertia and surface tension, nucleation inside liquid slugs, 
confined bubble formation, condensation on liquid films, instabilities, 
surface capillary waves, etc. are additional complexities for formulation 
of predictive tools for PHPs. 

In this background, we review the present understanding and 
highlight the important parameters, which need consideration in our 
global understanding of Pulsating Heat Pipes. Primarily, the flow 
pattern in these systems is characterized by thermally driven pulsating/ 
oscillating Taylor bubbles. Therefore, we focus our attention on local 
hydrodynamic transport behavior of Taylor bubbles. A detailed 
literature review is presented to highlight the present state of 
understanding on uni-directional as well as oscillating Taylor bubble 
flows, in the context of further understanding of PHPs.  
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2. CLASSIFICATION OF CHANNELS 

It is to be appreciated that PHPs operate in the regime when surface 
tension forces are dominant in the tubes. For normal heat transfer 
fluids, this suggests the use of small, mini or micro ducts or channels 
for the construction of PHP. Due to significant differences of transport 
phenomena in mini-micro systems as compared to normal sized 
channels, it is important to define what is meant by the terms mini, 
meso and micro sizes of the channels. Merely categorizing on the basis 
of tube geometry is not enough, especially in the context of two-phase 
flows. The criterion ought to be based on the combination of size and 
thermo-physical properties of the fluid under consideration.  

Channels are generally regarded small when surface tension forces 
dominate the gravitational forces. A measure of the relative value of the 
two forces is given by the Eötvös or Bond number: 

2( ( )) /
hyd l v

Bo Eo D g ρ ρ σ= = −                 (1) 

Researchers have suggested different values of the Bond number, 
ranging from 0.88 to 2π2, below which channels can be considered 
small [e.g. see White and Beardmore, 1962; Brauner, 1992; Kandlikar, 
2002]. Bretherton [1961] stated that, for Bo < 1.84, the channel can be 
considered as small.  

According to Triplett et al. [1999] and later by Serizawa et al. 
[2002], the flow channels having Dhyd less than or equal to Laplace 
constant, λ, may be considered as microchannels, where: 

/( ( ))
l v

gλ σ ρ ρ= −                   (2) 

Kew and Cornwell [1997] give another interpretation of the same 
quantity in terms of the confinement of bubbles in a channel. They 
reported that channels having two-phase flow can be considered as mini 
systems when the Confinement number, Co, as defined below, is 
greater than 0.5.  

1 4 2

( )
hyd l v hyd

Co
D g D

σ λ
ρ ρ

= =
−

                 (3) 

Under such conditions the two-phase flows typically have a 
confined bubble flow regime, which is unique to mini systems, as also 
is the case with PHPs. As the hydraulic diameter goes on decreasing, 
the effect of Bond number on various hydrodynamic parameters goes 
on increasing. In fact, all classification numbers, Bo, Eö, Co, or a 
constant λ, consider the effect of fluid density, surface tension and 
channel size on two-phase flow. 

If we estimate the relevant threshold critical diameters i.e. transition 
diameters for considering a channel as ‘micro’, for common working 
fluids respectively, for the entire range of operating pressures, we 
notice that there are considerable differences in the threshold diameters, 
as defined above by various criteria; so far, no unified methodology is 
available. In this paper we will confine our discussion to mini or 
smaller systems where the Bond number is definitely less than 2. Such 
tubes/channels will also be called as ‘capillary’ systems.  

The foregoing discussion has important implications in defining a 
PHP. The definition of a threshold diameter needs to be decided so that 
distinct liquid plugs and vapor slugs can be formed without separation, 
stratification or agglomeration, at least under adiabatic conditions. For 
diabatic cases (such as bubble pumps), it is well known that slug-
bubble systems can form for higher diameters than the critical 
diameters defined herein [Delano, 1998]. Thus, rather than a certain 
fixed diameter which classifies the boundary between classical 
macroscale systems and PHPs, there is a finite transition zone wherein 
PHPs can effectively function as truly pulsating/oscillating heat transfer 
devices [Khandekar and Groll, 2003]. 

3. CONTACT LINES: STATICS AND DYNAMICS 

To predict the shape, length and pressure drop under Taylor bubble 
flows, it is important to understand the basic physics of three-phase 
contact lines. No sooner a second phase (gas or vapor) is introduced in 
a parent liquid phase, there is a possibility of formation of three-phase 
contact lines between the parent fluid, the dispersed phase and the solid 
container/duct in which the system is stored or is flowing. These three-
phase contact lines are in addition to the gas-liquid two-phase 
interfaces. Bubbles are formed when a continuous gas-liquid interface 
forms a closed volume entrapping the gas or vapor inside it. Gas or 
vapor can also be trapped between two (or more) distinct three-phase 
contact lines. Possibility of formation of three-phase contact lines in a 
PHP is high, especially in the evaporator section where bubble 
formation and growth of confined bubbles takes place. Elsewhere in the 
PHP, the Taylor bubbles usually travel with a liquid film around them.  

It is therefore prudent to review the available literature on the 
statics and dynamics of contact lines although exhaustiveness in this 
section cannot be claimed due to the sheer vastness of the available 
material. We only highlight the important issues, which ought to be 
considered while developing models of PHPs. 

3.1 Three-phase contact lines: Statics  

Three-phase triple contact lines are said to be formed when 
materials in different phases, e.g. solid, liquid and gas (or vapor) 
intersect. Common examples are a liquid droplet spreading on a solid 
surface or a liquid meniscus in a capillary tube. The angle between the 
tangents at the liquid / gas interface and the liquid / solid interface is 
known as the contact angle θ of the liquid on the solid surface. 
Typically, when a liquid spreads on a solid surface in the presence of 
the third phase (gas or vapor), two distinct equilibrium states can be 
achieved: a partial wetting state or a complete wetting state, as shown 
in Figure 2-a. This wetting phenomenon of a solid, by a given liquid, 
and the ultimate equilibrium state is intrinsically connected to complex 
interplay of physical chemistry, statistical physics, short and long-range 
forces and to fluid dynamics. The condition for static equilibrium of a 
triple contact line involving an ideal solid (perfectly smooth and 
chemically homogeneous), liquid and a gas/vapor is stated as the 
Young’s equation [Carey, 2007]: 

cos( ) 0
SV SL LV eq

σ σ σ θ− − =                  (4) 

 
Fig. 2: (a) Contact angle of a fluid on solid substrate (b) The moving 

meniscus seen on three different length scales. 
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Consequently, the contact angle, which the liquid mass makes with 
a solid surface, depends not only on the thermophysical properties of 
the liquid, but also on the physico-chemical structure of the solid 
substrate. If all the respective interfacial tensions are known, the 
equilibrium static contact angle can thus be estimated. The SV and SL 
tensions are not only difficult to estimate but predictive theories are 
also quite weak. Moreover, validity of Eq. (4) is restricted to ideal 
surfaces and planer interfaces, which are rarely found in engineering 
practice. This makes the Young’s equation rather impractical and 
frequently, careful experiments are needed to estimate the static 
‘equilibrium’ contact angle. It must be noted here that true 
‘thermodynamic’ equilibrium (mechanical, chemical and thermal) may 
also be extremely difficult to achieve, especially for non-volatile fluids; 
at least, mechanical equilibrium (force balance) is mandatory in the 
definition of θeq. It is in this light that Young’s equation is best derived 
by considering a reversible change in contact position, using global 
energetic arguments, i.e. the nature of the contact line region, over 
which intermolecular forces are acting, is not considered. Accordingly, 
θeq is understood to be measured macroscopically, on a scale above that 
of long range intermolecular forces [Bonn et al., 2009]. Depending on 
this equilibrium contact angle, solid substrates, for a given fluid, may 
behave as lyophilic (0° ≤ θeq ≤90°) lyophobic (90° ≤ θeq ≤150°) or 
super-lyophobic (150° ≤ θeq ≤ 180°). 

The equilibrium wetting conditions of a liquid on a solid surface 
can also be stated in terms of the equilibrium Spreading Coefficient, Seq, 
which represents the surface free energy per unit area σSV relative to its 
value for complete wetting, i.e.:  

( ) (cos( ) 1)
eq SV SL LV LV eq

S σ σ σ σ θ= − + = −                 (5) 

For complete wetting, the equilibrium Spreading coefficient Seq is 
zero while for partial wetting conditions it is a negative quantity. As 
noted above, systems may not achieve complete equilibrium, at least in 
the time frame of the experiments, and to deal with such conditions, the 
Initial Spreading Coefficient is defined as follows, 

 
0

( )
i S SL LV

S σ σ σ= − +                   (6) 

The initial spreading coefficient is a more relevant quantity of 
interest, especially under dynamical conditions of the contact line. Note 
that σS0 is the surface tension of the ‘dry’ solid surface, contrary to σSV 

which is the surface tension of the solid surface in equilibrium with the 
gas or vapor. It is known that this latter quantity is always lower than 
the former because of adsorption of gas/vapor molecules which lowers 
the surface tension of the solid. Thus, Si is always larger than Seq. 

For situations where equilibrium is not reached, and Si is negative 
(which means that Seq is also more negative), the contact line will 
display a finite static contact angle, θi, which will not be the same as 
the equilibrium contact angle, θeq. When Si is positive, although the 
droplet will spread and tend to flatten, there is no surety whether Seq 
will necessarily be zero or negative. Thus, the drop may initially spread 
and if enough time is given for achieving true equilibrium, it may either 
become a case of complete wetting (Seq = 0) or it may retract back to a 
case of partial wetting (Seq < 0). In general, though, if Si is large and 
positive, the equilibrium state is usually characterized by Seq = 0, 
however there can be exceptions when Seq < 0 [de Gennes, 1985; Bonn 
et al., 2009]. It is difficult to get values of Seq and even more difficult to 
estimate Si; careful experiments are the only meaningful alternatives, at 
least for engineering practice.  

