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Abstract

Extinction is certain in a Galton-Watson (GW) branching process
if the o↵spring mean µ < 1, whereas explosion is possible but not
certain if µ > 1. Discriminating between these two possibilities is a
well-studied hypothesis-testing problem. However, deciding whether
extinction or explosion will occur for the current realization of the
process is a prediction problem. This can be formulated as a di↵erent
testing problem by considering the conditional distributions of the
process given extinction and explosion respectively. For power series
o↵spring distributions, fixed-sample and sequential parametric tests
are presented for the prediction problem and illustrated with data on
the spread of epidemics and the populations of endangered species.
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1. Introduction: the 2012 pertussis outbreak in Washington State

In 2011 the weekly numbers of new pertussis (whooping cough) cases in
Washington State remained fairly constant, but in 2012 the numbers in-
creased rapidly (Figure 1, CDC (2012)). Faced with the possibility of a
pandemic, the governor declared a state-wide health emergency in Week 14
and an inoculation/quarantine program was begun.

Figure 1: Weekly counts of new pertussis cases in Washington state.

The spread of an epidemic, at least in its initial stages, can be modeled as
a classical Galton-Watson (GW) branching process, cf. §2. The question of
predicting extinction or explosion is commonly formulated as that of testing
subcriticality (µ < 1) vs. supercriticality (µ > 1), where µ denotes the
mean number of infected o↵spring per individual case – cf. Becker (1974),
Heyde (1979), Scott (1987).1 Guttorp and Perlman (2014) use a decision-
theoretic analysis to show, however, that this problem is more complex than
previous literature suggests and that the basis of a standard test procedure
is somewhat dubious.

Fortunately, this testing problem usually is not the one of actual interest,
because a supercritical process still may terminate with positive probability.
Of more interest is the problem of predicting whether the current realization

1Basawa and Scott (1976) and Sweeting (1978) treat a related testing problem for the
supercritical case.
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of a non-terminated process will terminate or explode. To our knowledge,
this important problem has not been treated in the literature.

In §5-6 this prediction problem is formulated as a di↵erent hypothesis-
testing problem based on the conditional distributions of the process given
eventual extinction and explosion respectively. Unlike the original testing
problem, this prediction problem often has relatively simple solutions in the
fixed-sample (§5) and sequential sample (§6) cases, the latter based on the
classical Wald sequential probability ratio test (SPRT), see §6. Using this
procedure, explosion might have been predicted for the 2012 pertussis out-
break as early as Week 3; see Example 7.4.

Like the authors listed above who treated the original testing problem,
we assume a parametric model for the o↵spring distribution, namely a power
series o↵spring distribution (psod); see §3.

The conditional distributions of a GW process given (eventual) extinction
or explosion are discussed in §2, then specialized in §3 to the psod case. If the
psod satisfies two total positivity conditions, these conditional distributions
possess the stochastic monotonicity properties needed to justify our fixed-n
and sequential prediction methods; see §4. Yaglom’s (1947) well-known expo-
nential approximation for the distribution of the population size is extended
and sharpened in §5.3 and §5.4.

2. Conditional processes derived from a GW branching process

The Galton-Watson branching process is a discrete-time Markov chain that
describes the growth or decline of a population that reproduces by simple
branching, or splitting. Applications include nuclear chain reactions, epi-
demics, and the population size of endangered species. The classic reference
is Harris (1963, Ch. I); also see Karlin (1966), Feller (1968), Athreya and
Ney (1972), Jagers (1975), Taylor and Karlin (1984), Guttorp (1991).

For each n = 0, 1, 2... let X
n

denote the population size at generation n;
assume that X0 = x0 � 1 is known. At generation n = 0 the ith individ-

ual is replaced by a random number ⇠(1)
i

d

= ⇠ of first-generation o↵spring,
where the o↵spring random variable (rv) ⇠ ⌘ ⇠

p

has probability distribu-
tion p ⌘ (p0, p1, p2, . . . ) on {0, 1, 2, . . . }. The i-th individual in generation

n � 1 similarly is replaced by a random number ⇠(n)
i

d

= ⇠ of n-th generation
o↵spring independently of its siblings. Thus the population size in the n-th
generation satisfies

(1) X
n

= ⇠
(n)
1 + · · ·+ ⇠

(n)
X

n�1
, n � 1,
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where ⇠(n)1 , . . . , ⇠
(n)
X

n�1
are iid rvs, each

d

= ⇠. We assume that each p
k

< 1 so
the process is not deterministic, and that p0 > 0 so extinction is possible.

Denote the probability generating function (pgf) of the o↵spring distri-
bution by

(2) �(s) ⌘ �
p

(s) = E
p

(s⇠) =
X1

k=0
p
k

sk, s � 0,

and let 1  ⇢ ⌘ ⇢
p

 1 be its radius of convergence. Note that �(1) = 1.
Because �(s) is convex and p1 < 1, the equation

(3) �(s) = s

has either one finite root or two distinct finite roots in (0, ⇢], one of which
must be 1. If (3) has one finite root in (0, ⇢] denote it by u ⌘ u

p

; if (3) has
two distinct finite roots in (0, ⇢] denote them by u ⌘ u

p

and v ⌘ v
p

, where
0 < u < v  ⇢.

If x0 = 1, the pgf of X
n

is the n-th functional iterate of �, denoted by
�
n

. For x0 � 1 the pgf of X
n

is �x0
n

⌘ (�
n

)x0 . Either extinction (X
n

= 0 for
some n � 1) or explosion (X

n

! 1) must occur; their probabilities are ux0

and 1� ux0 respectively.
Denote the mean of the o↵spring distribution by µ ⌘ µ

p

= E(⇠); then
µ = �0(1). The GW process X ⌘ X

p

and its pgf � ⌘ �
p

are called subcritical
(resp., critical, supercritical) if µ < 1 (µ = 1, µ > 1); see Figure 2. In the
subcritical case, u = 1 and v may or may not exist, see §2. In the critical
case, u = 1 and v does not exist. In the supercritical case 0 < u < v = 1, so
both extinction and explosion occur with positive probability.

For a subcritical GW process, if v exists then p, X, and � are called
extendable; in this case 1 = u < v  ⇢ (see Figure 2). If ⇢ = 1 then v > 1
cannot exist so � is not extendable, while if ⇢ = 1 then � is extendable since
it grows at a quadratic rate or faster hence eventually crosses the 45

�
line a

second time beyond 1 = u. If 1 < ⇢ < 1 then � is extendable i↵ �(⇢) � ⇢.

Definition 2.1. For a supercritical GW process X, define the conditional
processes

Ẋ ⌘ X

��extinction,(4)

Ẍ ⌘ X

��explosion.(5)

If X is subcritical or critical, define Ẋ = X. ⇤
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Figure 2: The duality between supercritical and extendable subcritical pgfs.

Proposition 2.1. The set of supercritical GW processes conditional on ex-
tinction coincides with the set of subcritical extendable GW processes.

Proof. If X is supercritical it is well known2 that Ẋ is a subcritical GW
process with o↵spring pgf

(6) �̇(s) =
�(us)

u

and o↵spring mean µ̇ = �0(u) < 1. Furthermore �̇ is extendable with second
root v̇ = 1/u.

Now suppose that X is subcritical and extendable. Define

(7) �̃(s) =
�(vs)

v
.

It is straightforward to verify that �̃ is a supercritical o↵spring pgf with
o↵spring mean µ̃ = �0(v) > 1 and extinction probability ũ = 1/v. Denote
the corresponding supercritical GW process by X̃. Then

(8) ˙̃�(s) =
�(ũvs)

ũv
= �(s).

2Waugh (1958, p.248), Athreya, Ney (1972, §I.12, Theorem 3), Guttorp (1991, p.101) .
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Futhermore, if X is supercritical then

(9) ˜̇�(s) =
�(uv̇s)

uv̇
= �(s).

This establishes the asserted result. ⇤
Successive conditioning on X1, . . . , Xn�1 in (1) shows that the joint prob-

ability mass function (pmf) f ⌘ f
p

of X
n

⌘ (X1, . . . , Xn

) is given by

(10) f(x
n

) ⌘ Pr
p

[X
n

= x

n

] =
nY

i=1

h
p

(x
i�1, xi

) ⌘ h
p

(x
n

)

(e.g. Jagers (1975, eqn. (2.1.2)), where

(11) h
p

(k, l) =
X

r1+···+r

k

=l

p
r1 · · · pr

k

Note that h
p

(k, l) is the coe�cient of sl in the power series [�
p

(s)]k.

From Bayes’ formula, the pmf of Ẋ
n

⌘ (Ẋ1, . . . , Ẋn

) is given by

ḟ(x
n

) ⌘ ḟ
p

(x
n

) = Pr
p

[X
n

= x

n

| extinction](12)

=
Pr[ extinction |X

n

= x

n

] Pr[X
n

= x

n

]

Pr[ extinction ]

= ux

n

�x0 f(x
n

).

Similarly the pmf of Ẍ
n

⌘ (Ẍ1, . . . , Ẍn

) is given by

(13) f̈(x
n

) ⌘ f̈
p

(x
n

) =
⇣1� ux

n

1� ux0

⌘
f(x

n

), x

n

> 0,

where x

n

> 0 means that x1 > 0, . . . , x
n

> 0. From (12) and (13), Ẋ and Ẍ

are Markovian with transition probabilities

ḟ(x
n

|x
n�1) = ux

n

�x

n�1h
p

(x
n�1, xn

),(14)

f̈(x
n

|x
n�1) =

⇣ 1� ux

n

1� ux

n�1

⌘
h
p

(x
n�1, xn

), x
n�1, xn

> 0,(15)

respectively. However, Ẍ is not a GW process because some individuals may
die without o↵spring even though explosion occurs.
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3. The GW process with power series o↵spring distribution

Following Becker (1974) we now specialize this discussion to a parametric
model for the o↵spring distribution p ⌘ (p0, p1, . . . ). The power series o↵-
spring distribution3 (psod) p

✓

⌘ (p
✓;0, p✓;1, . . . ) is given by

(16) p
✓;k =

a
k

✓k

A(✓)
, k = 0, 1, . . . , 0 < ✓ <  ,

where (a0, a1, . . . ) ⌘ a are nonnegative constants, ✓ is the unknown parame-
ter, A(✓) =

P
a
k

✓k, and 0 <   1 is the radius of convergence of A(·). We
assume that a0 > 0 so extinction is possible, and that a

k

> 0 for at least one
k � 2 so growth is possible; without loss of generality we may take a0 = 1.
For simplicity of exposition we limit attention to the case where A( �) = 1;
this includes the familiar Poisson, binomial, geometric, negative binomial, bi-
nary splitting, and logarithmic series distributions.

Denote X

p

✓

, ⇠
p

✓

, f
p

✓

, �
p

✓

, ⇢
p

✓

, u
p

✓

, v
p

✓

, µ
p

✓

by X

✓

, ⇠
✓

, f
✓

, �
✓

, ⇢
✓

, u
✓

, v
✓

,
µ
✓

respectively. By (2) and (16), �
✓

has radius of convergence ⇢
✓

=  /✓ and

(17) �
✓

(s) =
A(✓s)

A(✓)
=

B(✓s)

B(✓)
s, 0 < s < ⇢

✓

,

where B(✓) = A(✓)/✓ (see Figure 3). Here B(✓) is a strictly convex positive
function on (0, ) with B(0+) = B( �) = 1, so B(·) has a unique minimum
at some ⌧ 2 (0, ) with B0(⌧) = 0; B(✓) is strictly decreasing for ✓ < ⌧ and
strictly increasing for ✓ > ⌧ .

