
Optimization of Assertion Placement in
Time-Constrained Embedded Systems
Viacheslav Izosimov

Embedded Intelligent Solutions (EIS) By Semcon AB
Email: viacheslav.izosimov@eis.semcon.com

Zebo Peng
Dept. of Computer and Information Science,

Linköping University
Email: zebo.peng@liu.se

Michele Lora, Graziano Pravadelli, Franco Fummi
Dept. of Computer Science, University of Verona

Email: {name.surname}@univr.it

Giuseppe Di Guglielmo, Masahiro Fujita
VLSI Design and Education Center, University of Tokyo,

CREST - Japan Science and Technology Agency
{gdg, fujita}@cad.t.u-tokyo.ac.jp

Abstract— We present an approach for optimization of assertion
placement in time-constrained HW/SW modules for detection of
errors due to transient and intermittent faults. During the design
phases, these assertions have to be inserted into the executable
code and, hence, will always be executed with the corresponding
code branches. As the result, they can significantly increase
execution time of a module, in particular, contributing to a much
longer execution of the worst case, and cause deadline misses.
Assertions have different characteristics such as tightness (or
"local error coverage") and execution latency. Taking into
account these properties can increase efficiency of assertion checks
in time-constrained embedded HW/SW modules. We have
developed a design optimization framework, which (1) identifies
candidate locations for assertions, (2) associates a candidate
assertion to each location, and (3) selects a set of assertions in
terms of performance degradation and assertion tightness.
Experimental results have shown the efficiency of the proposed
techniques.

I. INTRODUCTION
Executable assertions are one of the most efficient methods to

increase testability of applications against transient and intermittent
faults1 (also known as “soft errors”). Transient faults are one of the
most common faults in modern electronic systems due to high
complexity, smaller transistor sizes, higher operational frequency, and
lower voltage levels [4][12][19]. These faults can be result of
electromagnetic interference, radiation, temperature variations, etc.
[16]. They happen for a short time and disappear without causing a
permanent damage to the circuit. However, if not tolerated, transient
faults may crash the system or lead to dramatic quality deterioration
[16][17]. Efficient error detection is an ultimate prerequisite for this
fault tolerance. Assertions can provide a high degree of error coverage
against transient faults with low performance overhead compared to
other techniques [10][13][20]. This is, however, true only if the right
assertions are introduced in the proper places during execution of
HW/SW modules.

In this paper, we will focus on optimization of executable assertions
placement in HW/SW modules. In particular, we will consider HW/SW
modules, which have timing constraints, i.e., are parts of a larger real-
time embedded system. Execution of such a real-time module has to
complete before a certain deadline [18]. If this deadline is violated, it
may lead to potentially catastrophic consequences for an application.
Thus, taking into account performance overheads of executable
assertions becomes particularly crucial.

The related works on assertions can be classified in three main
groups: assertion-based approaches for SystemC code (HW/SW

1 We will refer to both intermittent and transient faults as transient faults.

modules), assertion-based debugging approach for embedded
applications, and assertion-based approaches for addressing transient
faults.

In the first group of techniques, executable assertions are
introduced into SystemC descriptions, which is a popular language for
developing embedded systems [9]. In particular, Habibi et al. [11] have
presented a methodology to generate assertions with ASM (Abstract
States Machines) in C# language with the following transition into
SystemC before integration into the HW/SW module. They use PLS
(Property Specification Language) to specify a variety of design
properties in ASM. Economakos [6] has proposed a framework to
introduce SystemC and PSL assertions into embedded programs, which
are later integrated into the high-level synthesis (HLS) process for
digital circuits. Tomasena et al. [21] have proposed a design framework
to introduce assertions into SystemC programs at the Transaction Level
(TL) model with the Assertion Based Verification (ABV) support.
ABV is a popular technique to verify electronic systems, where
assertions are introduced in a systematic manner into an embedded
component.

In the second group, most of assertion-related works target
debuggability and testability of applications. For example, Yin and
Bieman [15] have developed a C-Patrol tool to automatically introduce
executable assertions into C programs. Voas and Miller [23] have
introduced assertions based on sensitivity properties of the code, i.e.,
which parts of the code are the most difficult to test and are the most
critical for execution of safety-critical applications. Gharehbaghi et al.
[8] have proposed an assertion-based methodology to test Systems-on-
Chip (SoC) with a monitor that observes status of assertions.

