
Commun Nonlinear Sci Numer Simulat 18 (2013) 3373–3381
Contents lists available at SciVerse ScienceDirect

Commun Nonlinear Sci Numer Simulat

journal homepage: www.elsevier .com/locate /cnsns
Backbone fractal dimension and fractal hybrid orbital of protein
structure
1007-5704/$ - see front matter � 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.cnsns.2013.05.005

⇑ Corresponding author. Tel.: +86 22 27407799; fax: +86 22 27407599.
E-mail address: qiwei@tju.edu.cn (W. Qi).
Xin Peng, Wei Qi ⇑, Mengfan Wang, Rongxin Su, Zhimin He
State Key Laboratory of Chemical Engineering, Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University,
Tianjin 300072, PR China
a r t i c l e i n f o

Article history:
Received 14 June 2012
Received in revised form 29 March 2013
Accepted 7 May 2013
Available online 17 May 2013

Keywords:
Protein
Local fractal dimension
Backbone fractal dimension
Hybrid orbital model
a b s t r a c t

Fractal geometry analysis provides a useful and desirable tool to characterize the configu-
ration and structure of proteins. In this paper we examined the fractal properties of 750
folded proteins from four different structural classes, namely (1) the a-class (dominated
by a-helices), (2) the b-class (dominated by b-pleated sheets), (3) the (a/b)-class (a-helices
and b-sheets alternately mixed) and (4) the (a + b)-class (a-helices and b-sheets largely
segregated) by using two fractal dimension methods, i.e. ‘‘the local fractal dimension’’
and ‘‘the backbone fractal dimension’’ (a new and useful quantitative parameter). The
results showed that the protein molecules exhibit a fractal behavior in the range of
1 6 N 6 15 (N is the number of the interval between two adjacent amino acid residues),
and the value of backbone fractal dimension is distinctly greater than that of local fractal
dimension for the same protein. The average value of two fractal dimensions decreased in
order of a > a/b > a + b > b. Moreover, the mathematical formula for the hybrid orbital
model of protein based on the concept of backbone fractal dimension is in good coinci-
dence with that of the similarity dimension. So it is a very accurate and simple method
to analyze the hybrid orbital model of protein by using the backbone fractal dimension.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction

Like other biological macromolecules such as polysaccharides and nucleic acids, proteins are essential parts of organisms
and participate in virtually every process within cells. Almost all vital activities and phenomena of life can be presented by
proteins, so that the researches on protein structure and function are extremely important [1,2].

Fractal theory is a very active mathematic branch of modern nonlinear science, which has been used widely to describe
irregular and non-differentiable geometric shapes existing in both natural world and man-made substance. Since the term
fractal was coined by Mandelbrot in 1977, the theory and application of fractal has been permeated through every field of
natural science [3]. A fractal is usually ‘‘a rough or fragmented geometric shape that can be split into parts, each of which is
(at least approximately) a reduced-size copy of the whole,’’ which is also called self-similarity. To a fractal object, we can
adopt a non-integer parameter, i.e. fractal dimension, to quantificationally describe the complexity and irregularity of struc-
ture in some way [4].

Usually, it is popularly believed that the spatial structures of proteins are complicated and changeable, and there are a lot
of surface corrugation and roughness in the protein, even with tiny holes through the body, so it is unrealistic to expect that
constructs that are otherwise adequate to describe the complexity of simple structures (spheres, cubes, other regular struc-
tures of idealistic shape and characteristics) will be facilitate attempts to describe proteins, that is, protein molecule cannot
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be simply described in terms of the Euclidean geometry. Actually, proteins have been described as ‘complex mesoscopic sys-
tems’ and characterized by various aspects of symmetry of self-similarity prevalent in the protein interior [5], which indi-
cated that proteins have fractal characters. More importantly, the fractal geometry theory, which is a new mathematical
tool for dealing with an irregular pattern, is desirable for the analysis of protein conformational nature [6]. So we can use
fractal method to characterize complexly spatial and dynamical structures of proteins.