It follows from (17) that for ✓ 2 (0, ),

E
✓

(⇠) ⌘ µ
✓

=
✓A0(✓)

A(✓)
,(18)

µ
✓

� 1

✓
=

B0(✓)

B(✓)
=

d logB(✓)

d✓
,(19)

Var
✓

(⇠) ⌘ �2
✓

= ✓
dµ

✓

d✓
.(20)

By (19), µ
⌧

= 1 so X

⌧

is critical. By (20), µ
✓

is strictly increasing in ✓, hence

3This terminology apparently is due to Noack (1950); this is just the general one-
parameter exponential family, introduced in 1935-6 by Darmois, Pitman, and Koopmans,
on the nonnegative integers.

8



θ

B
(θ
)
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Figure 3: The function B(✓) = A(✓)/✓.

the subcritical and supercritical parameter spaces are both open intervals:

{✓ |µ
✓

< 1} = (0, ⌧) (subcritical),(21)

{✓ |µ
✓

> 1} = (⌧, ) (supercritical).(22)

If ✓ 2 (⌧, ) then from (3) and (17), u
✓

is the unique solution to

(23) B(✓u
✓

) = B(✓), 0 < ✓u
✓

< ⌧.

If ✓ 2 (0, ⌧) then v
✓

is the unique solution to

(24) B(✓) = B(✓v
✓

), ⌧ < ✓v
✓

<  .

Thus each subcritical X
✓

is extendable. It follows from the uniqueness of the
solutions of (23) and (24) that

v
✓u

✓

= u�1
✓

for ✓ 2 (⌧, ),(25)

u
✓v

✓

= v�1
✓

for ✓ 2 (0, ⌧). ⇤(26)

Proposition 3.1. (i) For ✓ 2 (⌧, ), ✓u
✓

strictly decreases from ⌧ to 0; u
✓

strictly decreases from 1 to 0.
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(ii) For ✓ 2 (0, ⌧), ✓v
✓

strictly decreases from  to ⌧ ; v
✓

strictly decreases
from 1 to 1.

Proof. (i) It follows from (23) and (19) that for ✓ 2 (⌧, ),

d
✓

⌘

d(✓u
✓

)

d✓
=

✓
µ
✓

� 1

µ
✓u

✓

� 1

◆
u
✓

.(27)

Thus d
✓

< 0 because ✓u
✓

< ⌧ < ✓, so ✓u
✓

is strictly decreasing, a fortiori
u
✓

is strictly decreasing. As ✓ # ⌧ , B(✓) # B(⌧), its unique minimum, hence
✓u

✓

" ⌧ by (23), so u
✓

" 1. As ✓ "  , B(✓) " 1, hence ✓u
✓

# 0 by (23), so
u
✓

# 0.

(ii) It follows from (24) and (19) that for ✓ 2 (0, ⌧),

(28)
d(✓v

✓

)

d✓
=

✓
µ
✓

� 1

µ
✓v

✓

� 1

◆
v
✓

,

which is < 0 because ⌧ < ✓v
✓

<  . The remaining results are verified as in
(i). Alternatively, (25) and (26) can be applied to obtain v

⌧� and v0+. ⇤
Proposition 3.1, (25), and (26) establish analytically a 1-1 relation be-

tween the subcritical (0, ⌧) and supercritical (⌧, ) parameter spaces. The
corresponding probabilistic relation between the subcritical and supercritical
processes themselves is now presented.

Proposition 3.2. The set of supercritical processes {Ẋ
✓

| ✓ 2 (⌧, )} condi-
tional on extinction coincides with the set of subcritical processes {X

✓

| ✓ 2

(0, ⌧)}. Specifically,

Ẋ

✓

d

= X

✓u

✓

, ✓ 2 (⌧, ),(29)

X

✓

d

= Ẋ

✓v

✓

, ✓ 2 (0, ⌧).(30)

(Note too that Ẋ
⌧

d

= X

⌧

.)

Proof. Suppose first that X
✓

is supercritical, i.e., ✓ 2 (⌧, ). From (6), Ẋ
✓

is a subcritical GW process with o↵spring pgf in the same psod family (16):

(31) �̇
✓

(s) =
A(✓u

✓

s)

A(✓)u
✓

=
A(✓u

✓

s)

A(✓u
✓

)
= �

✓u

✓

(s);

cf. Becker (1974, p.394). Since ✓u
✓

< ⌧ , X
✓u

✓

is subcritical.
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Suppose next that X
✓

is subcritical, i.e., ✓ 2 (0, ⌧). A similar argument
using (7) shows that X̃

✓

is a supercritical GW process with o↵spring pgf

(32) �̃
✓

(s) = �
✓v

✓

(s).

Now apply (8) to obtain �
✓

= �̇
✓v

✓

; since ✓v
✓

> ⌧ , X
✓v

✓

is supercritical. ⇤
Example 3.1: the Poisson(✓) psod. Here p

k;✓ = e�✓✓k/k!, 0 < ✓ < 1, so
a
k

= 1/k!, A(✓) = e✓,  = 1, A( �) = 1, B(✓) = e✓/✓, and �
✓

(s) = e✓(s�1).
Then µ

✓

= �2
✓

= ✓, ⌧ = 1, and u
✓

and v
✓

satisfy the equation

(33) e✓(s�1) = s.

by (23) and (24). This cannot be solved explicitly, but necessarily

(34)

(
u
✓

= 1, v
✓

> 1 if ✓ < 1 (subcritical);

u
✓

< 1, v
✓

= 1 if ✓ > 1 (supercritical).

Example 3.2: the negative binomial NB(r, ✓) and geometric GM(✓)

psods. For fixed r > 0, the NB(r, ✓) psod has p
k;✓ = �(r+k)

�(r)k! (1 � ✓)r✓k,

0 < ✓ < 1. Here a
k

= �(r+k)
�(r)k! , A(✓) = 1

(1�✓)r ,  = 1, B(✓) = 1
[✓(1�✓)r] , and

�
✓

(s) = (1�✓)r
(1�✓s)r . Also µ

✓

= r✓

1�✓ , �
2
✓

= r✓

(1�✓)2 , ⌧ = 1
1+r

, and u
✓

and v
✓

satisfy
the equation

(35) (1� ✓)r = (1� ✓s)rs.

This can be solved explicitly for the GM(✓) ⌘ NB(1, ✓) psod where r = 1
and ⌧ = 1/2:

(36)

(
u
✓

= 1, v
✓

= 1�✓
✓

if ✓ < 1
2 (subcritical);

u
✓

= 1�✓
✓

, v
✓

= 1 if ✓ > 1
2 (supercritical).

Here the relations (25) and (26) can be verified directly. ⇤
Example 3.3: binary splitting. Take a0 = a2 = 1 and a

k

= 0 for k 6= 2.
Thus A(✓) = 1 + ✓2 for 0 < ✓ < 1 ⌘  , so p0;✓ = 1

1+✓2 , p2;✓ = ✓

2

1+✓2 , and

p
k;✓ = 0 for k 6= 0, 2. Here B(✓) = ✓�1 + ✓, �

✓

(s) = 1+✓2s2

1+✓2 , µ
✓

= 2✓2

1+✓2 ,

�2
✓

= 4✓2

(1+✓2)2 , ⌧ = 1, and

(37)

(
u
✓

= 1, v
✓

= 1
✓

2 if ✓ < 1 (subcritical);

u
✓

= 1
✓

2 , v
✓

= 1 if ✓ > 1 (supercritical).
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Again the relations (25) and (26) can be verified directly. ⇤

4. Stochastic orderings for a psod GW process

Let W , Z, W
n

⌘ (W1, . . . ,Wn

), Z
n

⌘ (Z1, . . . , Zn

), and W ⌘ (W1, . . . ), Z ⌘

(Z1, . . . ) be nonnegative-integer-valued random variables, random vectors,
and discrete-time stochastic processes, respectively. We say W is stochasti-
cally smaller than Z, written W � Z, if E[g(W )]  E[g(Z)] for all increasing
bounded nonnegative functions g on the nonnegative integers Z0 with strict
inequality for at least one g. It is straightforward to show that if U, V,W,Z
are independent, then

(38) U � V and W � Z =) U +W � V + Z.

Similarly, we write W

n

� Z

n

if

(39) E[g(W
n

)]  E[g(Z
n

)]

for all increasing bounded nonnegative functions g on Zn

0 with strict in-
equality for at least one g. Finally, we write W � Z if W

n

� Z

n

for all
n = 1, 2, . . . . The next lemma follows directly from (1) and (38).

Lemma 4.1. Let X and X

0 be GW processes with o↵spring rv’s ⇠ and ⇠0

respectively. If ⇠ � ⇠0 then X � X

0. ⇤
Stochastic orderings satisfied by a GW process X

✓

with psod (16) and by
the conditional processes Ẋ

✓

and Ẍ

✓

are now developed. These will be useful
for the testing and prediction problems treated below.

From (10), (11), and (16), the pmf of (X
✓

)
n

is

(40) f
✓

(x
n

) =
✓yn�x0

(A(✓))yn�1
h
a

(x
n

), x

n

2 R0
a,n

,

where y
n

= x0 + x1 + · · · + x
n

and R0
a,n

= {x

n

| h
a

(x
n

) > 0}. Then (12),
(13), and (40) give the following:

for ✓ > 0 : ḟ
✓

(x
n

) = ux

n

�x0
✓

✓yn�x0

(A(✓))yn�1
h
a

(x
n

),(41)

for ✓ > ⌧ : f̈
✓

(x
n

) =
⇣1� ux

n

✓

1� ux0
✓

⌘ ✓yn�x0

(A(✓))yn�1
h
a

(x
n

), x

n

> 0.(42)
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The transition probabilities are obtained from (40)-(42) (recall (14)-(15)):

f
✓

(x
n

|x
n�1) =

✓xn

(A(✓))xn�1
h
a

(x
n�1, xn

),(43)

ḟ
✓

(x
n

|x
n�1) = u

x

n

�x

n�1

✓

✓xn

(A(✓))xn�1
h
a

(x
n�1, xn

),(44)

f̈
✓

(x
n

|x
n�1) =

⇣ 1� ux

n

✓

1� u
x

n�1

✓

⌘ ✓xn

(A(✓))xn�1
h
a

(x
n�1, xn

), x
n�1, xn

> 0.(45)

The definitions of f̈
✓

(·) and f̈
✓

(·|·) can be extended to the critical case
✓ = ⌧ :

f̈
⌧

(x
n

) = lim
✓#⌧

f̈
✓

(x
n

)(46)

=
x
n

x0

⌧ yn�x0

(A(⌧))yn�1
h
a

(x
n

), x

n

> 0;(47)

f̈
⌧

(x
n

|x
n�1) =

x
n

x
n�1

⌧xn

(A(⌧))xn�1
h
a

(x
n�1, xn

), x
n�1, xn

> 0.(48)

Denote the resulting Markov process by Ẍ

⌧

.4 By (46) and Sche↵e’s Theorem,

(49) Ẍ

✓

L1
�! Ẍ

⌧

as ✓ # ⌧.

Proposition 4.1. (i) X
✓

is stochastically increasing for ✓ 2 (0, ), that is,
✓ < ✓0 ) X

✓

� X

✓

0.

(ii) Ẋ
✓

is stochastically decreasing for ✓ 2 [⌧, ), that is, ✓ < ✓0 ) Ẋ

✓

� Ẋ

✓

0.