Application of the above theory to real surfaces which are neither 
smooth nor chemically homogeneous requires some corrections. Under 
such situations, the static contact angle turns out to be non-unique and 
it is observed that it depends on the way the surface was “prepared” 
[Huh and Mason, 1977; Léger and Joanny, 1992]. Experiments 
involving the estimation of wettability are extremely sensitive to 
physical and chemical heterogeneities of the substrate. One of the first 

attempts at understanding the explicit influence of physical roughness 
(but chemically homogeneous surface) on wetting is due to 
Wenzel [1936], who proposed: 

*cos cos
eq

rθ θ=                    (7) 

Here θ* is the apparent contact angle, r is the roughness (r = 1 is a 
smooth surface and r > 1 is a rough surface). It embodies two types of 

behaviors. If 90
eq

θ < °  (lyophilic substrate), we will have 
*

eq
θ θ<  

since r > 1. Likewise, if 90
eq

θ > ° (lyophobic substrate), we will 

have 
*

eq
θ θ> . It is known that these angles can be sufficiently tuned 

by varying solid roughness [Shibuichi et al., 1996]. The same line of 
reasoning can be applied to a surface that is physically homogeneous 
but having n chemically heterogeneous species on its surface, which 
gives the Cassie-Baxter’s relation: 

*

1 1

cos cos  where 1
n n

i eq i i

i i

f fθ θ −
= =

= =                   (8) 

Here, θ* is the apparent contact angle on the chemically 
inhomogeneous surface, θeq-i are the respective contact angles on the n 

chemically homogeneous surfaces respectively, 
i

f  is the fractional 

area occupied by the ith specie. Therefore, the apparent angle θ* (which 
is restricted to the interval (θeq-1, θeq-n) is given by an average involving 
the angles characteristic of each constituent, but the average is applied 
to the cosines of these angles. Thus, we see that the contact angle of a 
liquid on a substrate depends on the roughness and chemical 
homogeneity of the surface; the three-phase contact line of the drop is 
deformed due to the physical and/or chemical topographic 
heterogeneities (this is true whenever the length scale of the three-
phase contact line is larger than the typical length scale of the physical/ 
chemical in-homogeneity). 

Real time engineering surfaces are both physically and chemically 
heterogeneous and tubes used of making PHPs will be no exceptions. 
Therefore, we need to restore to systematic experimental work to get 
the real picture of actual contact angles. In doing such experiments and 
subsequent post-processing of the data, there are two more related 
issues which need careful consideration (i) ‘Apparent’ nature of the 
contact angle and its hysteresis, and, (ii) pinning of contact lines.  

The scale at which we look at the three-phase contact line manifests 
a dramatic change in our perception of the contact angle, which the 
liquid-gas interface makes with the liquid-solid interface. This is 
explained in Figure 2-b [adapted from Bonn et al., 2009]. From a 
macroscopic ‘distal’ viewpoint, wherein the length scale is of the order 
of capillary radius (or the droplet radius, in case of spreading droplets), 
the angle which the liquid-gas interface makes with the liquid-solid 
interface is termed as the ‘apparent’ contact angle (‘apparent dynamic 
contact angle’, if the contact line is moving). As we move to smaller 
scales from the ‘outer’ macroscopic regions, and approach towards the 
contact line, we pass through an ‘intermediate’ or proximal region 
where there is interplay of viscous and surface tension forces. This 
region is characterized by a rapid change in the interface slope [Huh 
and Scriven, 1971; de Gennes et al., 1990]. A point of inflection is 
evident in this region where the interface profile turns from concave to 
convex. Moving further closer to the contact line, we eventually reach 
the ‘inner region’. This region is of the order of nanometers and 
characterized by interaction of molecular long-ranged forces. The 
interface here is constantly under thermal and diffusive fluctuations and 
it is not possible to uniquely determine the contact angle [Thompson 
and Robbins, 1989; Thompson and Troian, 1997]. Thus, for all practical 
purposes, we shall use and refer to the ‘apparent’ contact angle (and 
drop repetitive use of the word ‘apparent’), unless stated otherwise.  
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Fig. 3: (a) Contact angle hysteresis, (b) continuously varying physical 

and chemical in-homogeneity, and (c) sharp physical or 
chemical discontinuities at the surface. 

 
In general, for experiments involving submersion of a solid plate in 

free surface of a liquid with very slow moving constant velocity, two 
distinct values of the apparent contact angles are seen [Young and 
Davis, 1987]. These angles are known as apparent advancing θa and 
receding θr angles respectively, depending on the direction of motion, 
as shown in Figure 3-a. The difference between the advancing and 
receding contact angles is known as contact angle hysteresis. It is 
generally acknowledged to be a consequence of three factors: (i) 
surface in-homogeneity, (ii) surface roughness, and (iii) impurities on 
the surface. This can be more clearly understood by considering 
Figure 3-b which shows the sketch of the wetting behavior on a 
substrate with a continuously varying physical topography (chemical 
texture is homogeneous) and continuously varying chemical texture 
(physical topography is uniform). Figure 3-b (i) shows that if the drop 
size is smaller than the topography, then the drop shape is not affected 
by the topography. But if the drop size is bigger than the physical 
topography then the global shape of the drop will be affected due the 
deformation of the three phase contact line due to the topography. 
Similarly, for a substrate with a gradient in wettability, as shown in 
Figure 3-b-(ii), the drop shape will be deformed due to the variation of 
the contact angles around the three-phase contact line of the drop. If, on 
the other hand, the substrate has sharp topography or wettability pattern 
then situation is very different, as shown in Figure 3-c. At such sharp 
discontinuities, Young’s equation (Eq. (4)) becomes ill-defined. As a 
result, the three-phase contact line gets locally immobilized which is 
known as the pinning of contact line. The contact angle at the 
discontinuous boundary can have any value in between the smaller 
angle θ- on the more lyophilic part and the larger value θ+ on the more 
lyophobic part. The contact line then becomes immobilized and its 
position gets fixed to the line of discontinuity as long as the contact 
angle falls into the free range between θ- and θ+ [Krishnacharya, 2007]. 

3.2 Three-phase contact lines: Dynamics 

Most classical work on dynamics of spreading is confined to two 
major arrangements (i) forced flow in a capillary tube and (ii) 
spontaneous spreading of a droplet on a smooth horizontal surface 
[Hocking, 1976; de Gennes, 1985; Bonn et al. 2009]. It is also 

important to note that these classical theories of contact line dynamics 
are usually restricted to cases where there is (a) no hysteresis of contact 
angles (b) gravitational effects are negligible, Bo → 0, and, (c) 
practically no inertia effects, i.e. Weber number tending to zero. 
Experiments with these constrains require patient efforts; a general 
review on the significance of the experiments have been given by 
Dussan [1979] and de Gennes [1985] and more recently, an exhaustive 
overview has been provided by Bonn et al. [2009]. Another limitation 
of these experiments, which have tried to isolate the interplay of purely 
viscous and surface tension forces, is that most experiments have been 
performed on dry surfaces for fluids with Si > 0. Further more, for the 
experiments with forced flow in capillary tubes, the effect of capillary 
diameter for a given liquid, i.e., its Bond Number, on the dynamics has 
not been extensively studied although there are clear indications that 
such dependence exists [Ngan and Dussan, 1982]. In case of an 
operating PHP none of these assumptions may be valid and most 
hydrodynamics is under pre-wetted conditions. It is well known that 
Bond number also affects the thermal performance of the PHP system. 
Nevertheless, the available theory of spreading provides fundamental 
insights into the phenomena under consideration. This should help 
improve closed form equations for the global model of the PHP. 

The contact angle formed between a flowing liquid meniscus or a 
front and a solid surface is achieved by a balance between the capillary 
forces and the viscous forces. These two forces can be conveniently 
scaled by the Capillary number defined as: 

/Ca Uμ σ= ⋅                    (9) 

The viscous drag force on the liquid slug inside a capillary tube and 
the capillary force on the slug, scale respectively as: 

( )
( )

2( / )( / )

2

drag s

cap

F U R L R R

F R

μ π

σ π

≈ ⋅

≈ ⋅



                (10) 

Thus, we deduce the scaling ratio of the drag and the capillary force as: 

( / ) ( / )( / 2 ) ( / )
drag cap s s

F F U L R Ca L Dμ σ≈ ⋅ ≈
 

             (11) 

It is clear that increasing liquid slug length Ls increases the net drag 
force vis-à-vis the capillary forces. Multiple bubbles in the PHP system 
increase the capillary contribution to the total pressure drop, as will be 
seen later in Section 4.1.1.  

Estimation of capillary forces require explicit knowledge of the 
dynamic apparent contact angles, both advancing and receding, when a 
unit-cell (Taylor bubble along with the adjoining liquid slug) train is 
passing through a capillary tube. One of the earliest mention of a 
‘universal’ law between the velocity of spreading and the apparent 
advancing contact angle is highlighted by the work of Rose and Heins 
[1962] who could correlate cos(θa) with the velocity U of the contact 
line. The range of experiments was very narrow. Later, for capillary 
tubes which are already pre-wetted with a thin layer of liquid, the 
following equation was found to be more suitable: 

1/ 3tan( ) 3.4( )
a

Caθ =                 (12) 

The log (tan(θa)) vs. log (Ca) has a slope of 1/3 and it is also 
obvious that Eq. (12) cannot be valid for values of θa approaching 90º 
[Schwartz and Tejada, 1972].  