In the last group of related research works, assertions have been
used against transient faults. Vemu and Abraham [22] have proposed a
CEDA methodology to call program flow with assertions, which can be
used to detect transient faults. Goloubeva et al. [10] have proposed an
approach to insert executable assertions for detecting transient faults.
Hiller [13] has proposed a methodology to sort out faults from
incoming signals with assertions, which can be used to stop propagation
of errors caused by transient faults through the system. This work has
been later extended with assertion optimization to increase system
dependability with profiling in [14]. Peti et al. [20] have proposed an
“out-of-norm” assertion methodology to insert assertions into electronic
components, in particular, communication controllers, to detect
transient faults. Ayev et al. [2] have proposed a technique to integrate
assertions into embedded programs with automatic program
transformations to provide error detection and recovery against
transient faults.

However, to our knowledge, none of the previous work has
addressed real-time aspects of embedded systems with executable
assertions. In this work, we assess timing efficiency of assertions in
order to reduce performance overheads of error detection and propose a

framework for optimizing the assertion placing into time-constrained
embedded systems. Our framework will:

1. identify candidate locations for assertions;
2. associate a candidate assertion to each location (the candidate

assertion is suggested by the framework, but the user can
change it);

3. statically/dynamically profile the module with assertions
(inspired by the work of Hiller et al. [14]); and

4. select a set of assertions in terms of performance degradation
and tightness (by using the optimization infrastructure).

Our approach can be useful for optimization of executable
assertions in any embedded system with timing constraints. Examples
of such systems include, but are not limited to, automotive electronics,
airborne software, factory automation, and medical and
telecommunication equipment. Our technique is useful not only for
detection of transient faults but also for debugging of real-time
programs with hard timing constraints. In such programs, assertions
must not compromise the program’s timing constrains, and, thus, have
to be optimized.

The rest of the paper is organized as follows: the next section
presents our application model, describes principles of error detection,
and discusses basic properties of executable assertions; in Section III,
we outline our problem formulation; in Section IV, we present our
assertion placement optimization framework; finally, experimental
results are presented in Section V.

II. APPLICATION MODEL

To represent application behavior, we have adapted the conditional
process graph model proposed in [7] for the program instruction level.
We represent an embedded program module M as a directed
dependency graph G = {V, ES, EC}, where V is a set of nodes and ES
and EC are sets of simple and conditional edges, respectively. The main
difference from the model in [7] is that we will permit loops in the
graph, i.e., the dependency graph G does not have to be acyclic, and we
will consider program instructions instead of processes. Moreover, it is
not required that the graph has to be polar, i.e., several source and sink
nodes are possible. In our model, a node Ii � V is a module instruction
and eij is a direct dependency between instructions Ii and Ij, which can
be, for example, a data or logical dependency. eij can be either a simple
or conditional dependency. eij is a conditional dependency, i.e. eij � EC,
if it will be taken based on a certain logical condition in the instruction
Ii, i.e., for example, based on a “true” or “false” value of an if statement
in Ii. If eij is the only alternative for program execution, we will
consider that it is a simple dependency, i.e., eij � ES. Note that simple
and conditional dependencies may constitute parts of module loops.
The embedded program module M can be eventually implemented
either is software (SW) or in hardware (HW) and will be referred as a
HW/SW module or simply module in the paper.

In Figure 1 we present an example of a simple module M1 and the
corresponding dependency graph G1. This module calculates a factorial
of an integer number N, where N is an input. Graph G1 consists of 6
instructions, I1 to I6, and 6 dependencies, e13 to e53. Dependencies e36,
e34 and e53 constitute a while loop, i.e., “while i is less than or equals
N”, where e36 and e34 are conditional dependencies. e36 is taken if the
“while” condition I3 is “false” and e34 is taken if the “while” condition
I3 is “true”. e53 is a simple dependency and is always taken after the last
loop instruction I5 to come back to the “while” instruction I3. The
dependency graph G1 has two source nodes, I1 and I2, and one sink node
I6.