Proof. (i) follows from Lemma 4.1 since ✓ < ✓0 ) ⇠
✓

� ⇠
✓

0 by the strict
monotone likelihood ratio (MLR) property of the psod family.5 (ii) follows
from (i), (29), and Proposition 3.1(i). ⇤

The verifications of the stochastic orderings of X
✓

and Ẋ

✓

are straightfor-
ward because these are GW processes. However, Ẍ

✓

is not a GW process so
its stochastic ordering properties if any are not apparent. Although it might
appear that Ẍ

✓

should inherit the stochastic increasing property of X
✓

, upon

4This is not to be interpreted as X⌧ | explosion, which is vacuous.
5Lehmann and Romano (2005) Lemma 3.4.2 and Problem 3.39; Karlin (1968) Propo-

sition 3.1 and the discussion following Proposition 3.3, both in Chapter 1.
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closer examination this is not obvious. Conditional on ultimate explosion, as
✓ increases above the critical value ⌧ those trajectories of X

✓

with relatively
small initial values might have increasing likelihood of survival, hence for
fixed n, (Ẍ

✓

)
n

might tend to decrease stochastically, not increase.
In Proposition 4.2(iii) it will be shown, however, that Ẍ

✓

is indeed stochas-
tically increasing for ✓ � ⌧ provided that two additional conditions are im-
posed, namely TP2a and/or TP2b (see below) based on total positivity of
order 2 (TP2). Also, it is shown in Proposition 4.2(i) that under TP2a alone,
the conditional random vector (X

✓

)
n

| X
✓,n

> 0 is stochastically increasing
for ✓  ⌧ .

Karlin (1968) is the primary reference for total positivity. The TP2 prop-
erty is equivalent to MLR, cf. Lehmann and Romano (2005, Problem 50)).
The following results for the TP2 and FKG properties appear in Kemperman
(1977) and Perlman and Olkin (1980).

Definition 4.1. Let f(x) be a nonnegative function defined on a measurable
rectangle R =

Q
n

i=1 Ri

✓ Rn. Then f satisfies the FKG condition on R if

(50) f(x
n

)f(y
n

)  f(x
n

^ y

n

)f(x
n

_ y

n

) 8x

n

,y
n

2 R,

where x

n

^ y

n

= (x1 ^ y1, . . . , xn

^ y
n

) and x

n

_ y

n

= (x1 _ y1, . . . , xn

_ y
n

);
we say that f is FKG on R. TP2 is defined as FKG for n = 2. ⇤
Some properties of TP2 and FKG: If h(x

i

, x
j

) is TP2 on R
i

⇥ R
j

in
a single pair (x

i

, x
j

) then f(x
n

) ⌘ h(x
i

, x
j

) is FKG on R. If f1, . . . , fm are
FKG on R then so is

Q
m

i=1 fi. If f(x
n

) = h
i

(x
i

) for a single i then f is
trivially FKG on R, so f(x

n

) =
Q

n

i=1 hi

(x
i

) is also trivially FKG. If f is
FKG on R

⇤
⌘

Q
R⇤

i

and if, for each i = 1, . . . , n, �
i

: R
i

! R⇤
i

is increasing
in x

i

, then f(�1(x1), . . . , f(�n(xn

)) is FKG on R ⌘

Q
R

i

.

Lemma 4.2. (The FKG Inequality). Let Z be a random vector with an
FKG pdf f on R w.r.to a product measure ⌫ and let g, h be component-wise
increasing nonnegative functions on R \ {f > 0}. Then

(51) E[g(Z)h(Z)] � E[g(Z)]E[h(Z)].

Strict inequality holds in (51) if g is nonconstant w.r.to f (Pr[g(Z) = c] < 1
for all constants c) and h is strictly increasing.

Proof. Perlman and Olkin (1980, Propositions 2.4, 2.6, and Remark 2.5.) ⇤
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Condition TP2a: h
a

(x, y) is TP2 in (x, y) for x, y = 1, 2, . . . . (Note that
h
a

(x, y) is the coe�cient of ✓y in the power series [A(✓)]x.)

Condition TP2b: (1�ux

✓

)✓x is TP2 in (x, ✓) for x = 1, 2, . . . and ⌧ < ✓ <  .

A su�cient condition for TP2a to hold is that {a
k

|k = 0, 1, . . . } is a one-
sided Polya frequency sequence of order 2 (PF2); cf. Karlin (1968, (ii) on
pp.142-3, also Ch.8).

Let (X
✓

)+
n

denote the conditional random vector (X
✓

)
n

| X
✓,n

> 0. For
notational convenience the subscript ✓ sometimes will be omitted. The con-
ditional pmf of (X

✓

)+
n

⌘ X

+
n

is given by

(52) f+
✓

(x
n

) = Pr
✓

[X
n

= x

n

|X
n

> 0] = b
✓,n

f
✓

(x
n

), x

n

> 0,

where b�1
✓,n

= Pr
✓

[X
n

> 0]. Note that X
n

> 0 ) X

n

> 0. Clearly X

+
n

� X

n

and Ẋ

+
n

� Ẋ

n

for all ✓ > 0, while Ẍ

+
n

⌘ Ẍ

n

for ✓ � ⌧ .

Proposition 4.2. (i) If TP2a holds then for each n � 1, (X
✓

)+
n

is stochas-
tically increasing for ✓ 2 (0, ⌧ ]. Therefore, by Propositions 3.1 and 3.2,

(Ẋ
✓

)+
n

d

= (X
✓u

✓

)+
n

is stochastically decreasing for ✓ 2 [⌧, ).

(ii) If TP2a holds then for each n � 1, (Ẋ
⌧

)
n

� (Ẋ
⌧

)+
n

� (Ẍ
⌧

)+
n

⌘ (Ẍ
⌧

)
n

.

(iii) If TP2a and TP2b hold, Ẍ
✓

is stochastically increasing for ✓ 2 [⌧, ).

Proof. (i) We will show that E
✓

[g(X+
n

)] is strictly increasing in ✓ 2 (0, ⌧ ]
for any increasing bounded nonconstant g � 0 on Zn

+, where Z+ denotes
the positive integers. The FKG inequality will yield the required result as
follows: for 0 < ✓1 < ✓2  ⌧ ,

E
✓2 [g(X

+
n

)] = E
✓1


g(X+

n

)
f+
✓2
(X+

n

)

f+
✓1
(X+

n

)

�

> E
✓1 [g(X

+
n

)] E
✓1


f+
✓2
(X+

n

)

f+
✓1
(X+

n

)

�

= E
✓1 [g(X

+
n

)].

To apply the FKG inequality (51) with strict inequality it must be shown

that (a) f+
✓1
(x

n

) is FKG on Zn

+; and (b) the ratio r(x
n

) ⌘
f

+
✓2

(x
n

)

f

+
✓1

(x
n

)
is strictly

increasing on Zn

+ \ {f+
✓1
(x

n

)} = Zn

+ \ {h
a

(x
n

) > 0}. First, for all ✓ > 0 and
x

n

> 0, it follows from (40) and (52) that

(53) f+
✓

(x
n

) =
b
✓,n

✓x1+···+x

n

(A(✓))x0+···+x

n�1

Y
n

i=1
h
a

(x
i�1, xi

), x

n

> 0.
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By TP2a each factor h
a

(x
i�1, xi

) in (53) is TP2, hence their product is FKG,
thus so is f+

✓

(x
n

); this gives (a). Next, 0 < ✓1 < ✓2  ⌧ ) B(✓1) > B(✓2), so

(54) r(x
n

) ⌘
b
✓2,n

b
✓1,n

✓
A(✓1)

A(✓2)

◆
x0
✓
B(✓1)

B(✓2)

◆
x1+···+x

n�1
✓
✓2
✓1

◆
x

n

is strictly increasing in x1, . . . , xn�1, xn

, which establishes (b).

(ii) The first inequality is immediate. For the second, apply the FKG
inequality as follows:

E
⌧

[g(Ẍ
n

)] = E
⌧

"
g(Ẋ+

n

)
f̈
⌧

(Ẋ+
n

)

ḟ+
⌧

(Ẋ+
n

)

#

� E
⌧

[g(Ẋ+
n

)] E
⌧


f̈
⌧

(Ẋ+
n

)

ḟ+
⌧

(Ẋ+
n

)

�
(55)

= E
⌧

[g(Ẋ+
n

)].

As in (i), FKG is applicable in (55) because (a) ḟ+
⌧

(x
n

) ⌘ f+
⌧

(x
n

) is FKG on
Zn

+ (by (53) with ✓ = ⌧); and (b) the ratio

(56) r(x
n

) ⌘
f̈
⌧

(x
n

)

ḟ+
⌧

(x
n

)
=

x
n

b
⌧,n

x0
,

(obtained from (47) and (52) with ✓ = ⌧) is increasing on Zn

+\{h
a

(x
n

) > 0}.
To show that E

⌧

[g(Ẍ
n

)] > E
⌧

[g(Ẋ+
n

)] for at least one increasing g, take
g(x

n

) = 1{2,3,... }(x1). Because Ẍ
⌧,1 � 1 and Ẋ+

⌧,1 � 1, it follows from (47)
and (52) that

1� E
⌧

[g(Ẍ
n

)] = Pr
⌧

[Ẍ1 = 1]

=
⌧

x0(A(⌧))x0
h
a

(x0, 1);

1� E
⌧

[g(Ẋ+
n

)] = Pr
⌧

[Ẋ+
1 = 1]

=
ḃ1,⌧ ⌧

(A(⌧))x0
h
a

(x0, 1)

=
⌧

{1� Pr
⌧

[Ẋ1 = 0]}(A(⌧))x0
h
a

(x0, 1)

=
⌧�

1�
�

a0
A(⌧)

�
x0
 
(A(⌧))x0

h
a

(x0, 1).
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Because a0 > 0 and x0 � 1, we conclude that E
⌧

[g(Ẍ
n

)] > E
⌧

[g(Ẋ+
n

)].

(iii) Since B(✓1) < B(✓2) when ⌧  ✓1 < ✓2, the FKG inequality is not
applicable here (recall (54)). Instead we use induction on n to show that

(57) E
✓

[g(Ẍ
n

)] ⌘
X

x

n

>0
g(x

n

)f̈
✓

(x
n

)

is increasing for ✓ 2 [⌧, ).
For n = 1, (42) gives

f̈
✓

(x1) =
⇣1� ux1

✓

1� ux0
✓

⌘ ✓x1

(A(✓))x0
h
a

(x0, x1), x1 > 0,

which is TP2 in (✓, x1) by TP2b, so

(58) E
✓

[g(Ẍ1)] ⌘
X

x1>0
g(x1)f✓(x1)

is increasing for ✓ 2 (⌧, ) by the monotonicity-preserving property of a TP2
⌘ MLR kernel (Karlin (1968, Ch.1, Proposition 3.1)). For n � 2,

E
✓

[g(Ẍ
n

)] = E
✓

[E
✓

[g(Ẍ
n�1, Ẍn

) | Ẍ
n�1]](59)

= E
✓

hX
x

n

>0
g(Ẍ

n�1, xn

)f̈
✓

(x
n

| Ẍ
n�1)

i
(60)

⌘ E
✓

[g⇤
✓

(Ẍ
n�1)].(61)

From TP2a, TP2b, and (45), the transition probability f̈
✓

(x
n

| x
n�1) of the

Markov process Ẍ
✓

is TP2 in (x
n

, ✓) and in (x
n

, x
n�1), so the monotonicity-

preserving property implies that g⇤
✓

(Ẍ
n�1) is increasing in ✓ and in Ẍ

n�1.
Thus by (60)-(61) and the induction hypothesis, E

✓

[g(Ẍ
n

)] is increasing for
✓ for ✓ 2 (⌧, ). Lastly, these results extend to [⌧, ) by (49) and continuity.

