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Abstract— We present an approach for optimization of assertion 
placement in time-constrained HW/SW modules for detection of 
errors due to transient and intermittent faults. During the design 
phases, these assertions have to be inserted into the executable 
code and, hence, will always be executed with the corresponding 
code branches. As the result, they can significantly increase 
execution time of a module, in particular, contributing to a much 
longer execution of the worst case, and cause deadline misses. 
Assertions have different characteristics such as tightness (or 
"local error coverage") and execution latency. Taking into 
account these properties can increase efficiency of assertion checks 
in time-constrained embedded HW/SW modules. We have 
developed a design optimization framework, which (1) identifies 
candidate locations for assertions, (2) associates a candidate 
assertion to each location, and (3) selects a set of assertions in 
terms of performance degradation and assertion tightness. 
Experimental results have shown the efficiency of the proposed 
techniques. 

I.  INTRODUCTION 
Executable assertions are one of the most efficient methods to 

increase testability of applications against transient and intermittent 
faults1 (also known as “soft errors”). Transient faults are one of the 
most common faults in modern electronic systems due to high 
complexity, smaller transistor sizes, higher operational frequency, and 
lower voltage levels [4][12][19]. These faults can be result of 
electromagnetic interference, radiation, temperature variations, etc. 
[16]. They happen for a short time and disappear without causing a 
permanent damage to the circuit. However, if not tolerated, transient 
faults may crash the system or lead to dramatic quality deterioration 
[16][17]. Efficient error detection is an ultimate prerequisite for this 
fault tolerance. Assertions can provide a high degree of error coverage 
against transient faults with low performance overhead compared to 
other techniques [10][13][20]. This is, however, true only if the right 
assertions are introduced in the proper places during execution of 
HW/SW modules. 

In this paper, we will focus on optimization of executable assertions 
placement in HW/SW modules. In particular, we will consider HW/SW 
modules, which have timing constraints, i.e., are parts of a larger real-
time embedded system.  Execution of such a real-time module has to 
complete before a certain deadline [18]. If this deadline is violated, it 
may lead to potentially catastrophic consequences for an application. 
Thus, taking into account performance overheads of executable 
assertions becomes particularly crucial. 

The related works on assertions can be classified in three main 
groups: assertion-based approaches for SystemC code (HW/SW 

1 We will refer to both intermittent and transient faults as transient faults. 

modules), assertion-based debugging approach for embedded 
applications, and assertion-based approaches for addressing transient 
faults. 

In the first group of techniques, executable assertions are 
introduced into SystemC descriptions, which is a popular language for 
developing embedded systems [9]. In particular, Habibi et al. [11] have 
presented a methodology to generate assertions with ASM (Abstract 
States Machines) in C# language with the following transition into 
SystemC before integration into the HW/SW module. They use PLS 
(Property Specification Language) to specify a variety of design 
properties in ASM. Economakos [6] has proposed a framework to 
introduce SystemC and PSL assertions into embedded programs, which 
are later integrated into the high-level synthesis (HLS) process for 
digital circuits. Tomasena et al. [21] have proposed a design framework 
to introduce assertions into SystemC programs at the Transaction Level 
(TL) model with the Assertion Based Verification (ABV) support. 
ABV is a popular technique to verify electronic systems, where 
assertions are introduced in a systematic manner into an embedded 
component. 

In the second group, most of assertion-related works target 
debuggability and testability of applications. For example, Yin and 
Bieman [15] have developed a C-Patrol tool to automatically introduce 
executable assertions into C programs. Voas and Miller [23] have 
introduced assertions based on sensitivity properties of the code, i.e., 
which parts of the code are the most difficult to test and are the most 
critical for execution of safety-critical applications. Gharehbaghi et al. 
[8] have proposed an assertion-based methodology to test Systems-on-
Chip (SoC) with a monitor that observes status of assertions.  