The geometry chosen by Hoffman [1975] was also a capillary tube 
of diameter ~ 2.0 mm with variation of five orders of magnitude of the 
velocity of the meniscus. Two sets of experiments were conducted: (a) 
with silicon oils having complete wetting, i.e. Si  > 0 and (b) with 
liquids having non-zero static contact angle. For the former range of 
experiments and Ca → 0, Hoffman [1975] found a rather universal 
relation between θa and Ca, given by: 
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1

1
( )q

a
Ca A θ=                  (13) 

where q1 = 3.0 ±0.5. In the experiments at low Ca, θa first increases as 
(Ca)1/3 but ultimately θa → π as Ca →1. For the second series of 
experiments also, the data could be represented by the form: 

2

2
( )q

a s
Ca A θ θ= −                 (14) 

While there are many assumptions and underlying limitations in the 
above ‘laws’, it is remarkable to note that these relations hold for 
liquids having different spreading coefficient Si (Si > 0), i.e., the 
magnitude of spreading coefficient apparently does not have any 
influence. This has been well documented, both experimentally and 
theoretically [de Gennes, 1985]. A systematic theoretical and 
experimental study in a dry capillary was conducted by Tanner [1979] 
and a simple cubic relation between the apparent dynamic advancing 
contact angle and Ca, θa ~ K1(Ca)1/3 was established. Optical 
observations of spreading silicone oil drops by Tanner showed that the 
droplet profile had an inflection near the edge, consistent with the 
existence of a pressure gradient arising from surface tension, which 
caused the spreading motion. The edge profile was predictable and the 
analysis showed that the edge velocity was approximately proportional 
to the cube of the slope at the inflection. The relationship given by Eq. 
(13) is therefore referred to as Tanner’s Law or Hoffman-Tanner Law. 
Figure 4 shows the typical variation of the Tanner Law curve by taking 
K1 = 1.92 [Kavehpour et al., 2003]. Other improved forms, by taking a 
somewhat stronger power law with the exponent of Ca = 0.39 and 
constant = 3.4 and more detailed treatment by incorporating a weak 
logarithmic dependency of the constant K1 which gives θa ~ 
K3(Ca·ln(K4 Ca2/3)1/3 is also depicted along with the experimental data 
of Kavehpour et al. [2003]. All these variants of Hoffman-Tanner law 
are valid for low Ca ranging from 10-6 - 10-2, under the assumptions 
discussed earlier in this section. 

For dynamic systems with non-zero static contact angle, the 
Hoffman-Tanner Law can be slightly modified and extended as: 

3 3

d s
A Caθ θ− = ⋅                  (15)  

If Ca is small, linearization of Eq. (15) leads to [Berthier, 2008]: 

( ) ( )1/ 33 31
3

31
3

1 ( / )

or

( ) ( / )

d s s s

d s s

A Ca A Ca

A Ca

θ θ θ θ

θ θ θ

= + ⋅ ≈ + ⋅

− ≈ ⋅

             (16) 

 
 

 
Fig. 4: Variation of apparent contact angle with Ca as per Tanner’s law. 

Inset shows experimental data by Kavehpour et al. [2003]. 

It should be noted that Ca takes the sign of the velocity in the 

reference frame of the problem. Thus, 
d s

θ θ−  takes the sign of Ca and 

the values of dynamic advancing and receding contact angles are: 

3 3

1 1
 and 

3 3
a s r s

s s

A Ca A Ca
θ θ θ θ

θ θ
⋅ ⋅

≈ + ≈ −                           (17) 

These equations inform us that the advancing contact angle is larger 
than the static contact angle and a receding contact angle is smaller 
than the static contact angle. This observation has been frequently 
reported qualitatively in the context of PHPs also.  

4. TWO-PHASE FLOW IN CAPILLARIES  

With this background of basic wettability issues and formation of 
contact lines as discussed in the previous section, let us now focus our 
attention on two-phase flows in capillary tubes. 

Transport mechanisms of heat, momentum and species under two-
phase flow conditions in mini/micro systems are greatly affected by the 
distribution of phases in the channel (or the flow patterns that emerge). 
One of the important multi-phase flow pattern frequently occurring in 
two-phase flow systems is the motion of a gas/vapor bubble entrapped 
between liquid slugs as was shown earlier with reference to PHPs (in 
Figure 1-c), usually termed as slug flow. Slug flow belongs to a class of 
intermittent flows that has very distinctive features. There is an inherent 
random/statistical component for such a flow because of intermittent 
phase reversal which results in fluctuations of pressure and velocity. 
The complications arise due to the unique flow structure which is 
neither periodic in space nor in time [Ajaev and Homsy, 2006]. The 
two-phases may be composed of a either gas-liquid two-component 
system or a single component, vapor-liquid system. 

Capillary slug flow or Taylor bubble flow is one of the sub-classes 
of conventional slug flow; as noted, this special pattern appears when 
surface tension dominates over gravitational body force, as discussed in 
Section 2. Due to this, capillary slug flows exist in horizontal as well as 
in vertical orientations. Also, flow is essentially laminar and 
predominantly viscous; the liquid plugs are free of smaller bubbles and 
breakage and coalescence of air slugs is virtually absent. This is often 
seen in the adiabatic section of PHPs. The understanding of species 
transport under such a flow configuration is a challenging problem.  
Other than PHPs, in recent times, the attention to two-phase Taylor/slug 
flows has increased due to the development of mini/micro scale 
systems in diverse branches ranging from bio-medical, bio-chemical to 
thermal management of electronics, water management of fuel cells, 
micro-two-phase heat exchangers and reactors, nuclear rod bundles, 
DNA separation and analysis, digital microfluidics, microscale mass 
transfer processes, lab-on-chips, micro-fluidic devices, loop heat pipes, 
etc.; in all these cases of emerging technologies, Taylor bubble flow is 
the dominant flow pattern. [for example, see Triplett et al., 1999; 
Ghiaasiaan and Abdel-Khalik, 2001; Devesenathipathy, 2003; Spernjak 
et al., 2007; Steijn et al., 2008; Moharana et al. 2010].  

4.1 Taylor bubble flows 

Taylor slug flow occurs over a wide range of parameters, for all 
pipe inclinations and for a wide range of gas and liquid flow rates. 
Taylor slug flow conditions are typically characterized by a sequence of 
long bubbles which are trapped in between liquid plugs. The 
diametrical size of these bubbles is nearly comparable to the pipe 
diameter while their axial length scale can be several times the pipe 
diameter. A thin liquid film usually always separates the bubbles from 
the channel wall. The thickness of this film varies from millimeter scale 
to micro scale depending upon the dimensions, geometry, flow velocity, 
orientation of the channel and the thermophysical properties of the fluid 
and channel used. The intermittent liquid plugs may also have small 
diameter bubbles (much smaller than the pipe diameter) entrapped 
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inside them, as seen in the third image on Figure 5; this tendency 
reduces as the Bond number decreases. Taylor bubbles are 
characterized by strong geometric constraints. The definitive pioneering 
work, for configurations involving circular conventional channels, 
which has spawned a large literature, is that of Bretherton [1961], who 
observed that a Taylor bubble does not rise spontaneously in a water 
filled vertical capillary under the effect of gravity for Bo < 1.835; this 
value can also be used to define small channels, as noted in Section 2. 
Contemporary researchers of Bretherton, who also addressed this 
problem were Harmathy [1960] and White and Beardmore [1962]. 

The presence of the film that separates the bubble from the wall 
means that the bubble velocity is not equal to the liquid one [Fabre and 
Lińe, 1992]. The presence of bubbles in front and at the back of the 
slugs, modifies the flow field in the liquid slug compared with single-
phase flow and toroidal vortices extending the length of the slug can 
form [Thulasidas et al., 1995, 1997]. The recirculation patterns within 
the liquid slugs improve heat and mass transfer from liquid to wall and 
interfacial mass transfer from gas/vapor to liquid. Thus, Taylor flow 
offers many advantages for carrying out heat mass and momentum 
transfer operations compared with other patterns and to single-phase 
laminar flow. The film surrounding the bubbles is the only means of 
communication between two successive slugs, and in the majority of 
cases, its thickness is only a very small percentage of the tube diameter 
[Moriyama and Inoue, 1992]. For practical estimation of species 
transfer coefficients, properties such as thickness of film that surrounds 
the bubbles, bubble shape and velocity, bubble and slug length, flow 
patterns in the liquid slug, and pressure drop, are some of the primary 
parameters of interest [Devesenathipathy, 2003; Nogueira et al., 2003, 
2006; Angeli and Gavriilidis, 2008; Steijn et al., 2007, 2008].  

The reduction in the length scale poses challenging tasks to model 
the Taylor bubble flows in mini/micro systems. The flow and heat 
transfer are influenced by the dynamics of a very small group of 
bubbles or typically, isolated slug bubbles, rather than the averaged 
behavior of a large population of bubbles. This, in principle, improves 
the prospects of developing mechanistic models. Such development 
needs to be facilitated by localized experimental observations of slug-
bubble systems with synchronized measurements of the resulting 
fluctuations in local conditions such as temperature, pressure and wall 
heat flux [King et al., 2007]. Mass transfer characteristics are also 
affected by the local hydrodynamic properties of the flow [Berčič and 
Pintar, 1997]. Knowledge of local hydrodynamic characteristics of the 
unit cell during Taylor slug/bubble flow is vital for complete 
understanding of the behavior and improving the performance of 
micro-thermofluidic and micro-chemical systems that operate in this 
regime.  

 

 
Fig. 5: Flow patterns in a vertical capillary tube as a function of 

increasing superficial velocity [Khandekar, 2004]. 

The main forces acting on slug-bubble system are due to surface 
tension, viscosity, inertia, gravity, applied tangential shear stress and 
the force associated with the disjoining pressure at the molecular level. 
This gives rise to primary non-dimensional numbers of interest, i.e. 
Reynolds number, Capillary number, Bond number and Weber number 
plus geometric aspect ratios, if any. Marangoni number (M) and 
dimensionless Hamaker constant (ε) are also important depending on 
the domain of interest. When dealing with additional time scales in the 
system, for example arising due to externally imposed oscillations, 
Strouhal or Womersley number need to be considered for appropriate 
scaling. Additional non-dimensional numbers appearing for non-
isothermal cases, without phase-change, are Peclet number (Re·Pr) and 
Nusselt number. If the axial conduction in the substrate is important 
under given boundary conditions, the Biot Number of the wall material 
also needs to be considered. The issues become more complicated with 
phase-change phenomena of evaporation and condensation occurring 
simultaneously in the Taylor bubble system.  