To show that E
✓

[g(Ẍ
n

)] is strictly increasing in ✓ for at least one increasing
g, take g(x

n

) = 1{2,3,... }(x1). Because Ẍ1 � 1, it follows from (42) that

1� E
✓

[g(Ẍ
n

)] = Pr
✓

[Ẍ1 = 1]

=
⇣ 1� u

✓

1� ux0
✓

⌘ ✓

(A(✓))x0
h
a

(x0, 1)

=


(1� u

✓

)✓

(1� ux0
✓

)✓x0

� 
1

B(✓)

�
x0

h
a

(x0, 1).(62)

Because x0 � 1 the first factor in (62) is decreasing in ✓ by TP2b, while
the second factor is strictly decreasing because B(✓) is strictly increasing for
✓ 2 [⌧, ). ⇤
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Lemma 4.3. Let X
✓

be a GW branching process with psod o↵spring distri-
bution (16). Each of the following two conditions is equivalent to Condition
TP2b: for ✓ 2 (⌧, ),

µ
✓

� 1

1� µ
✓u

✓



1

u
✓

;(63)

B0(✓u
✓

) + B0(✓)  0.(64)

Proof. Let �
✓

= du
✓

/d✓. Then (1 � ux

✓

)✓x is TP2 i↵ for x = 1, 2, . . . , the

ratio
(1�u

x+1
✓

)✓x+1

(1�u

x

✓

)✓x is increasing in ✓ for ✓ 2 (⌧, ), equivalently, i↵

(65)
d

d✓
log


(1� ux+1

✓

)✓

(1� ux

✓

)

�
⌘

�(x+ 1)ux

✓

�
✓

1� ux+1
✓

+
xux�1

✓

�
✓

1� ux

✓

+
1

✓
� 0.

After some algebra, we find that this is equivalent to the inequality

(66) [(1� ux)� xux(1� u)] + d
✓

ux�1[x(1� u)� u(1� ux)] � 0,

where we use the relation d
✓

= ✓�
✓

+u
✓

and abbreviate u
✓

by u. Because both
terms in square brackets are positive and d

✓

< 0, this is in turn equivalent
to the inequality

(67) �d
✓



(1� ux)� xux(1� u)

ux�1[x(1� u)� u(1� ux)]
⌘ �(u, x).

But �(u, 1) = 1 and �(u, x) � 1 for x � 2:

�(u, x)� 1 =
(1� ux)(1 + ux)� ux�1x(1� u)(1 + u)

ux�1[x(1� u)� u(1� ux)]

=
(1� u2x)� ux�1x(1� u2)

ux�1[x(1� u)� u(1� ux)]

=
(1� u2)[(1 + u2 + · · ·+ u2(x�1))� u2(x�1)/2x]

ux�1[x(1� u)� u(1� ux)]
� 0

because u2x is convex in x. Thus TP2b is equivalent to the simple relation

(68) �d
✓

 �(u, 1) ⌘ 1,
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which, by (27), is equivalent to (63). Lastly, di↵erentiate (23) with respect
to ✓ to establish the equivalence of (68) and (64). ⇤
Example 4.1 (= 3.1 continued). For the Poisson(✓) psod, the coe�cient
of ✓y in the power series [A(✓)]x = ex✓ is h

a

(x, y) = xy/y!, which is TP2 in
(x, y) so TP2a is satisfied. Furthermore µ

✓

= ✓, ⌧ = 1, and from (33),

(69) �

log u
✓

1� u
✓

= ✓

for ✓ � 1, so (63) is equivalent to the inequality

(70) �2u log u  1� u2,

where u = u
✓

. This inequality holds for all u 2 [0, 1], hence TP2b is also
satisfied. Thus by Proposition 4.2, (Ẋ

✓

)+
n

is stochastically decreasing and
(Ẍ

✓

)
n

is stochastically increasing for ✓ � 1, while (Ẋ
⌧

)+
n

� (Ẍ
⌧

)
n

. ⇤
Example 4.2 (= 3.2 continued). For the negative binomial(r, ✓) psod,
the coe�cient of ✓y in the power series [A(✓)]x = 1/(1� ✓)rx is

(71) h
a

(x, y) =
�(rx+ y)

�(rx)y!
=

(rx+ y � 1) · · · (rx)

y!
,

which is TP2 in (x, y), so NB(r, ·) satisfies TP2a for all r > 0. Next, µ
✓

=
r✓

(1�✓) and ⌧ = t

1+t

, where t = 1
r

. Set u = u
✓

and apply (35) to obtain

1� ✓

1� ✓u
= ut,(72)

1� ut

1� ut+1
= ✓.(73)

After some algebra it is seen that (63) is equivalent to each of the inequalities

1� ut

1� ut+1
 ⌧

✓
1 + ut�1

1 + ut

◆
,(74)

vt � v�t

t
 v � v�1,(75)

where v = u�1
� 1. Because h(t) ⌘ vt�v�t is convex in t and h(0) = 0, (75)

holds i↵ t  1. Thus the NB(r, ·) psod family satisfies TP2b i↵ r � 1. This
includes the geometric psod family (r = t = 1) where equality holds in (75).
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Thus by Proposition 4.2, if r � 1 then (Ẋ
✓

)+
n

is stochastically decreasing
and (Ẍ

✓

)
n

is stochastically increasing for ⌧  ✓ < 1, while (Ẋ
⌧

)+
n

� (Ẍ
⌧

)
n

,
where ⌧ = 1/(1 + r). ⇤
Example 4.3 (= 3.3 continued). For the binary splitting GW process,
the coe�cient of ✓y in the power series [A(✓)]x = (1 + ✓2)x is

(76) h
a

(x, y) =

(�
x

y/2

�
for y = 0, 2, . . . , 2x,

0 otherwise,

which is TP2 in (x, y), so TP2a is satisfied. Furthermore B(✓) = ✓ + ✓�1

and u
✓

= ✓�2 for ✓ � ⌧ = 1, so (64) is equivalent to the valid inequality
2 � ✓2 � ✓�2

 0, hence TP2b is satisfied. Thus by Proposition 4.2, (Ẋ
✓

)+
n

is stochastically decreasing and (Ẍ
✓

)
n

is stochastically increasing for ✓ � 1,
while (Ẋ

⌧

)+
n

� (Ẍ
⌧

)
n

. ⇤
Remark 4.1. The maximum likelihood estimate (MLE) ✓̂ is derived by
di↵erentiating (40), then applying (18) to obtain the relation

(77) µ̂ ⌘ µ
✓̂

=
Y
n

� x0

Y
n�1

,

from which ✓̂ can be obtained. Here µ̂ denotes the MLE of the mean µ
✓

. ⇤

5. Predicting extinction or explosion: the fixed sample size case

Based on observed data x

n

⌘ (x1, . . . , xn

) from a non-terminated psod GW
process X ⌘ X

✓

with initial size x0 and fixed n, predict whether extinction
or explosion will occur for the current realization of the process.

By the Markov property for X,

(78) Pr
✓

[ extinction |X

n

= x

n

] = ux

n

✓

= 1� Pr
✓

[ explosion |X

n

= x

n

].

The MLE û of u
✓

is given by û = u
✓̂

where ✓̂ is obtained from (77), so the
estimated extinction probability is

(79) Pr
✓̂

[ extinction |X

n

= x

n

] = ûx

n

(
= 1 if x

n

 x0,

< 1 if x
n

> x0.

The value of ûx

n can be used to predict extinction or explosion.
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However, this procedure may reach unwarranted conclusions. For exam-
ple, if x

n

= x0�1 then extinction will be predicted with certainty even though
the population has declined only slightly. Whereas (79) is based solely on
the value of x

n

, the prediction procedures derived in this section compare
x
n

to n in order to predict whether the observed process is on a trajectory
toward extinction or toward explosion.

5.1. Prediction as a testing problem. We reformulate the prediction
problem as a hypothesis-testing problem to which Neyman-Pearson theory
can be applied. As in Proposition 4.2, letX+

n

⌘ (X
✓

)+
n

denote the conditional
random vector X

n

| X
n

> 0. Then conditional on non-termination at time
n, extinction will occur i↵ either

H+
 : X+

n

d

= (X
✓

)+
n

, ✓  ⌧ or Ḣ+
� : X+

n

d

= (Ẋ
✓

)+
n

, ✓ � ⌧

holds, while explosion will occur i↵ Ḧ+
>

: X+
n

d

= (Ẍ
✓

)+
n

, ✓ > ⌧ holds. (Recall
that (Ẍ

✓

)+ = Ẍ

✓

.) However, H+
 = Ḣ+

� by Proposition 3.2 while by (49) the

L1-closure of Ḧ+
>

is

(80) Ḧ+
� : X+

n

d

= (Ẍ
✓

)+
n

, ✓ � ⌧,

so the prediction problem can be formulated as the following testing problem:

Based on observing X

+
n

= x

n

> 0, test

(81) Ḣ+
� (eventual extinction) vs . Ḧ+

� (eventual explosion).

Either Ḣ+
� or Ḧ+

� may be taken to be the null hypothesis. Note that

✓ � ⌧ under both Ḣ+
� and Ḧ+

� . The conditional pmfs of X+
n

under Ḣ+
� and

Ḧ+
� are

ḟ+
✓

(x
n

) ⌘ Pr
✓

[Ẋ+
n

= x

n

] = ḃ
✓,n

ḟ
✓

(x
n

), x

n

> 0,(82)

and f̈+
✓

(x
n

) ⌘ f̈
✓

(x
n

), respectively, where f̈
✓

is given by (42) and (47) and

(83) ḃ�1
✓,n

= Pr
✓

[Ẋ
n

> 0] = Pr
✓u

✓

[X
n

> 0] = b�1
✓u

✓

,n

.

A version of the generalized LR criterion for (81) is

(84) �+(x
n

) ⌘
sup

⌧✓< f̈
+
✓

(x
n

)

sup
⌧✓< ḟ

+
✓

(x
n

)
,
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but the numerator and denominator may be di�cult to evaluate.

5.2. The least favorable distributions for fixed sample size. When
the psod satisfies Conditions TP2a and TP2b the testing problem (81) has a
convenient solution. Proposition 4.2 implies that Ḣ+

� and Ḧ� are separated

families and that (ḟ+
⌧

, f̈+
⌧

) is a pair of least favorable distributions for (81).
By Theorem 3.8.1 of Lehmann and Romano (2005), a test of the form

(85)

(
accept Ḣ+

� (predict extinction) if �+
⌧

(X+
n

)  d,

accept Ḧ� (predict explosion) if �+
⌧

(X+
n

) > d,

is the UMP test of its size for (81), where d is a nonnegative constant and,
from (47) and (82),

(86) �+
⌧

(x
n

) ⌘
f̈+
⌧

(x
n

)

ḟ+
⌧

(x
n

)
=

x
n

x0ḃ⌧,n
=

x
n

x0b⌧,n
, x

n

> 0.

Because �+
⌧

(x
n

) is strictly increasing in x
n

, the test (85) has the form

(87)

(
accept Ḣ+

� (predict extinction) if X+
n

 c,

accept Ḧ+
� (predict explosion) if X+

n

� c+ 1,

where c is a nonnegative integer.