In the last group of related research works, assertions have been 
used against transient faults. Vemu and Abraham [22] have proposed a 
CEDA methodology to call program flow with assertions, which can be 
used to detect transient faults. Goloubeva et al. [10] have proposed an 
approach to insert executable assertions for detecting transient faults. 
Hiller [13] has proposed a methodology to sort out faults from 
incoming signals with assertions, which can be used to stop propagation 
of errors caused by transient faults through the system. This work has 
been later extended with assertion optimization to increase system 
dependability with profiling in [14]. Peti et al. [20] have proposed an 
“out-of-norm” assertion methodology to insert assertions into electronic 
components, in particular, communication controllers, to detect 
transient faults. Ayev et al. [2] have proposed a technique to integrate 
assertions into embedded programs with automatic program 
transformations to provide error detection and recovery against 
transient faults. 

However, to our knowledge, none of the previous work has 
addressed real-time aspects of embedded systems with executable 
assertions. In this work, we assess timing efficiency of assertions in 
order to reduce performance overheads of error detection and propose a 



framework for optimizing the assertion placing into time-constrained 
embedded systems. Our framework will: 

1. identify candidate locations for assertions;
2. associate a candidate assertion to each location (the candidate

assertion is suggested by the framework, but the user can
change it); 

3. statically/dynamically profile the module with assertions
(inspired by the work of Hiller et al. [14]); and 

4. select a set of assertions in terms of performance degradation
and tightness (by using the optimization infrastructure). 

Our approach can be useful for optimization of executable 
assertions in any embedded system with timing constraints. Examples 
of such systems include, but are not limited to, automotive electronics, 
airborne software, factory automation, and medical and 
telecommunication equipment. Our technique is useful not only for 
detection of transient faults but also for debugging of real-time 
programs with hard timing constraints. In such programs, assertions 
must not compromise the program’s timing constrains, and, thus, have 
to be optimized. 

The rest of the paper is organized as follows: the next section 
presents our application model, describes principles of error detection, 
and discusses basic properties of executable assertions; in Section III, 
we outline our problem formulation; in Section IV, we present our 
assertion placement optimization framework; finally, experimental 
results are presented in Section V. 

II. APPLICATION MODEL

To represent application behavior, we have adapted the conditional 
process graph model proposed in [7] for the program instruction level. 
We represent an embedded program module M as a directed 
dependency graph G = {V, ES, EC}, where V is a set of nodes and ES 
and EC are sets of simple and conditional edges, respectively. The main 
difference from the model in [7] is that we will permit loops in the 
graph, i.e., the dependency graph G does not have to be acyclic, and we 
will consider program instructions instead of processes. Moreover, it is 
not required that the graph has to be polar, i.e., several source and sink 
nodes are possible. In our model, a node Ii � V is a module instruction 
and eij is a direct dependency between instructions Ii and Ij, which can 
be, for example, a data or logical dependency. eij can be either a simple 
or conditional dependency. eij is a conditional dependency, i.e. eij � EC, 
if it will be taken based on a certain logical condition in the instruction 
Ii, i.e., for example, based on a “true” or “false” value of an if statement 
in Ii. If eij is the only alternative for program execution, we will 
consider that it is a simple dependency, i.e., eij � ES. Note that simple 
and conditional dependencies may constitute parts of module loops. 
The embedded program module M can be eventually implemented 
either is software (SW) or in hardware (HW) and will be referred as a 
HW/SW module or simply module in the paper. 

In Figure 1 we present an example of a simple module M1 and the 
corresponding dependency graph G1. This module calculates a factorial 
of an integer number N, where N is an input. Graph G1 consists of 6 
instructions, I1 to I6, and 6 dependencies, e13 to e53. Dependencies e36, 
e34 and e53 constitute a while loop, i.e., “while i is less than or equals 
N”, where e36 and e34 are conditional dependencies. e36 is taken if the 
“while” condition I3 is “false” and e34 is taken if the “while” condition 
I3 is “true”. e53 is a simple dependency and is always taken after the last 
loop instruction I5 to come back to the “while” instruction I3. The 
dependency graph G1 has two source nodes, I1 and I2, and one sink node 
I6. 