It has also been found that the surface energy (surface wetting 
capability) of the wall may have great impact on the interfacial film 
dynamics when a confined bubble is flowing along with liquid in a 
mini/microchannel [Aussilous and Quéré, 2000]. This indicates that the 
friction of Taylor slug flows may strongly depend on the wall property, 
effective dynamic contact angles and hysteresis in a mini/microchannel 
[Taha and Cui, 2004; Berthier, 2008]. Modeling multi-phase fluid flow 
at the micro-scale with the assumption of simple disjoining pressure 
and liquid surface tension may not be accurate [Akbar and Ghiaasiaan, 
2006]. The former will depend on the interactions between the fluid, 
gas/vapor, and the surface properties of the wall. Furthermore, due to 
the complexities of micro scale thermal capillary effects and the aspect 
ratio of the mini/micro channel, the relationship between the interfacial 
liquid film thickness, velocity profiles, friction, plug/slug menisci 
shape, dynamic contact angle hysteresis, is also not well understood 
[Chamarthy, 2008]. 

While in many systems capillary flows are uni-directional in nature 
or are employed in this way, there are many instances where the flow is 
either oscillating or pulsating in nature, as in the case of PHPs. These 
oscillations/pulsations may be externally controlled, thermally driven 
or alternatively an effect of the dynamic instabilities which are inherent 
part of two-phase boiling/condensation systems. The review by Angeli 
and Gavriilidis [2008] clearly suggests that bulk of the work has been 
carried out for unidirectional fully developed ‘steady-state’ Taylor 
bubble flows in capillaries. Two-phase flow in non-circular channels is 
also not commonly addressed in literature. There is scarcely any work 
done on oscillatory Taylor bubble flows.  

As was noted earlier, exhaustive mathematical modeling of the 
phenomena occurring inside a PHP is yet an unaccomplished task. The 
models which are available for pressure drop and heat transfer 
coefficients are indeed very much simplified; they not only ignore the 
complex physics of the ‘unit-cell’, the singular characteristics of 
oscillating hydrodynamics of Taylor bubbles also remain completely 
unaddressed. Zhang et al. [2002] and Dobson [2004, 2005] studied the 
governing mechanism of the PHP using highly simplistic models. They 
studied a U-shaped miniature tube (i.e. single bend PHP) with a single 
liquid plug or a vapor bubble. The evaporation/condensation rate was 
assumed to be proportional to the difference of the temperatures of the 
vapor and the walls in contact with it. In the vapor bubble evolution 
equation, this leads to terms analogous to those of sensible heat transfer 
between the vapor and the tube walls. The approach by Zhang et al., 
[2002] has been extended by Shaffi et al. [2002] to model both looped 
and unlooped PHPs with multiple vapor bubbles, liquid plugs and tube 
bends. This model has been used later by another team 
[Sakulchangsatjatai et al., 2004], also for multi-bubble PHP modeling. 
It is well known from general considerations of thermal resistance that 
during the meniscus evaporation, an important contribution to the heat 
and mass transfer comes from thin liquid films that may cover the 
interior of the capillary (see Section 5.3). The local two-phase 
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equilibrium exists at the interface of microscopically thin films so that 
the interface is at saturation or very close to it. This effect was 
completely neglected in the above mentioned modeling approaches. 
Dobson [2004, 2005] has included a film in his single bubble model. 
However, the film mass exchange in his model was not related to the 
liquid-vapor equilibrium and the mass exchange was proportional to the 
difference of temperatures of the vapor and the wall, just like in the 
other works that did not treat the films at all. The single-bubble model 
of Zhang and Faghri [2002, 2003] has taken a step forward by 
rigorously showing that most part of heat and mass exchange occurs via 
the films in the PHP. The shape of the curved meniscus including the 
film has been calculated. 

Globally, the existing models describe oscillations of only small 
amplitudes. During these oscillations, the Taylor bubble trains (or their 
menisci) are located almost all the time in either the evaporator or the 
condenser section. This contradicts most experimental results of PHPs 
where strong amplitude meniscus oscillations are observed, i.e., the 
pulsating flow is superimposed with strong unidirectional flows. During 
such large amplitude oscillations, the Taylor bubble menisci may sweep 
both the entire length scale of the pulsating heat pipe. It is imperative 
that for comprehensive understanding and subsequent modeling 
ventures of PHPs, there is a need to systematically study the thermo-
hydrodynamics and transport mechanism of oscillating/pulsating Taylor 
bubble flows in mini/micro channels. 

Parameters of interest: The main parameters which impact the 
transport behavior in the context of unidirectional flow of Taylor 
bubbles flowing in circular geometries are: 

(a) Liquid film thickness  

It is known from quite sometime now that, when a gas bubble 
displaces a wetting fluid which is filled in a capillary, a liquid film is 
deposited on the capillary between the gas bubble and the inside wall 
[Fairbrother and Stubbs, 1935]. Early on it was known that the film 
thickness follows the scaling (δ/R) ~ Ca1/2 for Ca ranging from 10-5 to 
10-1. Seminal analytical work, with some simplified assumptions by 
Bretherton [1961] established the scaling as (δ/R) ~ Ca2/3, the theory 
being valid for creeping flows at low Ca ranging from 10-3 to 10-2 and 
bubble Weber number <<1. Although, ironically the theory is based on 
low Ca assumption, it under-predicts the film thickness at the lower 
range of Ca. This discrepancy has been explained by various 
mechanistic models and arguments [Goldsmith and Mason, 1963; 
Schwartz et al. 1986], the most convincing being the effect of variable 
surface tension in the film and the bubble cap region, which in turn 
increases the film thickness at low Ca [Ratulowski and Chang, 1989]. 
Many experiments have confirmed the scalings, some results being 
close to Bretherton’s theory while some more closely following that 
proposed by Fairbrother and Stubbs [1935]. Various numerical studies, 
especially at high Ca, have been done not only to predict the bubble 
film thickness but also the Taylor bubble shape [Edvinsson and 
Irandoust, 1996; Giavedoni and Saita, 1997; Heil 2001]. The effect of 
inertia (average flow Re) is also felt on the bubble shape and film 
thickness; it is non-monotonic but not profound. With increasing Re the 
film thickness first decreases slightly and then somewhat increases. In 
addition, ripples and capillary waves can be seen on the interface. 
Moreover, the Froude number also affects the bubble shape as the 
significance of body forces increase; this is especially true while 
comparing upward and downward Taylor bubble flows. Increasing Ca 
also leads the shape of the back of the Taylor bubble to change from 
convex to concave [Taha and Cui, 2006]. 

Figure 6 shows the variation of film thickness with Capillary 
number by using four commonly available correlations, as listed 
therein, along with their validity range. The effect of high Ca region is 
well captured by the correlations of Aussilous and Quéré [2000], which 
at low Ca, overlaps with the Bretherton’s theory.  

 
Fig. 6: Variation of film thickness with Capillary number, as per four 

correlations mentioned therein. 
 
In the context of a PHP, looking into the experiments available so 

far with common working fluids like water, ethanol, acetone, and 
common refrigerants etc., typical Ca will be ranging from 10-4 to 10-1 

[Xu et al., 2005]. Systematic PHP visualization experiments are needed 
to quantify the film thickness regimes likely to be encountered in 
practice under oscillatory conditions. This is especially important in the 
adiabatic section which has substantial contribution in the overall 
pressure drop. In the evaporator and condenser sections of the PHP the 
situation is more complicated due to phase-change processes. 

(b) Bubble velocity and shapes 

It is well known that the bubble velocity is somewhat faster than 
the average liquid slug velocity due to the presence of the liquid film 
around it. Thus, there is a relative motion between the bubble and the 
adjoining liquid, which is characterized by: 

( ) /
b ls b

m U U U= −                  (18) 

As this drift or relative velocity depends on the film thickness 
surrounding the bubble, it is obvious that the scaling for film thickness 
vs. Ca should, in general, be also applicable for m. Indeed, as per 
Fairbrother and Stubbs [1935], m scales as ~ Ca1/2 while as per the 
Bretherton theory it scales as ~ Ca2/3. Again, as expected, when inertia 
forces become dominant and the liquid film thickness gets limited by 
the thickness of the boundary layer that develops in the liquid as it 
moves, the parameter m also approaches a constant value ~ 0.56-0.60 at 
large Capillary numbers [Taylor, 1961; Cox, 1964; Giavedoni and 
Saita, 1997]. Some comparative studies of vertical upward, vertical 
downward and horizontal or inclined tubes also indicate the effect of 
Bond number or Eötvös Number on the relative bubble velocity. 

The possible streamline patterns in the liquid slug ahead of the gas 
bubble were first proposed in an early study by Taylor [1961]. For 
cases where Ca is low, m < 0.5, two possible flow patterns in the liquid 
slug were proposed (a) single stagnation points on the bubble tip and, 
(b) formation of a stagnation ring around the bubble cap with vortex 
pairs in the liquid slug; there is also a possibility of formation of one 
stagnation point on the bubble tip and a second stagnation point inside 
the liquid slug for a narrow range of 0.60<Ca<0.69. As Ca increases, 
the vortices in the liquid slug tend to disappear leading to bypass flows. 
Thus, at high Ca, for m > 0.5, only one stagnation point on the bubble 
tip was suggested, with complete bypass flow in the liquid slug [Cox, 
1964]. More recent experimental and numerical studies by Thulasidas 
et al. [1997], Giavedoni and Saita [1999] and, Taha and Cui [2004, 
2006] have confirmed these findings. Typical result of Taylor [1961] 
and Taha and Sui [2004] are given in Figure 7. Some PIV and 
visualization studies have also been undertaken which confirm the 
existence of toroidal vortices extending the length of the liquid slug 
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[Thulasidas et al., 1995, 1997; Kashid et al., 2005]. One of the 
parameters of interest in enhancement of heat and mass transfer is the 
typical velocity of the particles in the toroidal vortices. The inverse 
ratio of the time required by the liquid slug to travel its own length to 
the time it takes for a typical particle in the vortex to come from one 
end of the liquid plug to the other end, is defined as the dimensionless 
recirculation time. The ratio increases to infinity for very large Ca as 
there is complete bypass flow. For Ca < 0.2 this is found to be of the 
order of 2 [Thuslasidas et al. 1997]. Increasing inertia forces changes 
the shape of the bubble nose [Heil, 2001]. 