5.3. Exponential-type approximations for Ẋ+
n

when ✓ = ⌧ . Suppose
first that Ḣ+

� is taken to be the null hypothesis. If X+
n

= x
n

> 0 is observed,

the p-value Pr
⌧

[Ẋ+
n

� x
n

] for test (87) is determined by the distribution of
Ẋ+

n

under ḟ+
⌧

. For large n the mean and variance of Ẋ+
n

can be approximated
via (93) as follows:

E
⌧

(Ẋ+
n

) = x0b⌧,n ⇡

n�2
⌧

2
,(88)

Var
⌧

(Ẋ+
n

) = x0b⌧,n[n�
2
⌧

� x0(b⌧,n � 1)] ⇡
n�2

⌧

2

⇣n�2
⌧

2
+ x0

⌘
.(89)

Unfortunately the conditional rv Ẋ+
n

(⌘ Ẋ
n

| X
n

> 0) is not the sum of x0

i.i.d. copies each with initial size 1: conditional on X
n

> 0, some of the
initial x0 family lines may have terminated by time n. Therefore a normal
approximation is not available for Ẋ+

n

, even when x0 is large.
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Fortunately, however, when n is large Yaglom’s classical exponential ap-
proximation can be applied. For a critical GW process (not necessarily psod)
with o↵spring variance �2<1, Yaglom (1947) showed that if x0 = 1 then

(90) lim
n!1

Pr[X+
n

� nz] = e�2z/�2

for any z > 0. This result appears under progressively weaker moment
conditions in Harris (1963, §I.10), Kesten, Ney, and Spitzer (1966, p.582),
Athreya and Ney (1972, §9), and Jagers (1975, Theorem 2.4.2), but only
for the case x0 = 1. When x0 � 2 it might be expected that the limiting
exponential (EXP) distribution in (90) should be replaced by the distribution
of the sum of x0 independent exponential rvs, i.e., a gamma distribution, but
(90) continues to hold without change, cf. (92). However, we will also present
a more accurate gamma (GAM) approximation (94) that does depend on x0.

Let G
r

denote a gamma rv with shape parameter r > 0 and scale param-
eter 1 and let G

r

(z) denote its cdf, that is,

(91) G
r

(z) =
1

�(r)

Z
z

0

tr�1e�tdt.

Proposition 5.1. (i) Let {X
n

} be a critical GW process with o↵spring pgf
�, o↵spring variance �2 < 1, and initial size x0 � 1. For any z > 0,

lim
n!1

Pr[X+
n

� nz] = e�2z/�2
,(92)

lim
n!1

nPr[X
n

> 0] = 2x0/�
2.(93)

(ii) Let Ḡ
r

(z) = 1�G
r

(z). For x0 � 1 and large n,

Pr[X+
n

� nz] ⇡
1

1�
�
1� 2

n�

2

�
x0

x0X

r=1

�
x0

r

�
Ḡ

r

( 2z
�

2 )(
2

n�

2 )r(1�
2

n�

2 )x0�r.(94)

Proof. (i) The existing results for the case x0 = 1 are based on the following
fact, cf. Jagers (1975, Lemma 2.4.1):

(95) lim
n!1

1

n


1

1� �
n

(s)
�

1

1� s

�
=
�2

2
uniformly for 0  s < 1.

Set s = 0 to obtain

(96) lim
n!1

n(1� �
n

(0)) =
2

�2
.
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For x0 � 2, X
n

has pgf �x0
n

so by (96),

nPr[X
n

> 0] = n(1� �x0
n

(0))(97)

= n(1� �
n

(0))[1 + �
n

(0) + · · ·+ �x0�1
n

(0)](98)

!

2x0

�2
(99)

because �
n

(0) " 1; this confirms (93). Furthermore, the Laplace transform
of X+

n

/n is, for t � 0,

E[e�tX

+
n

/n]

=
�x0
n

(e�t/n)� �x0
n

(0)

1� �x0
n

(0)

= 1�
1� �x0

n

(e�t/n)

1� �x0
n

(0)

= 1�
n(1� �

n

(e�t/n))[1 + �
n

(e�t/n) + · · ·+ �x0�1
n

(e�t/n)]

n(1� �
n

(0))[1 + �
n

(0) + · · ·+ �x0�1
n

(0)]

! 1�
�

2

2
1
t

+ �

2

2

x0

x0
=

1

1 + t�

2

2

as n ! 1

by (95) and the inequalities �
n

(0) < �
n

(e�t/n) < 1. This is the Laplace
transform of the exponential distribution in (92), confirming that result.

(ii) Represent X
n

d

= U1 + · · · + U
x0 , where the U

i

are i.i.d. copies of X
n

but each with initial size x0 = 1. Then

Pr[X
n

> 0] Pr[X+
n

� nz]

⌘ Pr[U1 + · · ·U
x0 > 0] Pr

⇥�
U1 + · · ·+ U

x0

�+
� nz

⇤

= Pr
⇥
U1 + · · ·+ U

x0 � nz
⇤

=
X

!22x0\;
Pr
⇥X

i2!
U
i

� nz, U
i

> 0 for i 2 !, U
i

= 0 for i /2 !
⇤

=
x0X

r=1

�
x0

r

�
Pr[U1 + · · ·+ U

r

� nz, U1 > 0, . . . , U
r

> 0, U
r+1 = · · · = U

x0 = 0]

=
x0X

r=1

�
x0

r

�
Pr[U+

1 + · · ·+ U+
r

� nz] Pr[U1 > 0]rPr[U
x0 = 0]x0�r

⇡

x0X

r=1

�
x0

r

�
Ḡ

r

( 2z
�

2 )(
2

n�

2 )r(1�
2

n�

2 )x0�r
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for large n, by (92) and by (93) with x0 = 1. Furthermore, by (97) and (96),

Pr[X
n

> 0] = (1� �x0
n

(0)) ⇡ 1�
�
1� 2

n�

2

�
x0 ,(100)

which yields (94). ⇤
From (92) and (94) and a continuity correction we obtain exponential-

type approximations for the p-value of the test (87) when Ḣ+
� and Ḧ+

� are
taken to be the null and alternative hypothesis, respectively:

Pr
⌧

[Ẋ+
n

� x
n

] ⇡ e
� 2(x

n

�1)

n�

2
⌧

⌘ ⇡̇EXP(x
n

;n),(101)

Pr
⌧

[Ẋ+
n

� x
n

] ⇡
1

1�
�
1� 2

n�

2
⌧

�
x0

x0X

r=1

�
x0

r

�
( 2
n�

2
⌧

)r(1� 2
n�

2
⌧

)x0�rḠ
r

(2(xn

�1)
n�

2
⌧

)

⌘ ⇡̇GAM(x
n

;n, x0).(102)

The EXP and GAM approximations coincide when x0 = 1. The approximate
p-value ⇡̇EXP(x

n

;n) does not depend on the value of x0; it conveys significance
for Ḧ+

� (explosion) i↵ x
n

� n�2
⌧

, but convergence to the exact p-value is slow,
see Remark 5.1. The ⇡̇GAM(x

n

;n) approximation is noticeably better.

Remark 5.1. The accuracy of the EXP and GAM approximations can be
assessed for the geometric psod (cf. Example 3.2). Here the pgf of X

n

⌘ Ẋ
n

in the critical case can be obtained explicitly6 and expanded in a power series,
from which the exact distribution of X

n

can be recovered. By (82) and (83)
this yields the exact distribution of X+

n

⌘ Ẋ+
n

in the critical case. The exact
p-values and their approximations ⇡̇EXP and ⇡̇GAM are shown in Tables 1 and
2, from which the superiority of GAM is apparent. ⇤
5.4. Exponential-type approximations for Ẍ+

n

when ✓ = ⌧ . Suppose
next that Ḧ+

� is the null hypothesis. The p-value Pr
⌧

[Ẍ+
n

 x
n

] for test

(87) is determined by the distribution of Ẍ+
n

⌘ Ẍ
n

under f̈+
⌧

⌘ f̈
⌧

. Again
a normal approximation is not available for large x0 because Ẍ

n

is not the
sum of x0 i.i.d. copies each with initial size 1: conditional on explosion, some
of the initial x0 family lines nonetheless may become extinct. However, an
exponential-type approximation is available for large n, based on the follow-
ing representation for the process Ẍ

⌧

⌘ {Ẍ
⌧,n

|n � 1}. We shall abbreviate
Ẍ
⌧,n

to Ẍ
n

.

6cf. eqn.(8.32) in Taylor and Karlin (1998) for the case x0 = 1.
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x0 = 1 x0 = 2

n x
n

⇡̇EXP Exact ⇡̇GAM Exact
5 10 0.165 0.194 0.198 0.226
5 20 0.022 0.031 0.032 0.042
5 30 0.003 0.005 0.005 0.008
5 40 0.000 0.001 0.001 0.001
10 20 0.150 0.164 0.165 0.178
10 40 0.020 0.024 0.024 0.029
10 60 0.003 0.004 0.004 0.005
15 20 0.282 0.293 0.294 0.305
15 40 0.074 0.081 0.081 0.087
15 60 0.020 0.022 0.022 0.025
100 150 0.225 0.227 0.227 0.229

Table 1: Exact and approximate p-values Pr
⌧

[Ẋ+
n

� x
n

] for the geometric
psod when x0 = 1 and x0 = 2.

x0 = 8 x0 = 14

n x
n

⇡̇EXP ⇡̇GAM Exact ⇡̇GAM Exact
5 10 0.165 0.420 0.428 0.631 0.618
5 20 0.022 0.129 0.141 0.286 0.288
5 30 0.003 0.035 0.042 0.108 0.115
5 40 0.000 0.009 0.011 0.036 0.041
10 20 0.150 0.262 0.273 0.369 0.375
10 40 0.020 0.058 0.064 0.108 0.115
10 60 0.003 0.012 0.014 0.029 0.032
10 80 0.000 0.002 0.003 0.007 0.008
15 20 0.282 0.369 0.378 0.444 0.450
15 40 0.074 0.126 0.133 0.178 0.184
15 60 0.020 0.042 0.046 0.069 0.073
15 80 0.005 0.014 0.015 0.026 0.028
100 150 0.225 0.237 0.239 0.248 0.249

Table 2: Exact and approximate p-values Pr
⌧

[Ẋ+
n

� x
n

] for the geometric
psod when x0 = 8 and x0 = 14.
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Proposition 5.2 Define Z
n

= Ẍ
n

� 1, n = 1, 2, . . . , z0 = x0 � 1. When
✓ = ⌧ , Z ⌘ {Z

n

|n � 1} is a critical GW process with immigration (GWI).
Specifically,

(103) Z
n

| Z
n�1 = ⇠

(n)
1 + · · ·+ ⇠

(n)
Z

n�1
+W

n

,

where ⇠
(n)
1 , . . . , ⇠

(n)
Z

n�1
,W

n

are independent rvs, ⇠
(n)
j

d

= ⇠
⌧

, and W
n

is a nonneg-
ative integer-valued rv with pgf �0

⌧

(s). (This is a pgf since �0
⌧

(1) = µ
⌧

= 1.)

Proof. From (47),

f̈
⌧

(x
n

) =
nY

i=1

x
i

x
i�1

⌧xi

(A(⌧))xi�1
h
a

(x
i�1, xi

)

⌘

nY

i=1

g
⌧

(x
i

|x
i�1),(104)

so Ẍ

⌧

is a Markov chain with transition probability g
⌧

(x
i

|x
i�1). The condi-

tional pgf corresponding to g
⌧

(x
i

|x
i�1) is

E
⌧

(sẌi

| Ẍ
i�1 = ẍ

i�1) =
1

x
i�1

X

x

i

x
i

sxi

⌧xi

(A(⌧))xi�1
h
a

(x
i�1, xi

)

=
s

x
i�1

d

ds

X

x

i

sxi

⌧xi

(A(⌧))xi�1
h
a

(x
i�1, xi

)

=
s

x
i�1

d

ds
[(�

⌧

(s))xi�1 ]

= s(�
⌧

(s))xi�1�1�0
⌧

(s).(105)

The third equality holds since ⌧

x

i

(A(⌧))xi�1 ha

(x
i�1, xi

) is the pmf of ⇠(i)1 + · · · +

⇠
(i)
x

i�1 . Thus (105) implies that

(106) Ẍ
i

| Ẍ
i�1 = 1 + ⇠

(i)
1 + · · ·+ ⇠

(i)
X

i�1�1 +W
i

,

where the ⇠(i)
j

’s and W
i

are mutually independent rvs, the ⇠(i)
j

’s have common
pgf �

⌧

, and W
i

is the nonnegative integer-valued rv with pgf �0
⌧

(s). Now set
i = n in (106) to obtain (103). ⇤
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By the theorem of Seneta (1970), 2Z
n

/n�2
⌧

d

! G2 (cf. (91)) if z0 = 1
(x0 = 2). Since Ẍ

n

= Z
n

+ 1, we obtain the following approximation when
x0 = 2:

(107) Pr
⌧

[Ẍ
n

 x
n

] ⇡ G2

✓
2x

n

n�2
⌧

◆
⌘ ⇡̈G2(x

n

;n) for large n.