We will assign performance values to instructions and
dependencies in the HW/SW module with the static/dynamic profiling
of the module.2 Performance values for module M1 are shown in the

2 In general, these performance values are dependent on the actual execution
sequence of the module. However, to simplify performance analysis, we will
begin with the performance values individually profiled for instructions and
dependencies, which will give us the first approximate performance figures of
the module execution, as described in Section IV.A. Later, as described in
Section IV.B, module execution sequences (with the introduced assertions) will
be profiled to capture performance effect of inter-dependencies between

bottom of Figure 1. For example, instruction I4 will take 15 time units
to execute. Time constraints, or deadlines, are assigned to the HW/SW
modules. For example, module M1 produces a new value of the
factorial variable at each loop of I3 to I5 and each execution of I3 to I5 is
constrained with the deadline D1 of 50 time units, as depicted in Figure
1. Thus, instruction I3 to I5 are not allowed to execute more than 50
time units.

We will consider that transient faults may affect execution of
program P1 and are, thus, interested in optimization of assertion
placement for the time-constrained module M1.

Figure 1. Example of a program and its instruction graph.

A. Error detection with assertions
Several errors can happen to the HW/SW module M1 of program P1

in Figure 1, due to transient faults:
� the multiplication operation may fail;
� the factorial number may be overflowed;
� the counter i may not increment as expected; and
� the while loop may loop infinitely due to a corrupted counter i,

memory overflow, or problems with the conditional jump.
These errors can be triggered at any time of program execution and

have to be detected. Several techniques can be used to detect errors
caused by transient faults, such as watchdogs, signatures (both
hardware and software), memory protection codes various types of
duplication, hardware-based error detections and, finally, assertions. In
this work, we will use assertions to detect these faults in execution of
module M1.

Executable assertions are a common error detection technique,
which is often used by programmers for debugging. In general, an
assertion is a predicate written as a Boolean statement placed in the
code, where the truth value should be always true in absence of faults.
An assertion can be defined as if not <assertion> then <error>, where
<assertion> is a logical (Boolean) check of an operand value or
correctness of an operation. An example of an operand assertion can be
“a shall be 1”. Correctness of an operation, for example, “y = a � b” can
be checked with an assertion “y � a + b shall be 0”. Assertions can
provide a very high level of error detection compared to other
techniques since they can be fine-tuned to particular program
properties.

However, assertions, similar to other error detection techniques, can
introduce a significant performance overhead and, consequently,
compromise the deadline. Violation of this deadline may lead to
catastrophic consequences, and, hence, must be avoided. At the same
time, lack of assertions will lead to low error coverage and high
susceptibility of the program to transient faults, which will not be
detected and, hence, can also lead to potentially catastrophic

instructions (and assertions) in these execution sequences, and, thus, deadline
satisfaction will be ensured over all execution scenarios of the module.

I1
I2
I3

3
3
10

I4
I5
I6

15
3
5

e13
e23
e34

1
1
5

e45
e36
e53

1
1
5

I2

I6

I3

e23

I1

e13

I4

I5

e34

e45
e36

e53

M1: G1

false true

Factorial(const int N)
double factorial = 1;

int i = 1;

while(i <= N) {

factorial *= (double) i ;

i++; }

return factorial ;

end Factorial

I1:
I2:
I3:
I4:
I5:
I6:

172

consequences. Thus, both performance overheads of assertions and
their efficiency have to be considered in the assertion placement.

B. Parameters of executable assertions
To capture effectiveness of assertions, we will assign to each

assertion Am a tightness value, �m. The tightness value �m represents an
increase in error detection probability of the HW/SW module M against
random faults after assertion Am is introduced. These values can be
obtained with, for example, fault injection experiments [1] or with static
probability analysis of the assertion code. We will compute them as a
part of our profiling strategy described in Section IV.

Each assertion Am is also characterized with a performance
degradation value, �m. The performance degradation value �m is the
performance overhead of the assertion if introduced into module M.
These values can be obtained with static analysis [24] or with extensive
simulations of program execution [25]. We will also compute them in
the profiling step of the optimization framework, as described in
Section IV.

In general assertions shall be introduced with the highest possible
tightness at the lowest performance degradation.