 
(c) Pressure drop across the unit cell 

The nature of the Taylor bubble flow clearly suggests that flow 
pattern independent models, like the common Lockhart-Martinelli 
formulations [Lockhart and Martinelli, 1949] which are very successful 
on larger diameter channels, will not be successful. In fact, this 
observation was made by Lockhart and Martinelli themselves that their 
procedure is not applicable for slug flows having alternate liquid plugs 
and gas bubbles. Homogeneous flow models, wherein there is no 
interfacial slip, may be partially successful only under a very narrow 
range of slug flow operating conditions [Triplett et al. 1999; Kawahara 
et al. 2002, Chung and Kawaji, 2004; Liu et al., 2005]. These common 
models fail when applied to Taylor bubble trains because of two 
primary reasons (i) dominance of surface tension in slug flows, which 
is neglected in these models (ii) additional and unique flow field 
attributes in terms of velocity patterns in the liquid slug and vapor 
bubbles, which is also ignored in conventional models. Chen et al. 
[2002] have shown that even after the inclusion of surface tension 
effects in terms of Bond number and Weber number, all the available 
experimental data sets on pressure drop in slug flows cannot be 
comprehensively predicted. This necessarily means that improved 
models should not only include the effect of surface tension but should 
also address to resolve the effect of flow fields in the unit cell on the 
overall pressure drop.  

To develop a specific model applicable to Taylor bubble flows, the 
usual practice is to conveniently divide the net pressure drop in a unit 
cell into three components: 

 

 
Fig. 7: Flow patterns in the liquid slug trapped between Taylor bubbles 

(a) as proposed by Taylor [1961] and (b) as numerically 
computed by Taha and Cui [2004]. 

(i) Pressure drop in the liquid plug, 
(ii) Pressure drop around the ends of the bubble and, 
(iii) Pressure drop along the body of the bubble. 

The last contribution tends to zero or minimal when (i) gravity 
forces are small i.e., Bond number is small, and (ii) shear in the gas 
phase is neglected; viscosity and density of the gas phase is much 
smaller than the liquid phase. With these assumptions, the gas in the 
bubble is practically at constant pressure and for a stable constant liquid 
film thickness surrounding the bubble, its curvature is constant, 
necessitating that pressure drop cannot exist in the bubble body. The 
fact that, the terminal velocity of cylindrical bubbles rising vertically 
upwards in stagnant liquid is generally unaffected by the length of the 
bubble, also supports these assumptions. If we invoke this assumption 
of zero pressure drop in the bubble body, then the overall pressure drop 
curve may look something like what is depicted in Figure 8-a. An 
approximately triangular or saw-tooth alternating component of 
pressure drop gets superimposed on the average pressure gradient. It is 
interesting to note that this phenomenon, on its own, can excite 
oscillations and pressure perturbations in the flow [Wallis, 1969].  

 
 

 
Fig. 8: (a) Pressure drop in Taylor bubble flow assuming no pressure in 

individual bubbles (b) the receding angle is larger than π/2 (c) 
the receding angle is smaller than π/2 (d) examples of Taylor 
bubble flows with water and ethanol showing contact angle 
hysteresis [Khandekar et al., 2002] (e) Explanation of the 
additional pressure drop due to capillarity. 
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In real-time engineering systems, contact angle hysteresis may be 
present wherein the advancing and receding angles of a typical bubble 
may be different, as noted earlier in Section 3.1. This gives rise to 
additional pressure drop due to capillary forces. This resistance is due 
to the capillary pressure difference between the plug front (in moving 
direction) and the plug end (against movement). If the bubble cap radii 
are assumed to be spherical in geometry, then the following simplified 
estimate of the capillary pressure gradient across a liquid-vapor 
interface in a tube of circular cross section, due to the Laplace equation, 
and because of the two different contact angles (advancing, θa and 
receding, θr), can be formed: 

( )(2 / ) cos cos
cap a r

P Rσ θ θΔ = − +                (19) 

This scenario is depicted in Figure 8-b, c. If θa is larger than π/2, 
there is a positive pressure drop associated with the advancing 
interface. If θr is smaller than π/2, the receding front contributes 
positively to the pressure drop (Figure 8-c), and negatively in the 
opposite case (Figure 8-b). An example of this hysteresis occurring in a 
PHP operated by water and ethanol, respectively, is shown in Figure 8-
d while Figure 8-e explains the genesis of this additional pressure drop. 
The trailing slug curvature slips over a just wetted surface by the bulk 
liquid while the front meniscus has different conditions, as seen. This 
additional resistance is additive and gets amplified if several plugs are 
simultaneously located in a channel. These cumulative pressure 
gradients damp oscillations and therefore fluid/solid combinations 
having large dynamic contact angle hysteresis should be avoided for 
PHP application. Too many plugs in the capillary may even rapidly 
block the flow if the driving force is not sufficient.  For N plugs, we 
have, 

( )(2 / ) cos cos
cap a r i o

P N R Pσ θ θ −Δ = ⋅ − + > Δ              (20) 

where 
i o

P−Δ is the driving pressure differential between the inlet and 

outlet of a tube section. Introducing the linearized form of Hoffman-
Tanner relationship (i.e., Eq 17, derived in Section 3.2), we get a more 
appropriate form of the pressure drop equation: 

, ,3 3

, ,

1 1
1  and 1

3 3
a s a r r a

s a s r

ACa ACa
θ θ θ θ

θ θ
= + = +

   
   
   

             (21) 

where the index s stands for static contact angle;
,s a

θ and 
,s r

θ  are the 

two static contact angles, both being equal only if there is no static 
hysteresis, i.e., perfectly smooth and chemically homogeneous surface. 

As per the classical Bretherton’s theory, for low Ca, the pressure 
drop across a gas bubble moving through a liquid filled circular channel 
is given by: 

2 / 3( / ) 7.16(3 )
b

P D CaσΔ =                (22) 

As for the case of film thickness and relative bubble velocity, this 
formulation by Bretherton deviates from experimental results. Inertial 
effects also lead to a drift away from the Bretherton theory as explicitly 
demonstrated by Westborg and Hassager [1989], Giavedoni and Saita 
[1997], Heil [2001] and Fujioka and Grotberg [2005]. As the Capillary 
number increases, the film surrounding the bubble grows and 
subsequently occupies a significant portion of the tube around the 
bubble. At higher flow velocities there may be considerable interfacial 
resistance; flow fields develop in the gas bubble too, which ensue a 
non-zero pressure drop.  

In a recent exhaustive work, Kreutzer [2005] has modeled the 
Taylor bubble flows extensively for a range of flow conditions. The 
general line of argument followed is that the Hagen-Poiseuille flow in 
the liquid slugs gets disturbed by the intermittent bubbles. Thus, the 

pressure drop calculation done as per the standard Hagen-Poiseuille 
formulation needs amendments to capture the additional pressure drop 
created by the presence of the bubble caps. For a given Ca, the flow 
disturbances in the liquid plug created by the bubble caps is confined to 
a small distance in its vicinity, and is therefore independent of the 
length of the liquid slug. The disturbance length scale is also a function 
of the thermophysical properties of the fluid/wall combination, the 
Bond number, and the average Reynolds number of the flow. Thus, the 
correction term in the fanning friction factor (ffanning) was chosen to be 
inversely proportional to the length of the liquid slug. The modified 
fanning friction factor for liquid slug in the unit-cell suggested by 
Kreutzer [2005] is given by: 

 ( )
* * *

* 21

2

16 ( / 4)( / )
1 ( )( / )

( )

B

s l l g

D D dP dz
f A Re Ca

Re L j jρ
−

= + =
+

 
 
 

       (23) 

In this equation, A and B are constants and the modified Reynolds 
number and Capillary numbers are defined on the basis of sum of the 
gas and liquid superficial velocities, jl and jg. While numerical and 
experimental values of constant B was reported to be equal to 0.33, the 
experimental value of constant A was higher (= 0.17) than the 
numerically predicted value (=0.07). In this formulation, Re* and Ca* 
are given by: 

* *( ) /  and ( ) /
l l g l l l g

Re j j D Ca j jρ μ μ σ= ⋅ + ⋅ = ⋅ +             (24) 

To calculate the aggregate pressure drop, the statistical measure of 
the typical liquid slug lengths in a section of the tube under study needs 
to be known. All the data used for arriving at Eq. (23) were for Reb > 
150. For lower bubble Reynolds numbers another modification of Eq. 
(23) is provided recently by Warnier et al. [2010]. 

All mathematical models for pulsating heat pipes use extremely 
simplistic pressure drop correlations, typically the Hagen-Poiseuille 
model. Further, the statistical measure of bubble/liquid slug lengths in 
the adiabatic section of the pulsating heat pipe is not yet fully resolved 
vis-à-vis the operating boundary conditions. Unless these issues are 
studied, proper pressure drop estimation in the adiabatic section of the 
device cannot be achieved. The fact that the Taylor bubble flow is also 
oscillating, further complicates the estimation. Very little information is 
available on oscillating Taylor bubble flows, which we review in the 
next section. 