We now show that if n is su�ciently large, ⇡̈G2(x
n

;n) remains a valid approx-
imation for Pr

⌧

[Ẍ
n

 x
n

] for all x0 � 2. In the process we derive a sharper
approximation ⇡̈G23(x

n

;n, x0)  ⇡̈G2(x
n

;n) that depends on x0 as well as n.
The case x0 = 1 is treated separately.

Proposition 5.3. As in Proposition 5.2 let Z
n

= Ẍ
n

�1, z0 = x0�1, ✓ = ⌧ .

(i) Assume that x0 � 2, so z0 � 1. Then if n is large and z > 0,

(108) Pr
⌧

[Z
n

 nz] ⇡

✓
1�

2(z0 � 1)

n�2
⌧

◆
G2

✓
2z

�2
⌧

◆
+

2(z0 � 1)

n�2
⌧

G3

✓
2z

�2
⌧

◆
,

so

Pr
⌧

[Ẍ
n

 x
n

](109)

⇡

✓
1�

2(x0 � 2)

n�2
⌧

◆
G2

✓
2x

n

n�2
⌧

◆
+

2(x0 � 2)

n�2
⌧

G3

✓
2x

n

n�2
⌧

◆

⌘ ⇡̈G23(x
n

;n, x0).

This reduces to (107) if x0 = 2 or n�2
⌧

� 2(x0 � 2).

(ii) Assume that x0 = 1, so z0 = 0, and define

(110) K = min{k|Ẍ
k

� 2} = min{k|Z
k

� 1}.

Then if n�K is large,

Pr
⌧

[Z
n

 (n�K)z | K,Z
K

](111)

⇡

✓
1�

2(Z
K

� 1)

(n�K)�2
⌧

◆
G2

✓
2z

�2
⌧

◆
+

2(Z
K

� 1)

(n�K)�2
⌧

G3

✓
2z

�2
⌧

◆
,

so the conditional p-value given K and Ẍ
K

can be approximated as follows:

Pr
⌧

[Ẍ
n

 x
n

|K, Ẍ
K

](112)

⇡

 
1�

2(Ẍ
K

� 2)

(n�K)�2
⌧

!
G2

✓
2x

n

(n�K)�2
⌧

◆
+

2(Ẍ
K

� 2)

(n�K)�2
⌧

G3

✓
2x

n

(n�K)�2
⌧

◆

⌘ ⇡̈G23(x
n

;n�K, Ẍ
K

).
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Proof. (i) First assume that x0 � 3, so z0 � 2. Rewrite (103) as follows.
For n = 1,

(113) Z1 | z0 = (⇠(1)1 +W1) + (⇠̄(1)1 · · ·+ ⇠̄
(1)
z0�1) ⌘ U1 + V1,

where the ⇠’s and ⇠̄’s are i.i.d. copies of ⇠
⌧

. For n � 2,

(114) Z
n

| Z
n�1 = (⇠(n)1 + · · ·+ ⇠

(n)
U

n�1
+W

n

) + (⇠̄(n)1 · · ·+ ⇠̄
(n)
V

n�1
) ⌘ U

n

+ V
n

.

(If V
n�1 = 0, V

n

= 0.) Then {U
n

} is a critical GWI process with immigration
rvs {W

n

} and initial size u0 = 1, {V
n

} is a critical GW process with initial
size v0 = z0 � 1 = x0 � 2 � 0, and {U

n

} is independent of {V
n

}. Therefore

Pr
⌧

[2Z
n

 n�2
⌧

z](115)

= Pr
⌧

[2U
n

 n�2
⌧

z] Pr
⌧

[V
n

= 0] + Pr
⌧

[2(U
n

+ V +
n

)  n�2
⌧

z] Pr
⌧

[V
n

> 0].

Since u0 = 1, Seneta’s result applies to give 2U
n

/n�2
⌧

d

! G2, while by (92)

2V +
n

/n�2
⌧

d

! G1. Because U
n

and V
n

are independent,

(116) Pr
⌧

[2(U
n

+ V +
n

)  n�2
⌧

z] ! G3(z) as n ! 1.

Furthermore, nPr
⌧

[V
n

> 0] ! 2(z0 � 1)/�2
⌧

by (93), so (115) yields (108),
which, applying the continuity correction, yields (109) since Z

n

= Ẍ
n

� 1.
If x0 = 2 so z0 = 1, then all V

n

= 0 and (108) reduces to Seneta’s result
for {U

n

}.

(ii) The case x0 = 1 di↵ers because when z0 = 0 the first nonzero value for
the GWI process {Z

n

} is Z
K

= W
K

and occurs when n = K. By conditioning
on K and Z

K

or Ẍ
K

, however, (111) and (112) follow directly from (108)
and (109) by replacing z0 by Z

K

, x0 by Ẍ
K

, and n by n�K. ⇤
Like ⇡̇EXP(x

n

;n), the approximate p-value ⇡̈G2(x
n

;n) does not depend on
x0 (� 2); it conveys significance for Ḣ+

� (eventual extinction) i↵ x
n

⌧ n�2
⌧

.
We expect that ⇡̈G2, like ⇡̇EXP, will converge only slowly to the exact p-
value, but that ⇡̈G23 will perform noticeably better. Note that ⇡̈G23 requires
n�2

⌧

> 2(x0 � 2); otherwise the weight assigned to G2 in (109) is negative.

Remark 5.2. The accuracy of the G2 and G23 approximations can be
assessed for the geometric psod. The pmf of Ẍ

n

in the critical case can be
obtained from (47) as follows: for x

n

> 0,

(117) Pr
⌧

[Ẍ
n

= x
n

] =
x
n

x0
Pr

⌧

[X
n

= x
n

],
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and Pr
⌧

[X
n

= x
n

] can be obtained explicitly as in Remark 5.1. Exact p-values
and the G2 and G23 approximations are shown in Table 3, from which the
superiority of G23 is apparent. ⇤

x0 = 2 x0 = 8 x0 = 14

n x
n

⇡̈G2 Exact ⇡̈G23 Exact ⇡̈G23 Exact
5 2 0.062 0.062 0.022 0.008
5 4 0.191 0.169 0.069 0.028
5 6 0.337 0.291 0.134 0.060
5 8 0.475 0.411 0.209 0.102
5 10 0.594 0.520 0.290 0.153
10 4 0.062 0.063 0.029 0.038 0.022
10 8 0.191 0.180 0.105 0.115 0.073
10 12 0.337 0.313 0.207 0.213 0.143
10 16 0.475 0.441 0.320 0.317 0.224
10 20 0.594 0.555 0.432 0.418 0.310
20 8 0.062 0.063 0.045 0.048 0.029 0.037
20 12 0.122 0.120 0.092 0.094 0.063 0.074
20 16 0.191 0.186 0.148 0.148 0.105 0.118
20 20 0.264 0.255 0.209 0.207 0.154 0.168
20 24 0.337 0.325 0.272 0.268 0.207 0.220
20 28 0.408 0.393 0.336 0.329 0.263 0.274
50 16 0.041 0.042 0.037 0.038 0.033 0.034
50 24 0.084 0.084 0.076 0.076 0.067 0.069
50 32 0.135 0.134 0.122 0.122 0.109 0.111
50 40 0.191 0.189 0.174 0.173 0.157 0.158
50 48 0.250 0.246 0.228 0.226 0.207 0.208
50 56 0.308 0.304 0.284 0.281 0.259 0.259

Table 3: Exact and approximate p-values Pr
⌧

[Ẍ+
n

 x
n

] for the geometric
psod when x0 = 2, 8, 14.

Remark 5.3. Moments of Ẍ
n

can be obtained from (106) by recursion, e.g.,

E
⌧

(Ẍ
n

) = x0 + n�2
⌧

,(118)

Var
⌧

(Ẍ
n

) = n


!
⌧

+

✓
n� 3

2

◆
�4
⌧

+ (x0 � 3)�2
⌧

� 1

�
,(119)

30



where !
⌧

= E(⇠3
⌧

). ⇤

6. Predicting extinction or explosion: sequential sampling

6.1. Sequential probability ratio tests (SPRT). The SPRT (Barnard
(1946), Wald (1947), Ghosh (1970), Stuart and Ord (1991)) is well suited for
the following sequential version of the prediction problem:

Based on sequential data x ⌘ (x0, x1, x2, . . . ) from a psod GW process X ⌘

X

✓

with initial size x0, predict whether extinction or explosion will occur for
the current realization of the process.

Unlike Section 5, non-termination need not be assumed. This prediction
problem can be formulated as the following testing problem:

Based on observing X sequentially, test

Ḣ� : X
d

= Ẋ

✓

, ✓ � ⌧ (eventual extinction)(120)

vs . Ḧ� : X
d

= Ẍ

✓

, ✓ � ⌧ (eventual explosion).

For fixed ✓ � ⌧ , the SPRT for testing ḟ
✓

vs. f̈
✓

has the following form:

The SPRT (✓;B,A): fix 0 < B < 1 < A < 1. For n = 1, 2, . . . ,

8
><

>:

stop and accept Ḣ� (predict extinction) if �
✓

(x
n

)  B,

stop and accept Ḧ� (predict explosion) if �
✓

(x
n

) � A,

continue sampling if B < �
⌧

(x
n

) < A,

where �
✓

(x
n

) = f̈
✓

(x
n

)/ḟ
✓

(x
n

).

The stopping time for the SPRT(✓;B,A) is a random variable N(✓;B,A).
Because Pr

✓

0 [X
n

! 0 or 1] = 1 for all ✓0 � ⌧ , N(✓;B,A) is finite with
probability 1. As B decreases and A increases, E

✓

0 [N(✓;B,A)] increases
under both Ḣ� and Ḧ�, but it is not necessarily true that the first and second
error probabilities ↵

✓

0
⌘ ↵

✓

0(✓;B,A) and �
✓

0
⌘ �

✓

0(✓;B,A) both decrease (cf.
Wald (1947, p.45)). Here,

↵
✓

0(✓;B,A) ⌘ Pr
✓

0 [SPRT(✓;B,A) accepts Ḧ� | Ḣ�]

= Pr
✓

0 [�
✓

(Ẋ) hits A before B],

�
✓

0(✓;B,A) ⌘ Pr
✓

0 [SPRT(✓;B,A) accepts Ḣ� | Ḧ�]

= Pr
✓

0 [�
✓

(Ẍ) hits B before A].
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Wald (1947, §3.2) derived the following upper bounds: for any ✓ � ⌧ ,

↵
✓

(✓;B,A) 

1� �
✓

(✓;B,A)

A


1

A
,(121)

�
✓

(✓;B,A)  (1� ↵
✓

(✓;B,A))B  B.(122)

Thus if ↵ and � are prespecified, we may choose B = � and A = 1
↵

to
guarantee that SPRT(✓; �, 1

↵

) satisfies the error bounds

(123) ↵
✓

(✓; �, 1
↵

)  ↵ and �
✓

(✓; �, 1
↵

)  �.