We will assign performance values to instructions and 
dependencies in the HW/SW module with the static/dynamic profiling 
of the module.2 Performance values for module M1 are shown in the 

2 In general, these performance values are dependent on the actual execution
sequence of the module. However, to simplify performance analysis, we will 
begin with the performance values individually profiled for instructions and 
dependencies, which will give us the first approximate performance figures of 
the module execution, as described in Section IV.A. Later, as described in 
Section IV.B, module execution sequences (with the introduced assertions) will 
be profiled to capture performance effect of inter-dependencies between 

bottom of Figure 1. For example, instruction I4 will take 15 time units 
to execute. Time constraints, or deadlines, are assigned to the HW/SW 
modules. For example, module M1 produces a new value of the 
factorial variable at each loop of I3 to I5 and each execution of I3 to I5 is 
constrained with the deadline D1 of 50 time units, as depicted in Figure 
1. Thus, instruction I3 to I5 are not allowed to execute more than 50
time units. 

We will consider that transient faults may affect execution of 
program P1 and are, thus, interested in optimization of assertion 
placement for the time-constrained module M1. 

Figure 1.  Example of a program and its instruction graph. 

A. Error detection with assertions 
Several errors can happen to the HW/SW module M1 of program P1 

in Figure 1, due to transient faults: 
� the multiplication operation may fail; 
� the factorial number may be overflowed; 
� the counter i may not increment as expected; and 
� the while loop may loop infinitely due to a corrupted counter i, 

memory overflow, or problems with the conditional jump. 
These errors can be triggered at any time of program execution and 

have to be detected. Several techniques can be used to detect errors 
caused by transient faults, such as watchdogs, signatures (both 
hardware and software), memory protection codes various types of 
duplication, hardware-based error detections and, finally, assertions. In 
this work, we will use assertions to detect these faults in execution of 
module M1. 

Executable assertions are a common error detection technique, 
which is often used by programmers for debugging. In general, an 
assertion is a predicate written as a Boolean statement placed in the 
code, where the truth value should be always true in absence of faults. 
An assertion can be defined as if not <assertion> then <error>, where 
<assertion> is a logical (Boolean) check of an operand value or 
correctness of an operation. An example of an operand assertion can be 
“a shall be 1”. Correctness of an operation, for example, “y = a � b” can 
be checked with an assertion “y � a + b shall be 0”. Assertions can 
provide a very high level of error detection compared to other 
techniques since they can be fine-tuned to particular program 
properties. 

However, assertions, similar to other error detection techniques, can 
introduce a significant performance overhead and, consequently, 
compromise the deadline. Violation of this deadline may lead to 
catastrophic consequences, and, hence, must be avoided. At the same 
time, lack of assertions will lead to low error coverage and high 
susceptibility of the program to transient faults, which will not be 
detected and, hence, can also lead to potentially catastrophic 

instructions (and assertions) in these execution sequences, and, thus, deadline 
satisfaction will be ensured over all execution scenarios of the module. 
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Factorial(const int N )
double factorial = 1;

int i = 1;

while(i <= N) {

factorial *= (double) i ;

i++; }

return factorial ;

end Factorial
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consequences. Thus, both performance overheads of assertions and 
their efficiency have to be considered in the assertion placement. 

B. Parameters of executable assertions 
To capture effectiveness of assertions, we will assign to each 

assertion Am a tightness value, �m. The tightness value �m represents an 
increase in error detection probability of the HW/SW module M against 
random faults after assertion Am is introduced. These values can be 
obtained with, for example, fault injection experiments [1] or with static 
probability analysis of the assertion code. We will compute them as a 
part of our profiling strategy described in Section IV. 

Each assertion Am is also characterized with a performance 
degradation value, �m. The performance degradation value �m is the 
performance overhead of the assertion if introduced into module M. 
These values can be obtained with static analysis [24] or with extensive 
simulations of program execution [25]. We will also compute them in 
the profiling step of the optimization framework, as described in 
Section IV. 

In general assertions shall be introduced with the highest possible 
tightness at the lowest performance degradation. 

In Figure 1, instruction I4: factorial*=(double)i can be 
protected with assertion A1 (where the assertion code is indicated with 
brackets):  

<x = factorial;> 
factorial *=(double)i; 
<if (!(factorial/(double)i == x)) error();> 
For instruction I4 this assertion protects only the multiplication 

operation, but it protects neither the value of factorial nor the value of 
the counter. Another assertion A2 could be as follows: 

<i_prev = i;> 
<factorial_prev = factorial;> 
<<<while loop iteration>>> 
<x = factorial;> 
factorial *=(double)i; 
<if (!(factorial/(double)i == x 

 && i_prev == i 
  && factorial_prev == x) error();> 

This assertion A2 will protect both the multiplication and the 
changing of counter i and factorial variables. 