5. OSCILLATING/PULSATING MENISCI AND 
BUBBLES INSIDE CAPILLARIES 

The subject of oscillating/pulsating motion of liquid slugs inside 
mini or micro-channel/pipe/capillary/duct has received attention over 
the last two decades, both due to the large number of practical 
applications in which it appears and the interesting scientific challenges 
it poses. There are many engineering systems where oscillating/ 
pulsating two-phase capillary flows occur. The oscillations may be 
externally controlled, thermally driven or alternatively an effect of the 
dynamic instabilities which are inherent part of two-phase 
boiling/condensation systems [e.g., see Spernjak et al., 2007, Tadrist, 
2007]. In unidirectional flow system, the only relevant time scale is the 
momentum diffusion time. Here, in contrast, the flow is characterized 
by a second imposed time scale that is due to the oscillatory pressure 
gradient; the form of the resulting flow depends on the ratio of the 
diffusion time to the imposed time scale, i.e., Strouhal number (St). The 
magnitude of St determines the importance of acceleration effect in the 
fluid relative to the viscous effects (diffusion of momentum). In this 
role, it is evident that St can be considered as a Reynolds number, based 
on a characteristic ‘velocity’ ~ f·D. In addition, during oscillatory 
flows, the velocity of the meniscus/bubble continuously changes, 
resulting in dynamic variation of Re, Ca, We etc. 
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Drawing an analogy from single-phase oscillating systems, heat, 
mass and momentum transfer coefficients are expected to be higher in 
case of oscillating two-phase systems. While a number of investigators 
have looked into the relevant issues for fully developed unidirectional 
steady state Taylor bubble flows [Ho and Leal, 1975; Martinez and 
Udell, 1990; Borhan and Pallinti, 1998], information on oscillating 
Taylor bubble flows is scarce [Graham and Higdon, 2000]. Young and 
Davis [1987] were among the first to study oscillatory contact line 
motion and they simplified Dussan’s model [1979] for unidirectional 
creeping flow. Their analysis considered slow quasi-static oscillatory 
contact line motions of a solid plate being submerged in free surface of 
a liquid. Analytical solution was given when contact angle hysteresis 
was neglected. In studying a similar capillary gravity wave problem, 
Miles [1990] argued that the contact angle can be proportional to 
contact line velocity, but there will be a phase-lag in oscillatory 
motions. From a mathematical point of view, the description of the 
correct boundary condition at the contact line becomes an issue. The 
presence of capillarity adds an extra term to the dynamic-free surface 
boundary condition which is proportional to the free surface curvature 
and thus increases the order of the dynamic-free surface boundary 
condition [Perlin et al., 2004]. 

5.1 Oscillatory slug flows under adiabatic conditions  

Oscillatory two-phase flows under ‘adiabatic’ conditions can be 
obtained by controlling the flow by external pressure variations. 

Depending on the wettability of the fluid on the solid wall, in 
conjunction with the applied external surface and body forces, there can 
be three types of oscillatory contact line motion of the liquid-gas/vapor 
meniscus confined in a tube, as detailed in Figure 9, viz., (a) No contact 
line sticking - the average velocity of contact line scales with the 
average bulk liquid velocity, (b) Partial sticking - there is a phase-lag in 
the average contact line velocity and the bulk fluid velocity, and (c) 
Full sticking, the contact line is nearly motionless while the bulk liquid 
moves/ oscillates. Further, in cases (a) and (b), there can also be contact 
angle hysteresis in advancing and receding strokes (2D axisymmetric 
representation has been shown here). The corresponding schematic 
representation of the oscillatory movement of the liquid slug is shown 
in Figure 9-d, e, f. 

 

 
Fig. 9: Possible configurations of a single meniscus and liquid slugs 

under oscillatory motion [Tripathi et al., 2010]. 

Recent exploratory studies by Qiu and Xishi [2005, 2006] focus on 
finding the effect of oscillating frequency on the interfacial film 
thickness around Taylor bubbles. As we have seen in Section 4.1.1, 
many relations are available for film thickness of a Taylor bubble, 
under unidirectional quasi-steady flow conditions, suggesting that the 
film thickness increases with increase in the velocity. However, during 
oscillatory conditions, the bulk flow velocity varies from 0 to Umax in a 
prescribed manner. Inertia forces may also be dominant depending on 
the Weber number. Qiu and Xishi [2005, 2006] used a novel laser based 
optical fringe scattering technique to minimize the ‘Mirage’ effect due 
to the cylindrical nature of the tube cross section in which the flow 
takes place. The schematic of the experimental set-up is shown in 
Figure 10-a. The preliminary result for the change in the mean film 
thickness with the oscillating frequency is plotted in Figure 10-b. The 
film thickness increased rapidly with increase in the frequency from 0 
Hz to 4.0 Hz; thereafter an increase from 4 to 8 Hz only increased the 
film thickness by 0.1 micrometer. Further increase of frequency 
introduced some periodicity in film thickness. Looking at the 
experimental results, they suggest changes in the steady flow model of 
film thickness to suit the oscillatory conditions. 

Shekhawat et al. [2009] have studied the interfacial contact line 
behavior of the single oscillating meniscus formed between a long 
liquid slug and air, inside a square capillary tube (2.0 mm x 2.0 mm). 
An eccentric cam follower system, as shown in Figure 11-a, was 
fabricated to provide simple harmonic oscillations of fluid meniscus 
(water and silicon oil). Dynamic apparent contact angle measurements 
were carried out for water at two oscillating frequencies, 0.25 Hz and 
0.50 Hz using high speed videography. Contact angle of water at static 
condition varied from 19.8o to 21.8o, with average value of 21o. 
Figure 11-c shows the images of the oscillating meniscus at respective 
locations marked on the displacement-time graph, i.e. Figure 11-b. 
Points a, b, c, and d show the advancing meniscus and e, f, g, and h 
show the receding meniscus respectively. Points d and e are at the top 
dead end of the stroke, and points h and a are at bottom dead end of the 
stroke respectively. A clear change in the curvature of the meniscus as it 
oscillates was noted; to quantify this change the contact angle was 
measured by magnified videography. The relevant parameters of the 
experiment are noted in Figure 11-d. 

 

 
Fig. 10: (a) Experimental set-up by Qiu and Xishi [2005, 2006] used 

for measurements of liquid film thickness in an oscillating 
vapor plug and, (b) mean film thickness as a function of 
oscillating frequency. 



Frontiers in Heat Pipes (FHP), 1, 023003 (2010)
DOI: 10.5098/fhp.v1.2.3003

Global Digital Central
ISSN: 2155-658X

12 
 

 
Fig. 11: (a) Experimental setup for studying oscillating menisci, (b) 

displacement-time graph with indices, (c) images of a water 
meniscus oscillating at 0.50 Hz at indicated locations and, (d) 
relevant experimental parameters [Shekhawat et al., 2009]. 

 
Figure 12-a shows the variation of contact angle along the stroke 

length at an oscillating frequency of 0.5 Hz and 0.25 Hz, static contact 
angle line is set at 21°. It was seen that the advancing contact angle was 
more than the receding contact angle. It can be seen that the difference 
in the advancing and receding contact angle at 0.5 Hz is more than that 
at 0.25 Hz. This effect was attributed to the inertial and viscous forces 
as indicated by higher Re and Ca. Figure 12-b represents the velocity-
time graph super-imposed on the dynamic contact angle. Contact angle 
variation were quite in-line with the temporal velocity fluctuations. 

Visualization of silicon oil meniscus in Figure 13 revealed a major 
difference between the behaviors of the two fluids. It was observed that 
the contact point of the silicon oil meniscus stuck to the extreme end of 
the stroke, and due to this a continuous film was formed when the bulk 
fluid was pulled away from the top dead center position. Also, there 
was a drastic difference in the curvature of meniscus during advancing 
and receding stroke (see Figure 13-a and 11-c for comparison). 
Figure 13-a shows the images of the meniscus oscillating corresponding 
to the marked positions, at an oscillating frequency of 0.75 Hz. The 
thickness of the film formed was also recorded at eight different 
oscillating frequencies, as noted in Figure 13-b, along with the 
corresponding values of dimensionless numbers. Figure 13-c shows the 

variation of average film thickness (see inset: at station A, which is at 
the mid point of the stroke length) with the change in frequency. It was 
observed that the film thickness increased with increase in oscillating 
frequency, the rate of increase, decreasing with increasing frequency. 
The study concluded that an increase in the oscillating frequency 
increased the difference in the advancing angle and receding angle of 
the meniscus. There was considerable difference in the hydrodynamics 
of oscillating menisci of silicon oil and water respectively. 

During forced mechanical simple harmonic oscillations of a single 
meniscus of silicon oil-air interface by Tripathi et al. [2010] inside a 
square capillary tube of Dhyd = 3.0 mm, it was also seen that the 
meniscus contact line got totally immobile at the extreme end of the 
stroke during oscillations. Figure 14-a, b shows the different stages of 
the oscillating motion of single meniscus at 0.5 Hz, inside the capillary 
kept in horizontal and vertical positions respectively. The contact line 
got fixed relative to the glass tube and did not move at all, in spite of 
the sinusoidal motion given to the fluid alongside. Due to this, a 
continuous liquid film was formed along the stroke length. The 
dominance of adhesive forces in the case of silicon oil was clearly 
visible. The static contact angle of silicon oil on clean glass was found 
to be ~14.2°. ReD in this case changed from 0 to 3.3.  

For oscillations in horizontal tube orientation the effect of Bond 
number was clearly seen; the meniscus shape was not symmetrical, the 
length as well as the thickness of the bottom liquid film was always 
greater than at the top side. Also, the hysteresis of dynamic contact 
angle in the forward and the return stroke were clearly visible. In 
vertical orientation, there was considerable change of the radius of 
curvature in the upward and the downward strokes. The contact line 
completely stuck to the glass tube inner wall. This orientation provided 
symmetrical body forces on the meniscus geometry. 