In Figure 1, instruction I4: factorial*=(double)i can be
protected with assertion A1 (where the assertion code is indicated with
brackets):

<x = factorial;>
factorial *=(double)i;
<if (!(factorial/(double)i == x)) error();>
For instruction I4 this assertion protects only the multiplication

operation, but it protects neither the value of factorial nor the value of
the counter. Another assertion A2 could be as follows:

<i_prev = i;>
<factorial_prev = factorial;>
<<<while loop iteration>>>
<x = factorial;>
factorial *=(double)i;
<if (!(factorial/(double)i == x

 && i_prev == i
 && factorial_prev == x) error();>

This assertion A2 will protect both the multiplication and the
changing of counter i and factorial variables.

Let us consider that, after profiling, assertion A1 gives tightness of
75% for instruction I4 (it captures faults only in the multiplication) and
assertion A2 gives tightness of 90%.3 Regarding performance, we obtain
that A1 has performance degradation of 20 time units, and A2 has
performance degradation of 30 time units. If we compare assertions A1
and A2 from the performance degradation point of view, we can see that
assertion A2 requires more time to execute. However, A2 is better than
A1 from the tightness point of view.

Let us consider assertion A3, which is the assertion A2 excluding the
assertion A1 part for the multiplication check:

<i_prev = i;>
<factorial_prev = factorial;>
<<<while loop iteration>>>
<x = factorial;>
factorial *=(double)i;
<if (!(i_prev==i

 && factorial_prev==x)) error();>
A3 will give us 25% tightness but will only need 10 time units to

execute.
Note that assertions themselves can be subject to transient fault

occurrences and, therefore, additional measures should be taken to
address error detection in assertions. This could lead to a problem of
“false positives”, i.e., assertion affected by a transient fault can signal
that the fault has happen but it actually has not. This can be solved with

3 Note that these and the other values in the example are presented here for
illustrative purposes only, i.e., in order to illustrate decision-making in the
assertion placement process in the reader-friendly fashion.

self-detectable assertions, i.e., we introduce assertions for assertions to
provide a level of error detection coverage in the assertions’ code. For
example, a self-detectable assertion for assertion A1 can be:

<if (!(factorial / (double)i == x))
 if (!((x * (double)i == factorial)))

 error();>
This assertion checks if the division operation within assertion A1 is

performed correctly.
So, which assertion should we choose for module M1 in Figure 1,

given a list of assertions A1, A2 and A3 and the deadline of 50 time units
for instruction I3 to I5? The total execution without assertions will be for
module M1: 10 + 15 + 3 = 28, which gives a performance budget of 50
– 28 = 23 time units. Thus, assertion A1 will be chosen since it has a
performance degradation of 20 time units, which fits into the given
budget, and its tightness value of 75% is greater than 25% tightness of
A3.

Although, for the example in Figure 1, decision on which assertion
to choose is relatively straightforward, as the size of HW/SW module
increases, these decisions becomes much more difficult. If in Figure 1
we have only three possible assertions, for real-life programs the
number of assertions can be thousands, which makes it impossible to
decide manually. On top of that, self-detectable assertions should be
also considered to reduce the number of “false positives”.

Another problem with assertions is that not all of the instructions
are executed at every execution of a HW/SW module. For example, in
Figure 2a, instruction I2 will be executed only if the instruction I1: “if x
> 99” produces “true” value. Suppose that the values of x are uniformly
distributed between 1 and 100. Then, if we introduce an assertion Am
for instruction I2, this assertion will deliver its tightness only in 1 case
out of 100. In 99 cases it will not contribute to the error detection of
transient faults. We will consider that, if, for example, the initial static
tightness of Am is 80%, the actual dynamic tightness will be 80 / 100 =
0.8%. Thus, efficiency of assertions also depends a lot on how often
they (and their related instructions) are executed. In Figure 2a,
introduction of an assertion An with static tightness of 40% into the
“false” branch will make more sense, i.e., its dynamic tightness will be
40 × 99 / 100 = 39.6%, which is greater than that of Am. Note, however,
that in this example, there is no competition between Am and An as long
as they are executed completely in different branches and both
assertions can be introduced. Let us consider another situation depicted
in Figure 2b, where parts of Am and An have to be executed before the
condition I1, i.e., always, with remaining parts to be completed in their
own branches. If we have to choose between these assertions, assertion
An will be obviously the best, despite the fact that its static tightness
(40%) is twice as small as the static tightness (80%) of Am.

Figure 2. Example of a conditional execution of an assertion.

Thus, to address the complexity of assertion placement, we have
proposed an assertion placement optimization framework described in
Section IV, which solves a generalized problem of assertion placement
that we present in Section III.

