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Abstract 

This paper presents the modeling and simulation of a low voltage pentacene organic field 

effect transistor (OFET), which is based on experimental data using an integrated finite 

element and artificial neural networks (ANN) approach. We present a model of organic field 

effect transistor based on neural network, this approach allows an easy way to model devices 

without acquiring a deep knowledge the device physics.  The finite element type simulation is 

realized using 2-D Atlas simulator, both Atlas and obtained modeling results agree 

approximately with the published experimental results.  
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1. Introduction 

Research on organic field effect transistors (OFET) has been rapidly growing in recent 

years. Owing to lightweight, low cost, and low fabrication temperature, organic field effect 

transistors (OFETs) have a wide range of applications such as sensors, active-matrix 

backplanes in displays, and radio frequency identification tags (RFIDs) [1-2]. Recently 

pentacene-based thin-film transistors (TFTs) have seen significant improvements in device 

performance. Organic TFT performance is now comparable to hydrogenated amorphous 

silicon (a:Si:H) TFTs [3]. The performance of organic transistors depends largely on the 

quality of the insulator/organic interface, the gate insulator, the morphology of the organic 

thin film, and the charge injection process. Organic transistors are working in accumulation 

mode and most of the modulated charge of the conducting channel resides in the first 

monolayer next to the insulator–semiconductor interface [4]. This means that the interface 

properties between the semiconductor and the gate dielectric are of tremendous importance on 

the field effect mobility.  

Roughness, density of surface traps, and dielectric constant are crucial parameters [5]. 

Among inorganic dielectrics, most OFETs utilize an insulator made of an oxide (mainly 

silicon oxide SiO2), this kind of OFET requires a relatively high voltage for operation, on the 

other hand the weak of dielectric constant (ε = 3.9) remains a serious limitation for low power 

since operating voltage largely above 50 V are necessary for sufficient charge injection in the 

channel. To allow organic TFTs to operate with low voltages and hence the power 

consumption, high-K materials such as Al2O3 [6] and Ta2O5 [7] have been employed as a gate 

dielectric to fabricate OFETs. 

Device modeling for circuit simulation is usually done through compact models, which 

tray to model the physical phenomena inside the device that uses either physically based 

functions or empirical functions [8]. When fast modeling is required and we are not 

concerned about the physics inside the device, the easy modeling approach in dealing with 
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nonlinear systems is to use non-linear methods such as artificial neural networks (ANN). A 

very common application of ANNs is in control systems where the system is non-linear and 

the exact relationship is difficult or impossible to determine analytically. Artificial neural 

networks are pliable mathematical structures that are capable of identifying complex non-

linear relationships among input and output data sets. 

 

2. Simulation 
 

2.1. Finite element based Atlas simulation  

To make OFETs operating at lower voltages (2–3V), with a typical dielectric permittivity    

(ε ~3–5), the gate capacitance should be close to 0.5 µF/cm
2
. This means that the gate 

insulator should be less than 10 nm thick [9]. 

The structure of top contact device simulated is shown in Figure 1, these devices have 

channel length L of 10µm and a channel width W of 100 µm, with 30 nm thick film of 

pentacene and 30 nm thick gold source/drain contacts, where the gate electrode was 20 

nm of Aluminum and dielectric gate thickness of 5.7 µm was used for simulation as 

mentioned in [9]. In finite element based simulation, the Poole–Frenkel mobility is used for 

Pentacene layer and defines the dependency of mobility capability due to electric field, this 

model is expressed as 
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Where µ(E) is the field dependent mobility, μ0 is the zero field mobility, ΔEa is The zero field 

thermal activation energy which is equal to 0.018 eV, E is the electric field, KB is the 

Boltzmann constant, T is the temperature and β is The Poole-Frenkel factor which is equal to 

7.75×10
−5

 eV(cm/V)
0.5

 [9-12]. To perform numerical simulation, typical pentacene 

properties are shown in Table 1, Experimental value of interface trap state density of 

3×10
12

 cm
2
 [9] was used for the simulation. 