The researches of protein structure based on the concept of fractal analysis have been found in a number of literatures
during the past decades. For example, the fractal dimension of 200 folded proteins taken from the Protein Data Bank
(PDB) are evaluated by computer simulation [7] based on the notion of mass fractal dimension. It is found that the average
fractal dimension of this set is equal to 2.5 and the fractal dimension ranges from 2.3 for smaller proteins with about 100
amino acids to 2.6 for sufficiently large proteins with more than about 1000 amino acids. Moreover, Matthew et al. inves-
tigated the influence of buried and hydration water molecules on the mass fractal dimension and found that including the
water molecules in the calculation of mass fractal dimension could slightly increase the corresponding value [8]. In recent
years, the mass fractal dimension of biomacromolecules such as protein and ribosome were also investigated and the results
indicated that mass fractal dimension could give a measure of the macromolecular compactness [9,10].

In addition, the spatial structure and the fractal dimension of protein in buffer solutions can be examined by small-angle
neutron scattering [11,12]. It is worth noting that loosening of the protein structure under denaturing conditions is followed
by the reduction of the fractal dimension, as was demonstrated, particularly, for bovine serum albumin (the fractal dimen-
sion decreased from 2.30 to 1.76 [11]) and lysozyme (the fractal dimension decreased from 2.80 to 2.50 [12]).

Furthermore, the statistical self-similarity of protein was revealed in many research aspects such as fractal analysis of
tertiary structure for protein with different structural classes [13,14], cluster fractal dimension of aggregating proteins
[15], the relationship between fractal characteristic of protein backbone and hydrogen bridges [16], the multifractal proper-
ties of potential energy hypersurface of proteins [17], mass-size relation of proteins [18], the accessible surface area as func-
tion of the number of amino acids and as the function of gyration radius [19,20], residue network in protein native structure
[21], the fractal analysis of serine proteinase [22] and so on. In this sense, the fractal dimension analysis may elucidate the
intrinsic structural characteristics and dynamical behavior of protein molecules.

In this article we propose a novel parameter i.e. ‘‘backbone fractal dimension’’ to characterize the spatial feature of pro-
tein and use two fractal dimension methods, ‘‘the local fractal dimension’’ and ‘‘the backbone fractal dimension’’, to calculate
the corresponding value for each protein in a set of 750 proteins selected from the Protein Data Bank (PDB) [23]. In addition,
we also apply the backbone fractal dimension to the investigation of hybrid orbital model of protein because the structure
and shape of protein polypeptide chains are goverened by the hybridized state of atomic orbital. The fractal theory can pro-
vide much useful insight into the structure and conformation of protein molecules.

2. Method

2.1. Local fractal dimension

Usually, the mean-square end-to-end and the mean gyration radius of a polymer chain are usefully mathematical mea-
sures in characterizing a statistical ensemble of polymer chain. But they are not well enough to describe the configurational
shape and structure of a single regular polymer chain. By reason of these deficiencies, Havlin and Ben-Avraham have pro-
posed ‘‘the local fractal dimension’’ based on the theory of self-avoiding walk model (SAW) and the fractal dimension con-
cept, which has an advantage in characterizing the protein molecular chain [24–27]. In the following way the definition of
the local fractal dimension has been presented. Firstly, the mean square length of end points of a segment with N monomers
in a protein chain with N0 elements (hR2

NiN0
) is given as:
hR2
NiN0

¼ 1
N0 � N þ 1

XN0�Nþ1

i¼1

R2
i;iþN

D E
N0

ð1Þ
where hR2
i;iþNiN0

is the square distance of two elements separated by N steps in the ith and the (i + N)th sites of a chain.
Secondly, the methodology and definition of local fractal dimension DN0 ðNÞ is defined as:
DN0ðNÞ ¼ log
N þ 1

N

� �
= log

hR2
Nþ1iN0

hR2
NiN0

 !1=2

ð2Þ
where it should be noted that the subscript N0 stresses the fact that the polymer chain in the above mentioned is a finite
polymer molecule.