Let us consider that, after profiling, assertion A1 gives tightness of 
75% for instruction I4 (it captures faults only in the multiplication) and 
assertion A2 gives tightness of 90%.3 Regarding performance, we obtain 
that A1 has performance degradation of 20 time units, and A2 has 
performance degradation of 30 time units. If we compare assertions A1 
and A2 from the performance degradation point of view, we can see that 
assertion A2 requires more time to execute. However, A2 is better than 
A1 from the tightness point of view.  

Let us consider assertion A3, which is the assertion A2 excluding the 
assertion A1 part for the multiplication check: 

<i_prev = i;> 
<factorial_prev = factorial;> 
<<<while loop iteration>>> 
<x = factorial;> 
factorial *=(double)i; 
<if (!(i_prev==i  

  && factorial_prev==x)) error();> 
A3 will give us 25% tightness but will only need 10 time units to 

execute. 
Note that assertions themselves can be subject to transient fault 

occurrences and, therefore, additional measures should be taken to 
address error detection in assertions. This could lead to a problem of 
“false positives”, i.e., assertion affected by a transient fault can signal 
that the fault has happen but it actually has not. This can be solved with 

3 Note that these and the other values in the example are presented here for 
illustrative purposes only, i.e., in order to illustrate decision-making in the 
assertion placement process in the reader-friendly fashion. 

self-detectable assertions, i.e., we introduce assertions for assertions to 
provide a level of error detection coverage in the assertions’ code. For 
example, a self-detectable assertion for assertion A1 can be: 

<if (!(factorial / (double)i == x)) 
   if (!((x * (double)i == factorial))) 

 error();> 
This assertion checks if the division operation within assertion A1 is 

performed correctly. 
So, which assertion should we choose for module M1 in Figure 1, 

given a list of assertions A1, A2 and A3 and the deadline of 50 time units 
for instruction I3 to I5? The total execution without assertions will be for 
module M1: 10 + 15 + 3 = 28, which gives a performance budget of 50 
– 28 = 23 time units. Thus, assertion A1 will be chosen since it has a
performance degradation of 20 time units, which fits into the given 
budget, and its tightness value of 75% is greater than 25% tightness of 
A3. 

Although, for the example in Figure 1, decision on which assertion 
to choose is relatively straightforward, as the size of HW/SW module 
increases, these decisions becomes much more difficult. If in Figure 1 
we have only three possible assertions, for real-life programs the 
number of assertions can be thousands, which makes it impossible to 
decide manually. On top of that, self-detectable assertions should be 
also considered to reduce the number of “false positives”. 

Another problem with assertions is that not all of the instructions 
are executed at every execution of a HW/SW module. For example, in 
Figure 2a, instruction I2 will be executed only if the instruction I1: “if x 
> 99” produces “true” value. Suppose that the values of x are uniformly 
distributed between 1 and 100. Then, if we introduce an assertion Am 
for instruction I2, this assertion will deliver its tightness only in 1 case 
out of 100. In 99 cases it will not contribute to the error detection of 
transient faults. We will consider that, if, for example, the initial static 
tightness of Am is 80%, the actual dynamic tightness will be 80 / 100 = 
0.8%. Thus, efficiency of assertions also depends a lot on how often 
they (and their related instructions) are executed. In Figure 2a, 
introduction of an assertion An with static tightness of 40% into the 
“false” branch will make more sense, i.e., its dynamic tightness will be 
40 × 99 / 100 = 39.6%, which is greater than that of Am. Note, however, 
that in this example, there is no competition between Am and An as long 
as they are executed completely in different branches and both 
assertions can be introduced. Let us consider another situation depicted 
in Figure 2b, where parts of Am and An have to be executed before the 
condition I1, i.e., always, with remaining parts to be completed in their 
own branches. If we have to choose between these assertions, assertion 
An will be obviously the best, despite the fact that its static tightness 
(40%) is twice as small as the static tightness (80%) of Am. 

Figure 2.  Example of a conditional execution of an assertion. 

Thus, to address the complexity of assertion placement, we have 
proposed an assertion placement optimization framework described in 
Section IV, which solves a generalized problem of assertion placement 
that we present in Section III. 