 

Table 1. Pentacene properties for OFET device 

 

 

 

 

 

 

 

 

In Poole–Frenkel model, conduction occurs due to the field enhanced thermal excitation of 

trapped charge carriers. The drain current reduces in low field region, due to charge carriers 

being localized around the traps. Increasing the electric field will help these trapped charges 

to exit the trap. The release of these charge carriers will result in a large increase in the drain 

current of the device [13]. 

Figure 1 shows simulated structure for bottom gate top contact (BGTC) device and it can 

be easily understood from current flow lines, that charge injection/extraction is taking place 

   Material   (layer)                                            Parameter    Value 

Pentacene 

 

Band gap 

Density of conduction band 

Density of valence band 

Permittivity 

Acceptor doping concentration 

Affinity 

2.2 eV 

2×10
21

 cm
-3

 

2×10
21

 cm
-3

 

4.0 

7×10
17

 cm
-3

 

2.8 eV 

 Gate insulator Dielectric constant 4 
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from side/corner of the contacts and charge transport occurs in the first few layers adjacent to 

the dielectric. The output and transfer characteristics are examined for top contact OFET, and 

the simulated results are shown in Figure 2 and Figure 3 respectively. As indicated in Figure 

2 drain current (Idmax) is 4.94 μA, at specified gate voltage and drain voltage of -3.0V.  

 

 

Figure 1. Schematic diagram for current flow path of top contact OFET 
structure 

 

 

Figure 2. Output characteristic with channel lengths of 10 µm 
 

We have simulated the transfer curve for different values of L ranging from 10 to 50 µm 

(Figure 3). Simulation results show that the increase in drain current accompanying the 

decreasing of the channel length. Figure 4 shows potential profile at 1 nm above the 

semiconductor/dielectric interface along the device length, the potential was simulated at 

VGS= VDS= -3V. 
 



International Journal of Advanced Science and Technology 

Vol.66 (2014) 

 

 

82   Copyright ⓒ 2014 SERSC 
 

 

Figure 3. Transfer characteristics (ID–VGS) at different channel lengths                                 
 

 

 

Figure 4. Potential profile in pentacene for10µm channel length 
 

2.2. Artificial Neural Networks 

The artificial neural network (ANN) is a system of data processing based on the structure 

of a biological neural system. An ANN is a powerful data modeling tool that is able to capture 

and represent complex input/output relationships by some internal calculations. The most 

common neural network model is the multilayer perceptron (MLP) [14-15] shown in Figure 

5. A typical neural network structure has two types of basic components, namely, the neurons 

and links between them. Every link has a corresponding weight parameter associated with it. 

Each neuron consists of a set of inputs, and an activation function. The network architecture 

is composed of an input layer (X), an output layer (Y) and one or more hidden layers (H). 

MLP is a feed forward ANN model that maps sets of input data onto a set of appropriate 

output. A simplified overview of the proposed ANN model is shown in Figure 6. 

Equation 2 represents the algorithm commonly used to compute the output of an artificial 

neuron. The output of each neuron f, depends on the activation value, which is a weighted 

sum of the inputs 
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( ) ( )( )∑= iiwxkxf .                     (2) 

Where wi is the weight related to the xi input and f is the activation function. 

The MLP networks are trained with the standard back-propagation algorithm, which 

compares the predicted output with the desired output and the mean square error is calculated. 

If the mean square error is more than a prescribed threshold value, it is back propagated from 

output to input, and weights are further modified until the error or number of iterations is 

within a prescribed limit. The training of a network is a process where the set of adjusted 

parameters (weights and biases) is optimized in order to make the best prediction of the target 

variable on the basis of background variables [16]. 

The neural network model was created in MATLAB (2006a). The Network properties are as 

follows: 

 Network inputs: VGS, VDS, L and t. 

 Network outputs: ID. 

 Network type: Feed-Forward Back-Propagation. 

 Network transfer function: logsig 

 Training function: TRAINRP. 