Finally and importantly, it is worth noting that if ‘‘DN0 ðNÞ ¼ DL’’ tends to be a constant and is independent of N, then the
local fractal dimension can be written as follows:
R2
N

D E
N0

� �1=2
" #DL

¼ AN ð3Þ
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where A is a constant of proportionality. So in practice we can use Eq. (3) to calculate the local fractal dimension of protein

molecule chain from the slope of ‘‘logN–log R2
N

D E
N0

� �1=2

’’ diagram. Indeed the local fractal dimension is a measure of wind-

ing property for the polymer chain in a certain scale N [24–27].

2.2. Backbone fractal dimension

Besides the above local fractal dimension DL, we can use another fractal dimension, ‘‘the backbone fractal dimension DB’’,
to describe the structure and dynamics of a protein in the framework of fractal theory. It is generally accepted that the two
fractal dimensions (DL and DB) and the Euclidean dimension are identical for the ideal rigorously self-similar polymer chain,
but they are different for the real protein molecular chain. So it is necessary to use DL or DB to characterize a protein chain. In
the following paragraph we will delineate the calculation method of the backbone fractal dimension.

For simplicity, a protein molecular chain is usually considered as a space curve in three-dimensional Euclidean space,
namely a folded massless and linear chain without side groups. By the same token, it can be also treated as a planar curve
in two-dimensional Euclidean space [28]. Based on the fractal theory and previous studies [28], the backbone fractal dimen-
sion of a planar curve, may be expressed in a general form as:
ðlengthÞ
1

DB ¼ KðareaÞ
1
2 ð4Þ
where ‘length’ represents the total length of planar curve; ‘area’ means the maximum potential area of space which the pla-
nar curve occupies; DB is known as the backbone fractal dimension, and K is a constant. It is worth to note that the results can
be extended to three-dimensional Euclidean space based on the concept of fractal geometry. Moreover, a protein molecule
can be regarded as a globular object for the most part, so we can obtain the fractal dimension of protein chain in three
dimensional Euclidean space from the relationship as following:
L
1

DB / K pD2
� �1

2 / K
ffiffiffiffi
p
p

D ð5Þ
where L is the chain length of a protein molecule; D is the diameter of a protein molecule (in this paper the diameter is
approximately equal to the mean end-to-end length between two atoms). And then, we obtain:
L
1

DB / CD ð6Þ
where C ¼ K
ffiffiffiffi
p
p

, is also a constant. Thus the backbone fractal dimension can be deduced from the slope of logL–logD plot.
In addition, based on the principle of local fractal dimension illustrated by Havlin and Ben-Avraham [24,27] we can cal-

culate L and D of the protein molecule according to the following relations:
ðLNÞM ¼
1

M � N

XM�N

i¼1

ðLi;iþNÞM ðN ¼ 1;2; . . . ;N0Þ ð7Þ

ðDNÞM ¼
1

M � N
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ðDi;iþNÞM ðN ¼ 1;2; . . . ;N0Þ ð8Þ
where M in these equations corresponds to the total number of amino acid residues of a protein molecule; N0 is the amount
of the intervals between two adjacent amino acid residues, that is, M = N0 + 1; (LN)M is the mean length of peptide segment
containing N residues in a peptide chain consisting of M residues; (DN)M is the mean end-to-end distance of a peptide chain
with (LN)M mean length; (Li,i + N)M is the length of Ca-atom chain between the ith and the (i + N)th amino acids in a peptide
chain with M residues; and (Di,i + N)M is the Ca-atom distance between the ith and the (i + N)th amino acids with (Li,i + N)M

peptide chain length. Therefore, the backbone fractal dimension is determined from the slope of a log–log plot of (LN)M versus
(DN)M.

2.3. Fractal hybrid orbital model

In general, organic compound is constituted of the carbon hybrid orbitals. As a matter of fact, the protein is also a kind
of organic compound, thus its structure and shape can be determined by the hybridized states of atomic orbitals in a bio-
polymer chain [29]. Usually the polypeptide chains exhibit a sawtooth-like shape, that closely resemble the Koch curve
[3]. So the conformation and structure of proteins are associated with the bond angle of atomic orbitals as shown in
Fig. 1.