III. PROBLEM FORMULATION

As an input we get a HW/SW module M (in VHDL, SystemC, C) 
of a time-constrained embedded system. Module M does not contain 
executable assertions. Several sets of instructions in this module M are 
associated with hard deadlines, as illustrated in the example in Figure 1. 
A list of candidate assertions for this module M is also given. This list 
can be, for example, provided by designers after previous debugging of 
this module in the non real-time mode or may even be associated with 
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the module source code directly under the “_DEBUG” compilation 
flag. 

As an output, we want to produce a HW/SW module with the 
subset of assertions introduced at the best possible places in the module 
source code, which maximize tightness, while meeting hard deadlines. 

IV. ASSERTION PLACEMENT

In this section, we present the approach for placement, 
optimization, and evaluation of error detection primitives in time-
constrained embedded systems. In particular, an overview of the 
developed framework is shown in Figure 3.  The framework is based on 
three main iterative phases: the code analysis and manipulation phase, 
the module simulation and profiling phase, and, finally, the 
optimization of the assertion placement according to the simulation and 
profiling information.  

Figure 3.  The profiling and optimization framework for assertion placement. 

The framework takes as input an HW/SW module (VHDL, 
SystemC, C) of a time-constrained embedded system, which does not 
have any assertions, i.e. a fault silent description M, and transforms it 
into an intermediate representation [3]. In this phase, the framework 
introduces assertions, i.e. A, and placeholders by exploiting the 
dependency-graph associated with the module, i.e. G. Each assertion is 
coupled with a statically computed value for performance degradation. 
Moreover, the framework allows the user to provide an actual assertion 
for each placeholder. Then, the module description with placeholders, 
i.e. M L, is simulated for generating further profiling information. In this 
work, we adopted a Monte-Carlo automatic-test-pattern generator 
(ATPG) for generating simulation stimuli, but either user-defined 
testbenches or structural-ATPG approaches can be easily integrated. 
The generated profiling information is a simulation log which, for each 
placeholder, contains the dynamically computed values of tightness and 
performance degradation. Finally, in the optimization phase, the 
framework exploits this information and the user-defined algorithms for 
generating a module description with assertions. In particular, the 
framework provides an API for accessing the static and dynamic 
profiling information. Moreover, it provides a set of optimization 
algorithms, which can be either used or extended by the designer. The 
final choice of assertions, i.e. M A, is both compatible with the time 
constraints of the embedded system, and optimized in terms of error 
detection. 

In the following, Section IV.A summarizes the main aspects of the 
code analysis and profiling phases; Section IV.B describes the 
assertion-optimization infrastructure and some algorithms built on top 
of it; finally, Section IV.C provides an evaluation metric for validating 
the quality of the optimization environment. 

A. Code analisys and profiling 
The analysis and manipulation of the module descriptions are based 

on HIFSuite [3], a set of tools and libraries, which provides support for 

modeling and verification of embedded systems. The core of HIFSuite 
is an intermediate format, i.e. HIF, which is similar to an abstract-
syntax tree (AST); moreover, front-end and back-end tools allow the 
conversion of HW/SW description into HIF code and vice versa. In this 
initial phase, the HIF representation of the module is automatically 
converted into a dependency graph G, whose nodes and data/control-
dependency edges are added to the HIF AST. Then, the code analysis 
searches for eligible locations for assertion placing. Eligible locations 
are assignment instructions, arithmetic expressions, control statement, 
operations over signals, bodies of loops, as well as initial and final 
instructions of processes. For each of these locations the framework 
provides a candidate assertion, which aims at detecting soft errors. For 
example, in the case of a conditional statement, it is necessary to 
guarantee that a transient fault does not affect the choice of the branch 
currently in execution, as shown in Figure 4.  

Figure 4.  Protecting conditional-statement branches against soft errors. 

Analogously, assertions may check the execution of the body of 
loop statements, or that the loop counter monotonically increases 
(decreases). Another example is given in Figure 5, where both the array 
access and the data reading are protected against soft errors by means of 
an assertion. Moreover, a user interface permits the designer to 
introduce further assertions or modify the assertions that the framework 
automatically choose. 

Figure 5.  Protecting array reading against soft errors. 