 

 
Fig. 12: (a) Contact angle v/s displacement at oscillating frequency of 

0.5 Hz and 0.25 Hz, and (b) contact angle data superimposed on 
meniscus velocity, U, vs. time graph at an oscillating frequency 
of 0.5 Hz [Shekhawat et al., 2009]. 
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Fig. 13: (a) Images of silicon oil meniscus oscillating at 0.70 Hz, (b) 

experimental parameters, and (c) film thickness variation with 
imposed frequency at Station A [Shekhawat et al., 2009]. 

 

 
Fig. 14: Oscillating single meniscus of (a) Silicon oil inside horizontal 

capillary, (b) inside vertical capillary, (c) water inside 
horizontal capillary (d) inside vertical capillary, and (e) close-
up view of these two menisci in horizontal position [Tripathi et 
al., 2010]. 

Experiments with water were also carried out at oscillating 
frequency of 0.5 Hz. In this case, contrary to the silicon oil case, the 
contact line moved along with the bulk fluid/meniscus, albeit with 
some phase shift as clearly seen in Figure 14-c, d. Slip type motion was 
observed; the contact line moved freely along the tube with a time 
varying dynamic contact angle. Figure 14-c shows the oscillations of 
single water meniscus inside a horizontal capillary. When it was in the 
receding stroke (t = 0 to t = 1 s), the effect of gravity, even at a 
relatively small Bond number of 1.2, was quite visible; the meniscus 
shape was not quite symmetrical. The meniscus showed a relatively 
small radius of curvature in the receding stroke. During its advancing 
stroke (t = 1 to t = 2 s) the meniscus shape became flattened. Figure 14-
e shows the close view of silicon-oil and water menisci, for both 
advancing and receding interfaces, highlighting clear differences in the 
behavior of the two fluids. 

Recent studies by Lips and Bonjour [2007] and Lips et al. [2010] 
on adiabatic oscillations of menisci also brought to the fore the 
importance of dynamic contact angle in the Taylor bubble flows and the 
dissymmetry between the advancing and receding contact angles. 
Figure 15-a depicts the schematic of their test bench. It consisted of two 
tanks connected by a 2.4 mm ID and 4 mm OD glass capillary tube of 
length 300 mm. A speed controlled motor was used to impose a quasi-
sinusoidal volume variation on the upstream tank (variable pressure 
reservoir) through an eccentric wheel, and a flexible membrane 
mounted with a return spring. The downstream tank (constant pressure 
reservoir) was filled with liquid pentane in equilibrium with its vapor, 
whereas the upstream tank contained only pentane vapor. All 
experiments were done at saturation conditions. The amplitude of the 
pressure oscillation (~ 0.1 bar) and the frequency (~ 4 Hz) were 
representative of their typical values experimentally obtained on a 
branch of full-scale PHPs [Bensalem, 2008; Khandekar et al., 2009]. 

Figure 15-b illustrates a set of successive slug photographs at 20 ms 
interval. Enlarged views (i), (ii) and (iii) alongside show a strong 
dissymmetry of left and right interfaces: the curvature radius of 
advancing menisci (right interface in (i) and left interface in (iii)) was 
smaller than that of respective receding menisci representing of the 
pressure difference between both sides of the liquid slug, as explained 
earlier in Section 4.1. In case (ii), the interface velocity was equal to 
zero and the liquid slug was then symmetric. Figure 15-c shows one 
representative time evolution of the curvature radii of the two interfaces 
which was obtained by image processing at a liquid slug velocity 
oscillating between –0.2 and +0.3 m/s (negative velocity relates to a 
receding meniscus, while a positive velocity relates to an advancing 
one); eight periods of oscillation were recorded and superposed, the 
average being represented by the dotted line.  

A large number of experiments were done for various conditions: 
the liquid slug length ranged from 2.4 to 15.2 mm, the amplitude of the 
velocity oscillations could reach up to 0.65 m/s, and the frequency of 
the imposed sinusoidal evolution of the pressure ranged from 1.8 to 6.1 
Hz, which is believed to be the correct order of magnitude in PHPs. 
The experimental results were presented as the superposition of curves 
showing the inverse of the dimensionless meniscus curvature radius r* 
vs. meniscus velocity U (Figure 15-d). No clear effect of the slug 
length or frequency was detected; all the curves were roughly 
correlated by a linear fit as, 

(1 / *) ( / 2 ) 0.83 0.88r D r U= = − +                (25) 

where, r is the meniscus curvature radius and D is the tube diameter. 
Although this correlation is only valid for their specific experiment and 
is not general enough, it can be used to assess the importance of the 
slug dissymmetry in pressure drop calculations. For that purpose, as an 
example a liquid slug of length Ls = 1 cm whose maximum velocity is 
U = 0.5 m/s was demonstrated. Using Eq. (25), the advancing 
dimension-less radius of curvature comes out to be 1/r* = 0.465 (i.e. for 
U = 0.5 m/s), and that of the receding meniscus becomes 1.295 (i.e. for 
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U = -0.5 m/s). Therefore, the capillary pressure difference reaches 
10.9 Pa for pentane at 20°C (σ = 15.2 mN/m) in the 2.4 mm inner 
diameter tube used in the experiments. Besides, the frictional pressure 
drop for the liquid slug is calculated as: 

( ) 0.25 20.078 ( ) (2 )
f l s l l s s

P U D U L Dρ μ ρ−Δ = ⋅ ⋅ ⋅ ⋅ ⋅              (26) 

With ρl = 625.7 kg/m3 and μl = 2.37.10-4 Pa·s at 20°C, the frictional 
pressure drop for the considered 1 cm long slug reaches 13.5 Pa, which 
is of the same order of magnitude as the capillary pressure difference. 
This clearly demonstrates that the dynamic contact angle difference 
between receding and advancing menisci is vital for PHP pressure drop 
calculations (see inset of Figure 15-d). The capillary pressure 
difference will be as important as the frictional component in the 
momentum equation. 

 

 
Fig. 15: (a) Set-up for studying oscillatory Taylor bubbles, (b) 

Visualization of the liquid slug oscillations, (c) Typical time-
evolution of the meniscus radius of curvature, and (d) Linear 
regression for the dimensionless meniscus radius vs. interface 
velocity [Lips et al., 2010]. 

5.2 Oscillatory slug flows under diabatic conditions  

Very few quantitative studies are available describing controlled 
oscillatory flows under diabatic conditions. Das et al. [2010-a, 2010-b] 
have recently undertaken a parametric study of a two-phase oscillating 
flow in a capillary tube. Figure 16-a shows the schematic diagram of 
their experimental set up. This system represents the simplest version 
of a PHP; it consisted of a capillary tube of ID = 2 mm connected 
between two reservoirs. This tube was heated at one end (evaporator 
section = 15 cm; copper) and cooled at the other end (condenser section 
= 25 cm) by a transparent glass heat exchanger (for visualization) 
supplied by a constant temperature coolant, with an adiabatic length 
(variable = 1 cm, 2.5 cm and 5 cm respectively; glass) in between. An 
absolute pressure sensor was connected to one end of the evaporator. 
One end of the glass tube was connected to the evaporator and the other 
end was connected to a reservoir filled with saturated pentane. A 
heating coil was wound around this reservoir to fix its temperature, and 
thus experiments at different pressures could be performed. 
Visualization was performed and the oscillations of the liquid-vapor 
meniscus and the vapor pressure were observed. It was shown that such 
a system can develop instability that leads to thermally driven meniscus 
oscillations.  

The oscillations in the system (i.e., its instability) appeared when 
the difference between the temperatures Te and Tc exceeded a threshold 
value. At small Tc (0 - 10ºC), the meniscus did not move out of the 
condenser (towards the fluid reservoir) which, incidentally, was 
convenient for visualization. Figure 16-b shows meniscus oscillations 
and the vapor pressure Pv, close to the instability threshold. Reservoir 
pressure Pres was 90 kPa. The amplitude of pressure was about 15 kPa. 
The meniscus displacement curve was truncated from below because 
the adiabatic and evaporator sections were opaque and the meniscus 
displacement could not be measured inside them. The evolution was not 
exactly periodic; the average period was about 0.28 s. Note the 
intermittency in the height of the minima of the pressure curve: each 
second or third minimum is higher than the others. For Te = 65 ºC and 
Tc = 0 ºC, the maximum meniscus displacement was about 39 cm as 
shown in Figure 16-c; the displacement variation is truncated not only 
from below but also from above because of the limited camera view. 
Unlike the previous case, the pressure variation is regular, amplitude 
being about 50 kPa and it was steeper at expansion than at 
compression. The period of oscillation was about 0.34 s. Kinks in the 
displacement plot correspond to the sudden relocation of the meniscus.  

This happens because when the rate of condensation onto the 
moving liquid film in the condenser was high enough, the liquid film 
became unstable. Liquid film formed multiple bridges and coalesced to 
form secondary bubbles, relocating the meniscus of the main bubble. 
This could occur during the movement, both towards or away from the 
evaporator. The secondary bubble quickly disappeared by coalescing 
with the main bubble, which caused another kink. Figure 17-a show a 
series of images corresponding to Figure 16-b. Dark part of the 
capillary tube to the left is the vapor bubble and the bright part to the 
right is the liquid plug. Note that in both cases, at each oscillation, the 
meniscus had penetrated into the evaporator section. Figure 18 clearly 
shows the liquid film instability leading to formation of secondary 
bubbles by multiple bridges being formed by the liquid film. 