III. PROBLEM FORMULATION

As an input we get a HW/SW module M (in VHDL, SystemC, C)
of a time-constrained embedded system. Module M does not contain
executable assertions. Several sets of instructions in this module M are
associated with hard deadlines, as illustrated in the example in Figure 1.
A list of candidate assertions for this module M is also given. This list
can be, for example, provided by designers after previous debugging of
this module in the non real-time mode or may even be associated with

I2 I3

I4

I1 if x > 99 then
e13e12

e34e24

true false

Am

x : [1…100]

AnI2 I3

I4

I1 if x > 99 then
e13e12

e34e24

true false

Am

x : [1…100]

An I2 I3

I4

I1
e13e12

e34e24

true false

Am An

Am An

I2 I3

I4

I1
e13e12

e34e24

true false

Am An

Am An
a) b)

173

the module source code directly under the “_DEBUG” compilation
flag.

As an output, we want to produce a HW/SW module with the
subset of assertions introduced at the best possible places in the module
source code, which maximize tightness, while meeting hard deadlines.

IV. ASSERTION PLACEMENT

In this section, we present the approach for placement,
optimization, and evaluation of error detection primitives in time-
constrained embedded systems. In particular, an overview of the
developed framework is shown in Figure 3. The framework is based on
three main iterative phases: the code analysis and manipulation phase,
the module simulation and profiling phase, and, finally, the
optimization of the assertion placement according to the simulation and
profiling information.

Figure 3. The profiling and optimization framework for assertion placement.

The framework takes as input an HW/SW module (VHDL,
SystemC, C) of a time-constrained embedded system, which does not
have any assertions, i.e. a fault silent description M, and transforms it
into an intermediate representation [3]. In this phase, the framework
introduces assertions, i.e. A, and placeholders by exploiting the
dependency-graph associated with the module, i.e. G. Each assertion is
coupled with a statically computed value for performance degradation.
Moreover, the framework allows the user to provide an actual assertion
for each placeholder. Then, the module description with placeholders,
i.e. M L, is simulated for generating further profiling information. In this
work, we adopted a Monte-Carlo automatic-test-pattern generator
(ATPG) for generating simulation stimuli, but either user-defined
testbenches or structural-ATPG approaches can be easily integrated.
The generated profiling information is a simulation log which, for each
placeholder, contains the dynamically computed values of tightness and
performance degradation. Finally, in the optimization phase, the
framework exploits this information and the user-defined algorithms for
generating a module description with assertions. In particular, the
framework provides an API for accessing the static and dynamic
profiling information. Moreover, it provides a set of optimization
algorithms, which can be either used or extended by the designer. The
final choice of assertions, i.e. M A, is both compatible with the time
constraints of the embedded system, and optimized in terms of error
detection.

In the following, Section IV.A summarizes the main aspects of the
code analysis and profiling phases; Section IV.B describes the
assertion-optimization infrastructure and some algorithms built on top
of it; finally, Section IV.C provides an evaluation metric for validating
the quality of the optimization environment.

A. Code analisys and profiling
The analysis and manipulation of the module descriptions are based

on HIFSuite [3], a set of tools and libraries, which provides support for

modeling and verification of embedded systems. The core of HIFSuite
is an intermediate format, i.e. HIF, which is similar to an abstract-
syntax tree (AST); moreover, front-end and back-end tools allow the
conversion of HW/SW description into HIF code and vice versa. In this
initial phase, the HIF representation of the module is automatically
converted into a dependency graph G, whose nodes and data/control-
dependency edges are added to the HIF AST. Then, the code analysis
searches for eligible locations for assertion placing. Eligible locations
are assignment instructions, arithmetic expressions, control statement,
operations over signals, bodies of loops, as well as initial and final
instructions of processes. For each of these locations the framework
provides a candidate assertion, which aims at detecting soft errors. For
example, in the case of a conditional statement, it is necessary to
guarantee that a transient fault does not affect the choice of the branch
currently in execution, as shown in Figure 4.

Figure 4. Protecting conditional-statement branches against soft errors.

Analogously, assertions may check the execution of the body of
loop statements, or that the loop counter monotonically increases
(decreases). Another example is given in Figure 5, where both the array
access and the data reading are protected against soft errors by means of
an assertion. Moreover, a user interface permits the designer to
introduce further assertions or modify the assertions that the framework
automatically choose.