During the analysis of the code, an initial statically-computed value  
for performance degradation is associated with each assertion. The 
performance degradation is computed based on the syntactic 
complexity of the Boolean predicate, which is defined by the number 
and type of variables and operators. 

As a final step, in each eligible location, a placeholder is injected 
that registers an event in the simulation log every time it is reached 
during the execution. In particular, further values for tightness and 
performance degradation are dynamically-computed and registered. An 
intuitive example of tightness computation for executable assertions is 
reported in Figure 2.  In such a case, the higher the number of times that 
a branch is executed, the greater is the tightness of each assertion that 
occurs in the branch. During the execution, the performance 
degradation, associated with each assertion, is computed in terms of 
time units. 

B. Optimization infrastructure 
In the previous phases, a set of candidate assertions addressing soft 

errors is associated with each module of the time-constrained embedded 
system, and simulation-based profiling information is generated. These 
assertions have different probability of detecting errors, and increase 
the execution time of the module. The proposed framework provides an 
infrastructure that allows the designer to automatically choose the 
assertions that maximize the error detection and respect the time 
constraints of the system. 

The optimization library provides functionalities for accessing the 
dependency and profiling information. In particular, some data 
structures are maintained in association with the dependency graph of 
each module, for example: 

<int _i;> 
x = a[_i = i]; 
// ... 
<if ( x != a[i] && i != _i) error();>  

if (x <= max) {  
  // then body 
  <if (!(x <= max)) error();> 
  x = y + z; 
  // then body 
} else { 
  // else body 
  <if (x <= max) error();> 
  // else body 
} 
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� A set which contains each candidate assertion (Am), the related 
location in the module (lm), and the profiled tightness (��), and 
performance degradation (��). 

� An assertion-dependency graph, ADG = {A, EA}, where each 
node is a candidate assertion (Am � A) and each edge (i,j) � EA 
correlates two assertions, if assertion j is the subsequent of 
assertion i during the simulation. 

� A set of paths which contains each path followed during the 
simulation. In particular, a path is represented as a list of events 
in the simulation log, and an event is a couple (Am, t) where, Am 
is a reached assertion and t is the corresponding execution time 
from the simulation beginning. 

We implemented some algorithms on top of this infrastructure, with 
the purpose of showing possible assertion-placing optimizations, and 
focusing the attention on the usability of the library. In particular, we 
can distinguish between algorithms which use only the structural 
information of the module, and algorithms that exploit the simulation 
information. 

A first simple optimization approach is the Best Assertion First 
(BAF) strategy, shown in Algorithm 1. It always chooses, while the 
deadlines are respected, the candidate assertion with the highest 
probability of detecting errors. In such a case, we assume that the error 
detection probability is proportional to the static performance 
degradation of the assertions; that is, a computational-heavy assertion 
detects more likely soft errors. The expected result of this algorithm is a 
design with few, but effective, assertions. In particular the algorithm 
takes as inputs (lines 1-3) the module, the set of candidate assertions, 
and a maximum-tolerated-overhead value, which depends on the time 
constraints of the embedded system. It returns a set of assertions (line 
4), which are compatible with the constraints and aim at optimizing the 
soft-error detection probability. In particular, the candidate assertions 
are ordered with respect to the static performance degradation, with the 
most expensive first (line 6). Then, the assertions are selected till they 
exhaust the available  tolerated overhead (lines 7-13). 

Algorithm 1.  The Best Assertion First (BAF) algorithm. 

Another similar approach, but based on a conceptually inverse 
motivation, is the Fastest Assertion First (FAF). It always chooses the 
available assertion with the minimum static performance degradation, 
until the tolerated overhead is exhausted. The expected result is a 
design with the highest number of assertions, which try to maximize the 
fault detection capability. A third algorithm, the Most Executed 
Assertion First (MEAF), exploits the tightness of the assertions, a 
simulation-based information: it chooses, while the deadlines are 
respected, the most executed assertion during the system simulation. 
Similarly, several other algorithms can be easily created by exploiting 
and combining both the structural and profiling information. 

C. Evaluation metric 
Since the framework is particularly focused on the simulation, it 

seems reasonable to emphasize simulation contribution also for 
evaluating the obtained results. Thus, we propose the following metric. 