The meniscus displacement in the transparent condenser and the 
pressure variation were analyzed both close to the instability threshold 
and far from it. Close to the instability threshold oscillations were less 
regular and had smaller amplitude than far from it. In an attempt to 
better understand the existing PHP models and their simplified 
approach, i.e., considering the vapor phase as an ideal gas with sensible 
heating/ superheating, was also scrutinized. While such a simplification 
allows some important parameters (in particular, the oscillation 
frequency) to be obtained analytically, Das et al. [2010-a] explicitly 
show that only small amplitude oscillations can be described by such a 
simplification. More coherent (‘evaporation/condensation’) model that 
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allows the large amplitude oscillations (as observed experimentally in 
PHPs) has been proposed. The model differs from the existing PHP 
models (as discussed earlier [Zhang and Faghri, 2002; Zhang and 
Faghri, 2003; Dobson, 2004, Dobson 2005]) by virtue of the accounting 
of the two-phase equilibrium that occurs locally at the vapor–liquid 
interface. It also introduces and accounts for the time varying wetting 
films (see Figure 17-c) through which major part of the heat and mass 
transfer occurs [Höhmann and Stephan, 2002]. The model proposed by 
Das et al. [2010-a] succeeds in describing almost all observable 
qualitative features of the oscillations. 

 

 
Fig. 16: (a) Experimental setup by Das et al. [2010] (b) Measured 

evolutions of x (meniscus displacement from left end of the 
evaporator) and Pv for Pres = 90 kPa and Te = 45 ºC, Tc = 10 ºC; 
the solid characters show the time moments at which the 
snapshots in Figure 17-a were taken. (c) in this case Te = 65 ºC, 
Tc = 0 ºC. The slanted arrows indicate the kinks described in the 
text [Das et al., 2010-a]. 

 
Fig. 17: (a) Visualization results for thermally driven meniscus 

oscillations by Das et al. [2010-a]. Consecutive snapshots of 
the transparent condenser showing the meniscus position for 
one cycle (Te = 45 ºC, Tc = 10 ºC and Pres = 90 kPa). Time 
interval between two consecutive images is 13.3 ms. The liquid 
reservoir is to the right, and the evaporator is to the left of the 
images. (b) Proposed model by Das et al. [2010-a].  

 
 

 
Fig. 18: Vapor plug position in the condenser section (Te = 57°C, Tc = -

5°C and Pres = 90 kPa and Δt between two images = 8.3 ms) 
[Das et al., 2010-b]. 
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5.3 Implications on heat transfer 

It is well known that during phase-change heat transfer across 
menisci, an important contribution comes from thin liquid films 
forming part of the meniscus that may cover the interior of the capillary 
[for example, refer Morris, 2003]. The total heat transfer resistance is 
composed of the diffusional resistance of the liquid film and 
evaporation at vapor-liquid interface. Höhmann and Stephan [2002] 
reported the temperature distribution at the micro-region between the 
adsorbed, non-evaporating film and the macroscopic region of a liquid 
meniscus. It was observed that the temperature in the micro-region 
drastically drops and a high heat transfer is obtained at that region; up 
to 50 % of evaporation takes place in this small region. The length of 
the micro-region depends on the wetting characteristic which is 
represented by the local apparent contact angle. Thus, the dynamic 
apparent contact angle is a very important process parameter. In the 
context of PHPs, the effect of the film evaporation has been clearly 
highlighted by models proposed by Zhang and Faghri [2002] and more 
recent comprehensive extension by Das et al. [2010-a], as noted earlier. 
These models now need further refining by taking into account the 
exact shape/ dynamics of the interface for different working fluids of 
PHPs, as has been highlighted in this paper. Due to limitation of space, 
we have not explicitly reviewed the heat transfer implications of 
unidirectional and oscillating Taylor bubble flows; in the context of 
heat transfer in a PHP, the importance of this topic justifies the need of 
a separate dedicated review of the available knowledge. Coupling of 
heat transfer with the Taylor bubble hydrodynamics brings in other 
relevant phenomena such as Rayleigh-Taylor and Kelvin-Helmholtz 
instability, film dry-out, local non-equilibrium thermodynamics, 
meniscus deformation due to thermo-capillary waves, Marangoni 
convection, rapid compressibility effects, phase-change induced fluid 
motion, and heat transfer models due to phase change and resulting 
flow regimes [Faghri and Zhang, 2006; Carey, 2007].  

 

 
Fig. 19: Temperature distribution near to the meniscus as reported by 

Höhmann and Stephan [2002]. 

6. SUMMARY AND CONCLUSIONS 

Mathematical modeling of PHP is a contemporary problem, 
exhaustive and comprehensive solution strategy of which remains yet 
un-developed. Many fundamental phenomena need to be understood to 
develop a complete PHP model. Understanding the local 
hydrodynamics of oscillating Taylor bubble flows forms an important 
element in the building block of the mathematical description of the 
flow in a PHP. Eventually, the wettability of the liquid-solid 
combination has profound effects on the overall transport behavior.  
Needless to say, while the issue of hydrodynamics and resulting 
thermal behavior are intrinsically linked, in this article we have focused 
our attention only on reviewing the hydrodynamics of Taylor bubble 
flows. The fundamental understanding of the wettability and contact 
line motion are also reviewed. The related heat transfer implications 
necessarily require another detailed complementary review, which will 
be addressed in the near future. 

Present review clearly highlights the fact that many hydrodynamic 
aspects of steady unidirectional Taylor bubble flow, such as the 
thickness of the liquid film that surrounds the bubbles, bubble velocity, 
bubble and slug lengths, mixing and flow circulation in the liquid slugs, 
as well as pressure drop during Taylor flow, are quite well understood. 
On the other hand, oscillating Taylor bubble flows require immediate 
attention. Unless the nuances of oscillatory confined bubbles in small 
capillaries is well discerned, the net pressure drop correlations for a 
PHP cannot be exhaustively constructed. The challenging issues are 
high inertia, effect of wettability, contribution of surface waves, film 
thickness dynamics and bubble breakage and merger due to flow 
instability. 

There are not enough studies so far which explicitly highlight the 
qualitative and quantitative trends of the oscillating/pulsating flow. 
Preliminary available results for oscillating Taylor bubble flows, either 
generated through externally imposed mechanical pressure variation or 
by thermally inducing them, indicate the following trends: 
(i) Wettability of the working fluid-tube material drastically changes 

the shape of the meniscus in the advancing and retarding strokes. 
(ii) Most classical literature on the effect of Ca on the apparent 

contact angle is confined to unidirectional flow at low Ca values. 
Oscillatory flow velocities are not thoroughly addressed.  

(iii) Frequency of the flow oscillation affects the liquid film thickness 
which is formed around the Taylor bubble.  

(iv) In spite of the fact that the tube diameter satisfies the critical 
Bocrit criteria, gravity does affect the shape of the menisci. 

(v) Unless the thin film evaporation and phase-change 
thermodynamics is included in the mathematical model, the large 
scale oscillations of interfaces, as experimentally observed in 
PHPs, cannot be effectively captured. 

(vi) Inertia forces tend to create instabilities resulting in strong 
interfacial waves which can eventually result in bubble breakage 
and formation of secondary bubbles, etc.  

Fundamental hydrodynamic phenomena (and the resulting thermal 
trends) must be included in constructing global models for describing 
flow and heat transfer in a PHP. More studies to understand adiabatic as 
well as non-adiabatic phase-change induced oscillatory Taylor bubble 
flows are thus needed.     
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NOMENCLATURE 

A : Constant (-) 
Cp : Specific heat at constant pressure (J/kgK) 
D : Diameter, (m) 
F : Force (N) 
f : Oscillating frequency, (Hz) 

f  : Fractional area (-)  

g : Acceleration due to gravity, (m/s2) 
h : Heat transfer coefficient (W/m2K) 
j : Superficial velocity, (m/s)  
k : Thermal conductivity, (W/mK) 
L : Length scale, (m) 
P : Pressure (N/m2) 
∆P : Pressure drop, (N/m2) 
R : Radius, (m) 
r : Roughness parameter (-) 
r  : Meniscus curvature radius (m) 
S : Spreading coefficient (N/m) 
T : Temperature, (K)  
U : Velocity, (m/s) 
x : Distance, (m) 

Greek Symbols 

ε  : Dimensionless Hamaker constant, (Pdisδ/σ) 

λ  : Laplace Constant, / ( )
l v

gσ ρ ρ− , (m) 

μ  : Dynamic viscosity, (Pa·s) 

ρ  : Density, (kg/m3) 

δ  : Film thickness, (m) 
σ  : Surface tension, (N/m) 
θ  : Contact angle, (rad) 

*θ  : Contact angle, (rad) 

Non-Dimensional Numbers 

Bo : Bond number, 
2( ) /

l v hyd
g Dρ ρ σ−  

Bi : Biot Number, /
hyd s

h D k⋅  

Ca : Capillary number, /Uμ σ⋅  

Co : Confinement number, (1 / ) 4 / ( )
hyd l v

D gσ ρ ρ⋅ −  

Eö  : Eötvös number, Bo2 

Fr : Froude number, 
2( ) /( ( ))

hyd l v
U D gρ ρ ρ⋅ ⋅ ⋅ −  

ffanning : Fanning friction factor, 
21

2
( )

4

hyd
D dP

U
dx

ρ− ⋅
  

    
 

M : Marangoni number, /
hyd

D Uτ μ⋅ ⋅  

m : Relative bubble velocity, ( ) /
b s b

U U U−  

Nu : Nusselt number, /
hyd

h D k⋅  

Pr : Prandtl number, /
p

C kμ ⋅  

Re : Reynolds number, /
hyd

U Dρ μ⋅ ⋅  

St : Strouhal number, 
2( ) /( / )
hyd

f D μ ρ⋅  

We : Weber number, 
2

( // )
hyd

U Dρ σ⋅  

Wo : Womersley number, (2π·St·Re)0.5  

Subscripts 

a : advancing 
app : apparent 
b : bubble 
c  : condenser 
cap : capillary 
d : dynamic 
dis : disjoining 
e : evaporator 
eq : equilibrium 
g : gas 
hyd : hydraulic 
i : instantaneous, initial, inlet 
l : liquid 
m : molecular 
min  : minimum 
max : maximum 
o : outlet 
r : receding 
res : reservoir 
s : slug, static, solid 
sat : saturation 
v  : vapor 
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