Moreover, the protein chain can be regard as a series of such space molecular model or generators being connected to
each other [30]. According to the previous research [30], it is found that the Ca-atom distance between two adjacent amino
acid residues is approximately 0.38 nm. Thus we can safely supposed that the length of AO is equal to that of BO, namely
AO = BO. Furthermore, assuming \AOB ¼ h (0� < h� < 180�), then the distance between AB is only dependent on the degree
of angle. So we can calculate the backbone fractal dimension of such molecule model according to its definition:



Fig. 1. A simple schematic representation of amino acid chain (a) and the bond angle in a dipeptide chain (b). In this protein model the amino acid is
denoted by the Ca-atom of amino acid residue. The red thick line represent the length between two adjacent amino acid residues. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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DB ¼
log kAOk þ kBOkð Þ

log kABkð Þ ¼ log 2
log

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1� cos hÞ

p ð9Þ
Here it should be pointed out that the mathematical formula of the fractal dimension deduced in this paper is very same
as the calculation introduced by Torrens based on the similarity dimension [31,32]. Based on the theories of quantum chem-
istry, namely the orthogonality of hybrid molecular orbital, the bond angle hij between wi and wj orbitals for a given polymer
chain is expressed as following [29]:
cos hij ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sisj

ð1� siÞð1� sjÞ

r
ð10Þ
where si and sj represent the ratio of containing s orbital inside the spn hybrid orbitals wi and wj, respectively.
Therefore:
DB ¼
2 log 2

log 2 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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ð1�siÞð1�sjÞ

q� �h i ð11Þ
For the equivalent hybrid orbital, si = sj = s, then
cos h ¼ � s
1� s

ð12Þ
and
DB ¼
2 log 2

log 2 1þ s
1�s

� �	 
 ð13Þ
Obviously, Equation (13) can be conveniently applied to the explanation of very close relationship between the fractal
dimension and the hybrid orbital state of a protein molecule to some extent. The DB values are 1.000, 1.262 and 1.413,
respectively, for the sp(n = 1), sp2(n = 2) and sp3(n = 3) ideal hybrid chains, whereas DB = 2.000 for the p(n =1) orbital bond-
ing chain [32].

In this paper we are mainly interested in investigating the self-similarity of 750 different protein molecules. These pro-
teins are selected from the Protein Data Bank [23] with X-ray diffraction as the structure elucidation method. We have fil-
tered out proteins exceeding 30% sequence identity and proteins that have ligands, RNA, or DNA. We have also dismissed
incomplete data sets that contained only the data of a-carbons. Moreover we have also removed the proteins whose se-
quence length are less than 250 amino acids, because those are too short to be considered as fractals. The class was deter-
mined according to the SCOP database [33].
2.4. Statistical analysis

The least-squares method is used to fit functions through a regression analysis. Statistical analyses are performed with
SPSS (version 15.0, SPSS Inc., Chicago, IL, USA). Analyses of variance (ANOVA) and Tukey’s HSD test with a significance level
of 0.05 are applied.
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3. Results and discussion

3.1. Fractal dimension for protein molecules

As shown in Fig. 2, the power law property of protein is presented as the double logarithmical plot for two kind of fractal
dimensions: the local fractal dimension (Fig. 2A) and the backbone fractal dimension (Fig. 2B). The illustrated calculation is
performed by using a membrane protein squalene–hopene cyclase [PDB ID: 2SQC, 631 amino acids (a.a.)] as an example.
From the fractal diagram, we can find that there exists a range where the curve has a good linearity in general. With regard
to the calculation range for the fractal dimension, it is a question that needs careful consideration in practice. Actually, in this
work we compute the fractal dimensions of proteins based on the following aspect. To avoid possible finite-size effects when
computing the fractal dimensions, we must consider the computation interval of the length scale. Namely, owing to the fi-
nite-size effect, there are both upper and lower size limits, beyond which a protein is no longer fractal or the value of fractal
dimensions change markedly [24]. Moreover, it is interesting to note that an inflexion point around N = 15 (N is the number
of the interval between two adjacent amino acid residues) is observed in Fig. 2, and the linearity is poor for high N values and
the curve is tortuous. Similar characters are also found for the other proteins studied in this paper. Overall, this range strikes
a balance between having enough points to meaningfully compute the fractal dimensions and keeping the fractal dimension
essentially constant, namely, over a range where the fractal dimension does not change much with small changes in the
number of points used in the calculation. Therefore, the fractal dimensions are calculated only in the range of 1 6 N 6 15,
and the slope of the curve is the fractal dimension [34,35]. This means that a protein can be regarded as a fractal object only
Fig. 2. The log–log plot of N versus (hR2
NiN0