Definition 1: Let M be a time-constrained module, A ={A1, ..., AK} 
a list of candidate assertions for the module M, and �  an assertion-
placing algorithm. Then the result of  � over M and A is the set of 

assertions Ap = {A�
�

, … , A�
� } ⊆ A�. The quality of  Ap  is measured as 

the ratio 

Ratio� =  
∑ �


�
∗�


�� �

�

∑ �
 ∗�

�� �


 

where �
  and �
  are, respectively, the tightness and performance 
degradation associated with each assertion �� in A, while �


� and �

� are  

associated with each assertion �� in Ap . 
Thus, this metric not only considers the quality of the selected 

assertion, but also takes into account the frequency of assertion 
execution (the dynamically computed tightness). 

V. EXPERIMENTAL RESULTS 
In order to assess the effectiveness of the proposed framework, we 

have used the benchmarks described in Table 1, where columns PI, PO, 
and VAR respectively report the number of bits in primary inputs, 
primary outputs and internal variables for each benchmark; column 
LOC reports the number of lines of code; column CAS reports the 
number of candidate assertions; finally, column OH reports the overall 
overhead in nanoseconds (ns) that the candidate assertions introduce. 
Such benchmarks are from ITC’99 suite, that is a well know reference 
used by other authors [5]. 

BENCH. PI PO VAR LOC CAS OH (ns) 
b01 4 2 3    186 54 217 
b02 3 1 3    131 28 117 
b03 6 1 26 212 68 308 
b04 13 8 101 194 55 234 
b05 3 36 511 362 192 1622 
b06 4 6 3 205 67 288 
b07 3 8 43 286 46 195 
b08 11 4 37    137 29 128 

Table 1.   Benchmarks characteristics. 

After the automatic generation of a set of candidate assertions for 
each benchmark, we profiled the quality of the described optimization 
algorithms by using the evaluation metric proposed in Section IV.C.  

In Table 2 and Table 3, the results of the algorithms are reported in 
columns BAF, FAF, and MEAF for benchmarks b03 and b05, 
respectively. We have chosen to report only the results of b03 and b05 
for lack of space and because these benchmarks are the biggest in terms 
of candidate assertions. We executed each algorithm with a maximum 
tolerated overhead, which is reported in column MTO. Such a value is 
expressed as a percentage on the  overall overhead (column OH in 
Table 1), i.e. 5%, 10%, … , and 25%. For example, in the case of b05 
the MTO values are 5ns, 10ns, 15ns, 20ns, and 25ns. For each 
algorithm, the column RATIO reports the quality of the algorithm which 
is measured according to the proposed metric, and column SAS reports 
the number of assertion selected over the total number of candidate 
assertions reported in Table 1. 

BAF FAF MEAF 
MTO (%) RATIO SAS RATIO SAS RATIO SAS 

5 0.125 3 0.026 7 0.290 5 
10 0.246 6 0.272 13 0.415 8 
15 0.360 9 0.396 16 0.540 11 
20 0.383 8 0.518 18 0.665 11 
25 0.455 12 0.632 20 0.791 13 

Table 2.   Comparison of the optimization algorithms (b03 benchmark). 

BAF FAF MEAF 
MTO (%) RATIO SAS RATIO SAS RATIO SAS 

5 0.182 8 0.027 16 0.289 10 
10 0.192 14 0.075 34 0.426 18 
15 0.295 21 0.125 51 0.557 28 
20 0.407 50 0.317 67 0.637 41 
25 0.448 36 0.359 80 0.704 56 

Table 3.   Comparison of the optimization algorithms (b05 benchmark). 

1. iinput: the module M 
2. iinput: the set CAS of candidate assertions
3. iinput: the maximum tolerated overhead MTO 
4. ooutput: the set SAS of selected assertions 

5. SAS ← ∅; remaining_overhead ← MTO; 
6. APQ ← perf_deg_order (CAS); 
7. while remaining_overhead ≥ 0 ∧ flag ddo 
8. assertion ←  remove_top (APQ); 
9.  if (assertion.perf_degradation ≤ remaining_overhead) then 

10. SAS ← SELECTED ∪ { assertion }; 
11. remaining_overhead ← 

  remaining_overhead − assertion.perf_degradation;  
12.  eend if 
13. end while 
14. rreturn SAS 
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