Figure 5. Protecting array reading against soft errors.

During the analysis of the code, an initial statically-computed value
for performance degradation is associated with each assertion. The
performance degradation is computed based on the syntactic
complexity of the Boolean predicate, which is defined by the number
and type of variables and operators.

As a final step, in each eligible location, a placeholder is injected
that registers an event in the simulation log every time it is reached
during the execution. In particular, further values for tightness and
performance degradation are dynamically-computed and registered. An
intuitive example of tightness computation for executable assertions is
reported in Figure 2. In such a case, the higher the number of times that
a branch is executed, the greater is the tightness of each assertion that
occurs in the branch. During the execution, the performance
degradation, associated with each assertion, is computed in terms of
time units.

B. Optimization infrastructure
In the previous phases, a set of candidate assertions addressing soft

errors is associated with each module of the time-constrained embedded
system, and simulation-based profiling information is generated. These
assertions have different probability of detecting errors, and increase
the execution time of the module. The proposed framework provides an
infrastructure that allows the designer to automatically choose the
assertions that maximize the error detection and respect the time
constraints of the system.

The optimization library provides functionalities for accessing the
dependency and profiling information. In particular, some data
structures are maintained in association with the dependency graph of
each module, for example:

<int _i;>
x = a[_i = i];
// ...
<if (x != a[i] && i != _i) error();>

if (x <= max) {
 // then body
 <if (!(x <= max)) error();>
 x = y + z;
 // then body
} else {
 // else body
 <if (x <= max) error();>
 // else body
}

HW/SW
module

M

Code analysis and
Manipulation

HIF Suite

Dependency
Graph Asserts

User Interface

Module +
Assertions

M

Module +
Placeholders

M

Simulation and
Profiling

ATPG

Results

Algorithms

Assertion
Optimization

Optimization Library

Assert
List

Simulation
Logs

174

� A set which contains each candidate assertion (Am), the related
location in the module (lm), and the profiled tightness (��), and
performance degradation (��).

� An assertion-dependency graph, ADG = {A, EA}, where each
node is a candidate assertion (Am � A) and each edge (i,j) � EA
correlates two assertions, if assertion j is the subsequent of
assertion i during the simulation.

� A set of paths which contains each path followed during the
simulation. In particular, a path is represented as a list of events
in the simulation log, and an event is a couple (Am, t) where, Am
is a reached assertion and t is the corresponding execution time
from the simulation beginning.

We implemented some algorithms on top of this infrastructure, with
the purpose of showing possible assertion-placing optimizations, and
focusing the attention on the usability of the library. In particular, we
can distinguish between algorithms which use only the structural
information of the module, and algorithms that exploit the simulation
information.

A first simple optimization approach is the Best Assertion First
(BAF) strategy, shown in Algorithm 1. It always chooses, while the
deadlines are respected, the candidate assertion with the highest
probability of detecting errors. In such a case, we assume that the error
detection probability is proportional to the static performance
degradation of the assertions; that is, a computational-heavy assertion
detects more likely soft errors. The expected result of this algorithm is a
design with few, but effective, assertions. In particular the algorithm
takes as inputs (lines 1-3) the module, the set of candidate assertions,
and a maximum-tolerated-overhead value, which depends on the time
constraints of the embedded system. It returns a set of assertions (line
4), which are compatible with the constraints and aim at optimizing the
soft-error detection probability. In particular, the candidate assertions
are ordered with respect to the static performance degradation, with the
most expensive first (line 6). Then, the assertions are selected till they
exhaust the available tolerated overhead (lines 7-13).

Algorithm 1. The Best Assertion First (BAF) algorithm.

Another similar approach, but based on a conceptually inverse
motivation, is the Fastest Assertion First (FAF). It always chooses the
available assertion with the minimum static performance degradation,
until the tolerated overhead is exhausted. The expected result is a
design with the highest number of assertions, which try to maximize the
fault detection capability. A third algorithm, the Most Executed
Assertion First (MEAF), exploits the tightness of the assertions, a
simulation-based information: it chooses, while the deadlines are
respected, the most executed assertion during the system simulation.
Similarly, several other algorithms can be easily created by exploiting
and combining both the structural and profiling information.