In order to compare the results of the proposed ANN model in modeling the organic field 

effect transistor with experimental results, we have used a relative error (RE) measurement 

which   is expressed in percentage defined as: 

100×
I

I-I
=%RE

Exp

edPrExp

.                                     (3) 

where IPred is the predicted drain current based on ANN, IExp represents the target function 

(experimental measures), RE gives an indication of how good a measurement is relative to the 

size of the thing being measured. Also the mean relative error (MRE) is given by: 

i

N

1i
RE

N

1
MRE ∑

=
= .                                                      (4) 

where N is the number of data (database size). 
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Figure 5. MLP structure                 

 
 

 

Figure 6. A simplified overview of ANN model 
 

The MLP networks are trained with the standard back-propagation algorithm, which 

attempts to minimize the error at each iteration and the outputs are compared with the target 

values to derive the error value. The output of the network is the drain current and the training 

data consists of set representative data points obtained from the experimental measurements 

(H. Klauk et al. [9]). The minimum and maximum data ranges used for ANN model are 

shown in Table 2. 

 

Table 2. Data ranges of the ANN model 

 
 

To get a neural network model for the transistor, we examine many different structures 

with one and three hidden layers and 2 to 15 neurons in each layer. Table 3, shows the result 

obtained for different structure. The MLP model with 4-9-10-1 Architecture (4 inputs, 9 

neurons in first hidden layer, 10 neurons in second hidden layer and one output) resulted in 

highest accuracy in comparison with the experimental data.  
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Table 3. Percentage mean relative errors for testing results of different ANN 
structures 

 

 

 

 

 

 
A high accuracy of correlation factor (0.9996) between ANN outputs (predicted, Ipred) and 

the corresponding targets (experimental, Iexp) is observed as shown in Figure 7. 

 

 

 

Figure 7. Comparison of the experimental data and  predicted (ANN) results for 
training data 

 

Figure 8 and 9  show the characteristic family of curves of an OFET for different values of 

the gate voltage where dashed line represents finite element based Atlas simulation, squares 

are ANN simulation, and solid line are experimental values manually sampled from [9]. The 

comparison of current-voltage characteristics (ID-VDS) for different VGS between experimental 

data and the proposed ANN model with L=10 μm, W=100 μm and t = 5.7 nm is shown in 

Figure 8, the results show that there is a good agreement between the experiment data and 

predicted values with the least errors. The simulations show a fairly good match especially for 

the higher gate voltages. The gate and drain voltages have been chosen in such a way that we 

could be able to make a comparison between published experimental results in [9] and our 

simulations.  
 

ANN structure MRE % (Test) 

4-9-10-1 

4-4-4-1 

4-20-15-1 

4-5-4-4-1 

4-9-10-4-1 

1.4103 

3.6466 

1.6637 

8.3205 

3.7625 
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Figure 8. Output characteristic for top contact OFET (L=10 μm, W=100 μm and t 
=5.7 nm) using ANN model 

 

 

 

Figure 9. Output characteristic of ANN model and ATLAS simulations 
 

We have simulated the transfer curve for different values of L ranging from 10 to 50 µm 

(Figure 10), squares are ANN simulation, and solid lines are experimental values manually 

sampled from [9], the results show that there is a good agreement between the experiment 

data and ANN predicted values. Figure 11 shows transfer curves of three simulations in the 

linear region for different values of channel length, the finite element result deviates from the 

experimental result. This deviation between experiment and simulations might come from the 

effect of the contact resistance and surface roughness which cannot be included in the current 

simulation software easily. 
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Figure 10. Transfer curves of ANN model for different channel length 
 

 

 

Figure 11. Transfer curves of ANN model and ATLAS simulations for different 
channel length 

 

3. Conclusion 

Top contact pentacene OFET has been investigated with both a finite element type 

simulation and Matlab simulation using artificial neural network (ANN). The comparison 

between experimental data and predicted (ANN model) values has shown that there is a good 

agreement between them with the least errors. The physical parameters of the poole-frenkel 

model used by the finite element are in good agreement with the values presented in 

published reports. Both simulations agree with the published experimental results. 
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