)1/2 for determining the local fractal dimension (a) and the log–log plot of (LN)M versus (DN)M for determining the
backbone fractal dimension (b) of protein. N is the number of the interval between two adjacent amino acid residues. The red solid lines indicate best fits in
the range of 1 6 N 6 15 (indicated by the arrow) for the fractal dimension calculation by using least-square linear fitting method. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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in a definite range of N value and a protein seems to have the fractal behavior within some certain ranges. Similar characters
are also found for the other proteins studied in this paper. It is evident that the values of fractal dimensions depend on the
range of N to a great extent.

As shown in Fig. 3, the local fractal dimension and the backbone fractal dimension are computed for each protein with
different size, namely the number of amino acid of each protein, (N+1). It can be seen that the values of two kinds of fractal
dimensions are distributed mainly in the range from 1.30 to 1.80, and for the most proteins the fractal dimension values are
ranged from 1.50 to 1.60. This phenomenon is very accordance with the previous studies. For example, Tejera et al. inves-
tigated the local fractal dimension of a set of 870 proteins, and found that the value represented as global median (the 25–
75th quartile intervals) was 1.54 (1.50–1.58) via the computational study [35].

According to the investigation of self-avoiding walk (SAW) model [24], if the conformation of a protein chain obeys the
rules of SAW, then the fractal dimension of protein molecule can be calculated as Df = (d + 2)/3, where d is referred to the
Euclidean dimension. Thus when d = 2, then Df � 1.333, and when d = 3, then Df � 1.667. Moreover, Li et al. deemed that pro-
tein molecules have two kinds of chain conformation, namely a planar type in two-dimensional space and a curve-balling
type in three-dimensional space [28]. It is important to note that the fractal behaviors of proteins in three-dimensional
Euclidean space basically conform to the rules of SAW. On the other hand, protein molecules have not only the above
two chain conformations but also another kind of chain conformation between them, namely a mixture type, which might
have a large proportion in the natural proteins.

It can be also found from Fig. 3 that the values of local fractal dimension are basically less than those of backbone fractal
dimension. This may be caused by the degree of complexity between the local and global structure of protein. That means
the local fractal dimension is computed according to the local scale of length (just considering the end-to-end distance);
while the calculation of backbone fractal dimension is based on the global chain structure (considering not only the end-
to-end distance, but also the length of peptide chain). In other words, for a real peptide chain, it can be regarded as a straight
line in terms of local fractal dimension (just like b-sheet in shape), whereas from backbone fractal dimension point of view it
can be regarded as a zigzag line (resembling a-helix or turn in shape). Moreover, in a globular protein, the fractal dimension
values for a-helix, reverse turn, parallel b-sheet, anti-parallel b-sheet, and twisted b-sheet are 1.44, 1.59, 1.09, 1.06, and 1.07,
respectively [36]. Hence the influence of a-helix and turn on the fractal dimension is positive and relatively strong. So DB is
usually bigger than DL. Meanwhile, there is a strong dependence between two fractal dimensions with the correlation coef-
ficient R = 0.95309.

The mean local fractal dimension and the mean backbone fractal dimension of four structural classes and all proteins are
listed in Table 1. It is found that there are significant differences among four different structural classes for local fractal
dimension or backbone fractal dimension, except for the backbone fractal dimension of a-class and (a/b)-class
Fig. 3. The scatter diagram of fractal dimensions of proteins.