C. Evaluation metric
Since the framework is particularly focused on the simulation, it

seems reasonable to emphasize simulation contribution also for
evaluating the obtained results. Thus, we propose the following metric.

Definition 1: Let M be a time-constrained module, A ={A1, ..., AK}
a list of candidate assertions for the module M, and � an assertion-
placing algorithm. Then the result of � over M and A is the set of

assertions Ap = {A�
�

, … , A�
� } ⊆ A�. The quality of Ap is measured as

the ratio

Ratio� =
∑ �

�
∗�

�� �

�

∑ �
 ∗�

�� �

where �
 and �
 are, respectively, the tightness and performance
degradation associated with each assertion �� in A, while �

� and �

� are

associated with each assertion �� in Ap .
Thus, this metric not only considers the quality of the selected

assertion, but also takes into account the frequency of assertion
execution (the dynamically computed tightness).

V. EXPERIMENTAL RESULTS
In order to assess the effectiveness of the proposed framework, we

have used the benchmarks described in Table 1, where columns PI, PO,
and VAR respectively report the number of bits in primary inputs,
primary outputs and internal variables for each benchmark; column
LOC reports the number of lines of code; column CAS reports the
number of candidate assertions; finally, column OH reports the overall
overhead in nanoseconds (ns) that the candidate assertions introduce.
Such benchmarks are from ITC’99 suite, that is a well know reference
used by other authors [5].

BENCH. PI PO VAR LOC CAS OH (ns)
b01 4 2 3 186 54 217
b02 3 1 3 131 28 117
b03 6 1 26 212 68 308
b04 13 8 101 194 55 234
b05 3 36 511 362 192 1622
b06 4 6 3 205 67 288
b07 3 8 43 286 46 195
b08 11 4 37 137 29 128

Table 1. Benchmarks characteristics.

After the automatic generation of a set of candidate assertions for
each benchmark, we profiled the quality of the described optimization
algorithms by using the evaluation metric proposed in Section IV.C.

In Table 2 and Table 3, the results of the algorithms are reported in
columns BAF, FAF, and MEAF for benchmarks b03 and b05,
respectively. We have chosen to report only the results of b03 and b05
for lack of space and because these benchmarks are the biggest in terms
of candidate assertions. We executed each algorithm with a maximum
tolerated overhead, which is reported in column MTO. Such a value is
expressed as a percentage on the overall overhead (column OH in
Table 1), i.e. 5%, 10%, … , and 25%. For example, in the case of b05
the MTO values are 5ns, 10ns, 15ns, 20ns, and 25ns. For each
algorithm, the column RATIO reports the quality of the algorithm which
is measured according to the proposed metric, and column SAS reports
the number of assertion selected over the total number of candidate
assertions reported in Table 1.

BAF FAF MEAF
MTO (%) RATIO SAS RATIO SAS RATIO SAS

5 0.125 3 0.026 7 0.290 5
10 0.246 6 0.272 13 0.415 8
15 0.360 9 0.396 16 0.540 11
20 0.383 8 0.518 18 0.665 11
25 0.455 12 0.632 20 0.791 13

Table 2. Comparison of the optimization algorithms (b03 benchmark).

BAF FAF MEAF
MTO (%) RATIO SAS RATIO SAS RATIO SAS

5 0.182 8 0.027 16 0.289 10
10 0.192 14 0.075 34 0.426 18
15 0.295 21 0.125 51 0.557 28
20 0.407 50 0.317 67 0.637 41
25 0.448 36 0.359 80 0.704 56

Table 3. Comparison of the optimization algorithms (b05 benchmark).

1. iinput: the module M
2. iinput: the set CAS of candidate assertions
3. iinput: the maximum tolerated overhead MTO
4. ooutput: the set SAS of selected assertions

5. SAS ← ∅; remaining_overhead ← MTO;
6. APQ ← perf_deg_order (CAS);
7. while remaining_overhead ≥ 0 ∧ flag ddo
8. assertion ← remove_top (APQ);
9. if (assertion.perf_degradation ≤ remaining_overhead) then

10. SAS ← SELECTED ∪ { assertion };
11. remaining_overhead ←

 remaining_overhead − assertion.perf_degradation;
12. eend if
13. end while
14. rreturn SAS

175