Wald also derived the following approximations: if ↵ + � < 1 then
SPRT

�
✓; �

1�↵ ,
1��
↵

�
more nearly attains the specified error probabilities ↵ and

� than does SPRT
�
✓; �, 1

↵

,
�
, i.e.,

↵
✓

⇣
✓; �

1�↵ ,
1��
↵

⌘
⇡ ↵, �

✓

⇣
✓ �

1�↵ ,
1��
↵

⌘
⇡ �,(124)

↵
✓

⇣
✓; �

1�↵ ,
1��
↵

⌘
+ �

✓

⇣
✓; �

1�↵ ,
1��
↵

⌘
 ↵ + �.(125)

6.2. The least favorable distribution for sequential sampling. Be-
cause ✓ is unknown, the SPRT(✓; ·, ·) cannot be applied directly (but see
Section 6.3.) When the psod satisfies TP2a and TP2b, however, like (81) the
testing problem (120) has a convenient solution, namely the SPRT(⌧ ; ·, ·).
Propositions 4.1 and 4.2 imply that Ḣ� and Ḧ� are separated families and
that (ḟ

⌧

, f̈
⌧

) is a pair of least favorable distributions for (120). Further-
more, by Propositions 4.1 and 4.2, ↵

✓

0 and �
✓

0 both decrease as ✓0 increases.
Therefore SPRT(⌧ ; �, 1

↵

) (respectively, SPRT
�
⌧ ; �

1�↵ ,
1��
↵

�
) provides an opti-

mal test for ḟ
⌧

vs. f̈
⌧

for which ↵
✓

0
 ↵ and �

✓

0
 � (resp., approximately)

for ✓0 � ⌧ .
Specifically, by (41) and (47),

(126) �
⌧

(x
n

) ⌘
f̈
⌧

(x
n

)

ḟ
⌧

(x
n

)
=

x
n

x0
,

so the SPRT(⌧ ;B,A) assumes the simple form

8
><

>:

stop and accept Ḣ� (predict extinction) if x
n

 x0B,

stop and accept Ḧ� (predict explosion) if x
n

� x0A,

continue sampling if x0B < x
n

< x0A.
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Note that this is a universal prediction procedure, that is, it is valid for any
psod, in particular it does not depend on �2

⌧

. As a consequence, however, it
is somewhat conservative.

6.3. A less conservative sequential prediction procedure. If ✓ were
known (✓ > ⌧), the SPRT(✓; �, 1

↵

) (respectively, SPRT
�
✓; �

1�↵ ,
1��
↵

�
) provides

an optimal test for ḟ
✓

vs. f̈
✓

for which ↵
✓

 ↵ and �
✓

 � (resp., ↵
✓

⇡ ↵ and
�
✓

⇡ �). From (12) and (13),

(127) �
✓

(x
n

) ⌘
f̈
✓

(x
n

)

ḟ
✓

(x
n

)
=

u�x

n

✓

� 1

u�x0
✓

� 1
.

Because �
✓

(x
n

) is strictly increasing in x
n

, the SPRT(✓;B,A) assumes the
following form:
8
><

>:

stop and accept Ḣ
✓

(predict extinction) if X
n

 x0`
�
ux0
✓

, B
�
,

stop and accept Ḧ
✓

(predict explosion) if X
n

� x0`
�
ux0
✓

, A
�
,

continue sampling if x0`
�
ux0
✓

,B
�
< X

n

< x0`
�
ux0
✓

,A
�
,

where

(128) `(u, ⌘) =
log
⇥
(1�u

u

)⌘ + 1
⇤

log( 1
u

)
, 0 < u < 1, 0  ⌘ < 1.

For fixed u, `(u, ⌘) increases strictly and continuously from 0 to1 as ⌘ ranges
from 0 to 1; also `(u, 0) = 0 and `(u, 1) = 1. Define `(1, ⌘) = `(1�, ⌘) = ⌘.

Lemma 6.1. If 0 < u < 1 and 0 < ⌘ < 1 (resp., 1 < ⌘ < 1), then `(u, ⌘)
is strictly decreasing (resp., strictly increasing) in u and

(129) ⌘ < `(u, ⌘) < 1
�
resp., 1 < `(u, ⌘) < ⌘

�
.

Proof. Set v = 1�u

u

, so that 0 < v < 1 and

`(u, ⌘) =
log
⇥
v⌘ + 1)

⇤

log(v + 1)
⌘

¯̀(v, ⌘).

For 1 < ⌘ < 1, to show that `(u, ⌘) is strictly increasing for 0 < u < 1,
it su�ces to show that ¯̀(v, ⌘) is strictly decreasing for 0 < v < 1, that is,
@ ¯̀(v, ⌘)/@v < 0. This is equivalent to showing that

⌘ log(v + 1)

⌘v + 1
�

log(⌘v + 1)

v + 1
< 0,
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equivalently, that

(130) �(v, ⌘) ⌘ (v + 1) log(v + 1)� (v +
1

⌘
) log(⌘v + 1) < 0.

But �(v, 1) = 0 for ⌘ = 1 and

@�(v, ⌘)

@⌘
= �

(v + 1
⌘

)v

⌘v + 1
+

log(⌘v + 1)

⌘2

= �

1

⌘2

h
⌘v � log(⌘v + 1)

i
< 0,

hence (A.1) holds. Then by L’Hospital’s rule,

⌘ = ¯̀(0+, ⌘) > ¯̀(v, ⌘) > ¯̀(1�, ⌘) = 1,

which yields the desired inequalities for `(u, ⌘). The results for 0 < ⌘ < 1
are established in similar fashion. ⇤

From Lemma 6.1, the lower (resp., upper) stopping boundary for the
SPRT(✓;B,A) strictly increases (resp., strictly decreases) as ✓ increases on
[⌧, ), hence the stopping region decreases and N(✓;B,A) decreases. In
particular,

(131) x0B < x0`
�
ux0
✓

, B
�
< x0 < x0`

�
ux0
✓

, A
�
< x0A.

This di↵erence can be substantial (see Table 4) and implies that

(132) E
✓

0 [N(✓;B,A)] < E
✓

0 [N(⌧ ;B,A)] for all ✓0 � ⌧.

Thus if one is willing to assume a fairly unrestrictive upper bound u
✓



ū < 1 for the extinction probability u
✓

(e.g., ū = 0.90, 0.95, or 0.99), corre-
sponding to an unrestrictive lower bound ✓ � ✓ ⌘ ✓

ū

> ⌧ for ✓ itself, then
by using the SPRT(✓; �, 1

↵

) or SPRT
�
✓; �

1�↵ ,
1��
↵

�
), by Proposition 4.1(ii) one

would control the first error probability for problem (120), i.e., ↵
✓

 ↵ for
all ✓ � ✓, while substantially reducing the expected stopping time. If TP2a
and TP2b hold, then by Proposition 4.2(iii) the second error probability also
would be controlled, i.e., �

✓

 � for all ✓ � ✓.

Remark 6.1. For the Poisson(✓) psod, it follows from (33) that

(133) ✓
ū

= �

log(ū)

1� ū
,
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u
✓

x0 x0`
�
ux0
✓

, 0.05
�

x0`
�
ux0
✓

, 1
0.05

�

(✓ = ⌧) 1.0 5 0.25 100
0.99 5 0.26 70.5
0.95 5 0.28 37.5
0.9 5 0.32 25.6
0.7 5 0.62 12.9
0.5 5 1.35 9.3

(✓ = ⌧) 1.0 10 0.50 200
0.99 10 0.53 113
0.95 10 0.64 52.0
0.9 10 0.85 34.6
0.7 10 2.80 18.4
0.5 10 5.70 14.3

(✓ = ⌧) 1.0 20 1.00 400
0.99 20 1.10 169
0.95 20 1.67 70.3
0.9 20 2.93 47.3
0.7 20 11.6 28.4
0.5 20 15.7 24.3

Table 4: Stopping boundaries for SPRT(✓; 0.05, 1
0.05).

so ✓
.90 = 1.0536, ✓

.95 = 1.0259, ✓
.99 = 1.0050, which lower bounds are close

to the critical value ⌧ = 1. For the negative binomial(r, ✓) psod, (35) yields

(134) ✓
ū

=
1� ū

1
r

1� ū
r+1
r

,

which reduces to ✓
ū

= 1
1+ū

for the geometric(✓) psod when r = 1. Here again
this lower bound will be close to the critical value ⌧ = 1

1+r

if ū is close to 1.
In these cases, therefore, the assumption that u

✓

 ū is not very restrictive
for ū = .90, .95, .99. ⇤
Remark 6.2. Unlike the fixed-n prediction procedures derived in §5 (cf.
Remarks 5.1 and 5.2), the SPRTs compare x

n

to x0 rather than to n in order
to predict whether the observed process is on a trajectory toward extinction
or toward explosion. Note that if x0 is small, the SPRTs are useful for
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predicting explosion but not for predicting extinction. For example,

(135) x0 `
�
ux0
✓

, �
�
< 1 () x0 < `

�
u
✓

, 1
�

�
,

so if x0 < `
�
u
✓

, 1
�

�
then the SPRT(✓; �, 1

↵

) reduces to the SPRT(✓; 0, 1
↵

):

8
><

>:

stop and accept Ḣ
✓

(predict extinction) if X
n

= 0,

stop and accept Ḧ
✓

(predict explosion) if X
n

� x0`
�
ux0
✓

, 1
↵

�
,

continue sampling if 1  X
n

< x0`
�
ux0
✓

, 1
↵

�
,

hence will predict extinction only if extinction actually occurs. If x0 < 1
�

,

the SPRT(⌧ ; �, 1
↵

) also reduces to SPRT(✓; 0, 1
↵

) hence behaves similarly. ⇤
Remark 6.3. Note that the SPRT(✓;B,A) depends on ✓ only through the
value of the extinction probability u

✓

, not on the specific o↵spring distri-
bution, whether a psod or not. Therefore, hereafter we shall use the nota-
tion SPRT(u

✓

;B,A), or simply SPRT(u;B,A). In particular, the universal
SPRT(⌧ ;B,A) in §9.2 is now designated as SPRT(1;B,A). ⇤

7. Examples

Six examples are presented to illustrate the fixed-n (§5) and sequential (§6)
procedures for predicting extinction or explosion from the current realization
of a GW process. Because the Poisson, negative binomial, and geometric
psods are assumed, conditions TP2a and TP2b are satisfied, so these predic-
tion procedures possess the properties asserted in §5.2, 6.2, and 6.3.

Example 7.1: Smallpox in Sao Paolo, Brazil. An outbreak of variola
minor in Sao Paolo occurred in 1956 (see Table 5). This outbreak was caused
by a single infectious individual and lasted four generations before the schools
closed; see Becker (1972), Guttorp (1991, p.59). Becker (1977) and Heyde
(1979) modeled these data by a GW process; also see Guttorp (1991, p.58).
Like Heyde we assume a Poisson(✓) psod; here µ

✓

= ✓, ⌧ = 1, �2
⌧

= 1.

n 0 1 2 3 4
x
n

1 5 3 12 24

Table 5: Occurrences of variola minor in Sao Paolo, Brazil, 1956.