Table 1
The average value of local fractal dimension and backbone fractal dimension for four structural classes and 750 proteins. The standard deviation of the
corresponding number of the estimation is in the parentheses.

a b a + b a/b 750 protein

DL 1.59(0.04) 1.47(0.05) 1.51(0.03) 1.55(0.03) 1.53(0.03)
DB 1.61(0.04)⁄ 1.53(0.06) 1.56(0.03) 1.59(0.03)⁄ 1.57(0.04)

Mean values with symbol (⁄) are statistically similar (p > 0.05). (ANOVA and Tukey’s HSD test).
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(p > 0.05).It can be seen that the order of mean values of two fractal dimensions for four structural classes is a > a/
b > a + b > b, which is good agreement with the data reported by Li et al. [34]. This is because the fractal dimension describes
the irregularity of the object, and four structural classes of protein are recognized based on the predominant types and
arrangements of secondary structure elements, namely a-helix and b-sheet. The a class is comprised entirely of a-helices
and the b class contains only b-sheets. The a/b protein consists of a-helices and b-strands that are alternately mixed, and
the a + b protein consists of the conformation in which a-helices and b-strands are largely separated [37,38]. Thus the local
structure of b class is extended more than that of a class, and those of a/b and a + b classes are between that of a and b class
[34], i.e. the a and b class show the largest and the smallest fractal dimension values, respectively. This suggests the values of
local fractal dimension and backbone fractal dimension for four structural classes are probably determined by their second-
ary structures. This suggests that the fractal dimension is an important and meaningful parameter to describe the spatial
structure and to predict the structural features of proteins.

3.2. Fractal hybrid orbital model

The relationships of ‘‘DB (the backbone fractal dimension) – s ratio’’ and ‘‘DB-n index’’ are plotted in Fig. 4. It can be seen
that s ratio and n index of different classes of proteins are distributed in the same areas of diagram and it is very hard to
distinguish one class proteins from the others. Moreover, it is found that there exist no obvious correlations between
‘‘the molecular mass or the molecular chain length’’ and ‘‘the fractal dimension, s ratio or n index’’ (see Supplementary Mate-
rial Fig. S1).

The mean values of s ratio and n index for four structural classes and for 750 proteins are presented in Table 2. We can
find that there are very marked differences between distinct classes of proteins. The calculated mean ratio of containing s
orbital in the spn hybrid orbitals for a class proteins is the smallest, which shows sp5.364 like type hybrid orbitals, far away
Fig. 4. Protein backbone fractal dimensions as a function of s ratio (a) and as a function of n index (b).



Table 2
The average value of s ratio and n index in the spn hybrid orbitals for four structural classes and 750 proteins.

a b a + b a/b 750 proteins

s ratioa 0.157 0.191 0.179 0.162 0.170
n indexb 5.364 4.237 4.573 5.164 4.889

a Ratio of containing s orbital in the spn hybrid orbitals.
b n index in the spn hybrid orbitals.
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beyond tetrahedral sp3 hybrid orbitals. But the proteins of b class possess a contrary characterization, which exhibits sp4.237

like type hybrid orbitals, near to sp3 hybrid orbitals. A average value s of 0.170 for all proteins predicts sp4.889 hybrid orbitals,
between sp3 and p hybrid orbitals.

4. Conclusions

The local fractal dimensions (DL) and the backbone fractal dimensions (DB) of 750 proteins selected from four different
structural classes were calculated by using computer simulations in this work. From the results we can conclude that: (1)
the protein molecules exhibit a fractal behavior in the range of 1 6 N 6 15; (2) the value of DB is distinctly greater than that
of DL for the same protein; (3) there is a good relationship between DB and DL (R = 0.95309); (4) the order of mean values of
DB and DL for four structural classes is: a > a/b > a + b > b, which is in good agreement with other researches illustrated
earlier.

According to the theory of backbone fractal dimension, the methodology and definition of fractal hybrid orbital were de-
rived, the results are similar to the pioneering work reported by other researchers. Due to its simplicity and generality, the
backbone fractal dimension is very suitable for the research of hybrid orbital model of protein. Meanwhile we also find that
the differences of s ratios (or n indexes) among four structural classes of proteins are not quite obvious.

To sum up, the present results corroborate that a protein can be regarded as a fractal object with self-similarity and self-
affinity, and the fractal analysis can be used to characterize some intrinsic properties of proteins.
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