These data suggest a trajectory toward explosion. To assess the strength
of this prediction, first consider the fixed-n testing problem (81) with Ḣ+

�
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(eventual extinction) taken to be the null hypothesis and Ḧ+
� (explosion) the

alternative. Here x0 = 1, n = 4, x
n

= 24 so the exponential approximation
(101) for the p-value of the fixed-n prediction procedure (87) is

(136) ⇡̇EXP(24; 4) = e�
47
4
⇡ 7.89⇥10�6,

which strongly supports the prediction of explosion. Because n = 4 is not
large, this approximation is not entirely reliable. (Because x0 = 1, the EXP
and GAM approximations coincide.)

x0 ū x0`
�
ūx0 , 0.05

�
x0`
�
ūx0 , 1

0.05

�
x0`
�
ūx0 , 0.01

�
x0`
�
ūx0 , 1

0.01

�

1 1.00 0.05 20 0.01 100
0.99 0.05 18.3 0.01 69.5
0.95 0.05 14.0 0.01 35.8
0.90 0.05 11.1 0.01 23.7

8 1.00 0.40 160 0.08 800
0.99 0.42 97.9 0.08 222.7
0.95 0.49 47.0 0.10 76.9
0.90 0.61 31.4 0.12 46.4

14 1.00 0.70 280 0.14 1400
0.99 0.75 138.5 0.15 276.5
0.95 0.99 60.3 0.20 90.9
0.90 1.48 40.1 0.31 55.3

38 1.00 1.90 760 0.38 3800
0.99 2.29 232.1 0.46 384.2
0.95 5.13 93.6 1.14 124.8
0.9 12.39 66.3 4.09 81.5

Table 6: Stopping boundaries for SPRT(ū; �, 1
↵

), ↵ = � = 0.05 and 0.01.

Next we apply the sequential testing approach. Here x0 = 1, so the stop-
ping boundaries for the sequential prediction procedure SPRT(ū; �, 1

↵

) (cf.
Remark 6.3) appear in the first tier of Table 6 for ↵ = � = .05, .01 and
ū = 1.0, .99, .95, 0.90. As ū decreases, SPRT(ū; �, 1

↵

) becomes less conser-
vative, stopping more quickly. For example, SPRT(ū = 1.0; .05, 1

.05) stops
and predicts explosion when x

n

� 20, which here occurs when n = 4, while

37



SPRT(ū = .90; .05, 1
.05) stops and predicts explosion when x

n

� 11.1, which
occurs when n = 3.

The SPRT(ū = .90; .05, 1
.05) requires the assumption that u

✓

 ū = .90,
equivalently ✓ � ✓

ū

= 1.0536, see Remark 6.1. The reliability of this as-
sumption can be assessed in two ways. First, y

n�1 = 21 and y
n

= 45 so
✓̂ = µ̂ = (45 � 1)/21 ⇡ 2.095 from (77), which is substantially larger than
1.0536. Second, an estimate of u

✓

could be obtained from the nonparametric
MLE p̂ of the o↵spring distribution p

✓

(cf. Guttorp (1991, Proposition 3.4),
also Stigler (1971)), but this would require knowledge of the family histo-
ries of each infected individual, which is unavailable. Here, however, p̂ can
be obtained from the EM algorithm because n is small, cf. Guttorp (1991,
pp. 119-120). For n = 3, p̂ puts masses (0.239, 0.428, 0.206, 0.127) on 0,
1, 5, 6, and from (3) the estimated extinction probability for this distribu-
tion is found to be 0.424. For n = 4 the estimated distribution puts masses
(0.332, 0.147, 0.219, 0.302) on 0, 1, 2, and 5, yielding an estimated extinction
probability 0.447. Both estimates fall well below the assumed upper bound
ū = 0.9. ⇤
Example 7.2: Smallpox in Nigeria. Becker (1976) presented generational
data for a smallpox outbreak in Nigeria (see Table 7). Heyde (1979) modeled
these data by a GW process, using the Poisson(✓) psod as suggested by Becker
(1976, p.776), so again �2

⌧

= 1.

n 0 1 2 3 4 5 6 7
x
n

1 1 7 6 3 8 4 0

Table 7: Occurrences of smallpox in Abakaliki, Nigeria.

Because the outbreak terminated at the 7th generation, our fixed-n pre-
diction methods (§5) are not relevant. Instead, beause x0 = 1 the stopping
boundaries of SPRT(ū; �, 1

↵

) for ū = 1.0, 0.99, 0.95, 0.90 and ↵ = � = .05, .01
again appear in the first tier of Table 6. Because 1  x

n

 7 for n = 1, . . . , 6
in this example, none of these SPRTs would stop sampling until the extinc-
tion observed at n = 7. Note that ✓̂ = µ̂ = (30� 1)/30 = 0.967 < 1 by (77)
(y

n�1 = y
n

= 30). ⇤
Example 7.3: Pertussis in Washington State, 2011. The WA State
Department of Health reported no cases of pertussis (whooping cough) in
Week 8 of 2011. The numbers of new cases in Weeks 9, 10,..., 20 are shown
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in Table 8 (also see Figure 1). Here x0 = 8, n = 11, x
n

= 11, y
n�1 = 66, and

y
n

= 77.

Week 9 10 11 12 13 14 15 16 17 18 19 20
n 0 1 2 3 4 5 6 7 8 9 10 11
x
n

8 6 5 5 5 7 3 4 7 10 6 11

Table 8: Weekly occurrences of pertussis in Washington State, 2011.

As in Examples 7.1 and 7.2, these data are assumed to arise from a GW
process with a Poisson(✓) psod. As a rough check, the MLE of the o↵spring
mean is ✓̂ = µ̂ = (77� 8)/66 = 1.04551, which agrees fairly well with Dion’s
estimate of the o↵spring variance (cf. Guttorp (1991, p.109)):

(137) �̃2
⌘

1

n

nX

⌫=1

x
⌫�1

⇣ x
⌫

x
⌫�1

� µ̂
⌘2

= 1.2047.

The population counts in Table 8 remain fairly constant, suggesting even-
tual extinction. To assess this prediction, first consider the fixed-n testing
problem (81) with Ḧ+

� (eventual explosion) taken to be the null hypothesis

and Ḣ+
� (eventual extinction) the alternative. Again ⌧ = 1 and �2

⌧

= 1, so
n�2

⌧

< 2(x0 � 2), hence the approximations ⇡̈G2 in (107) and ⇡̈G23 in (109)
for the prediction procedures (87) are unreliable (cf. Proposition 5.3(i)).

Because x0 = 8, we next compare the data in Table 8 to the stopping
boundaries in the second tier of Table 6 for the sequential prediction proce-
dures SPRT(ū; �, 1

↵

) for ū = 1.0, 0.99, 0.95, 0.90 and ↵ = � = .05, .01. None
of these stop by generation n = 11 so neither extinction nor explosion is
predicted.

In fact, for the remainder of 2011 the weekly numbers of new cases re-
mained in the range 6-11 for Weeks 21-29, then increased into the range 12-41
for Weeks 30-51. However only 1 new case was reported in Week 52. ⇤
Example 7.4: Pertussis in Washington State, 2012. The number
of new cases of pertussis for Weeks 1–12 of 2012 increased dramatically,
suggesting possible explosion (Table 9). Here x0 = 1, n = 11, x

n

= 98,
y
n�1 = 594, and y

n

= 692. The MLE µ̂ = 691/594 = 1.1633 and �̃2 = 8.0342.
Because µ̂ ⌧ �̃2, the Poisson distribution does not fit these data. Instead,

since µ̂ and �̃2 agree with the mean and variance of the negative binomial
NB(r̂, ✓̂) psod with r̂ = 0.1970 and ✓̂ = 0.8552 (cf. Example 3.2), we shall
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assume the model NB(r = 0.1970, ✓) with ✓ unknown (0 < ✓ < 1), so
⌧ = r(1 + r)�1 = 0.1646 and �2

⌧

= 6.0761.

Week 1 2 3 4 5 6 7 8 9 10 11 12
n 0 1 2 3 4 5 6 7 8 9 10 11
x
n

1 7 22 38 50 65 78 61 74 96 102 98

Table 9: Weekly occurrences of pertussis in Washington State, 2012.

To assess the evidence for a prediction of explosion, first consider the
fixed-n testing problem (81) with Ḣ+

� (eventual extinction) taken to be the

null hypothesis and Ḧ+
� (eventual explosion) the alternative. From (101), the

exponential approximation to the p-value of the fixed-n prediction procedure
(87) is

(138) ⇡̇EXP(98; 11) = e�
195

11(6.0761)
⇡ 0.054,

which moderately supports the prediction of explosion.
By contrast, from Tables 9 and 6 the conservative SPRT(1.0; �, 1

↵

) with
↵ = � = 0.05 would have stopped and predicted explosion as early as Week
3 ! With ↵ = � = 0.01 this SPRT would not have stopped until Week 11,
but the SPRT(0.90; 0.01, 1

0.01) would have stopped and predicted explosion
by Week 4.

In fact a state of health emergency was declared after Week 14 and an
innoculation program begun. The number of new cases7 continue to increase
to a peak of 254 in Week 20, then declined to 23 new cases in Week 52. Had
these sequential prediction procedures been applied, this program could have
begun much earlier, possibly greatly reducing the number of occurrences of
the disease. ⇤

Note that the predictions for Examples 7.3 and 7.4 di↵er even though the
change in µ̂ from 2011 to 2012 is small, namely from 1.0455 to 1.1633. ⇤
Example 7.5: California condors. Wilbur (1978) gives the annual pop-
ulation counts of the threatened California condor from 1968 through 1976
(see Table 10). Here x0 = 38, n = 8, x

n

= 19, y
n�1 = 183, and y

n

= 202;
the MLE µ̂ = 164/183 = 0.8962 and �̃2 = 2.2755. Because �̃2 is not greatly

7The weekly data shown have since been revised. We have used the unrevised data
because it was those upon which public health decisions were based.
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di↵erent from the estimated variance �2
✓̂

= ✓̂/(1 � ✓̂)2 = 1.6992 under the

geometric GM(✓̂) distribution with ✓̂ = µ̂/(1+ µ̂) = .4726 (see Example 3.2),
we will assume the GM(✓) psod model (0 < ✓ < 1) to illustrate its ease of
application. For this model A(✓) = 1/(1� ✓), ⌧ = 1/2, and �2

⌧

= 2.

Year 1968 1969 1970 1971 1972 1973 1974 1975 1976
n 0 1 2 3 4 5 6 7 8

Count x
n

38 26 27 18 25 19 19 11 19

Table 10: Annual counts of California condors 1968-1976.

The data in Table 5 suggest a declining population, hence possible extinc-
tion. To evaluate this prediction, first consider the fixed-n testing problem
(81) with Ḧ+

� (eventual explosion) as the null hypothesis and Ḣ+
� (eventual

extinction) the alternative. Here x0 = 38 and n = 8 so n�2
⌧

< 2(x0�2), hence
the approximations ⇡̈G2 in (107) and ⇡̈G23 in (109) for the fixed-n prediction
procedures (87) are inapplicable (cf. Proposition 5.3(i)).

By contrast, the sequential prediction procedure SPRT(0.9; 0.05, 1
0.05) would

have stopped in 1975 and predicted extinction. (Compare the data in Table
10 to the stopping boundaries in the last row of Table 6.)

In fact, by the mid 1980’s all remaining wild condors were captured and
moved to zoos, where a breeding program was begun, followed by relocation
back to the wild. By 2011 the total wild population had grown to 191, in
addition to 178 remaining in captivity. ⇤
Example 7.6: North American whooping cranes. Miller et al. (1974)
give the annual counts of migrating whooping cranes, an endangered species,
arriving in Texas from 1938 (n = 0) through 1972 (n = 34); see Figure 4 and
Guttorp (1991, p.190)). Here x0 = 14, n = 34, x

n

= 51, y
n�1 = 1072, and

y
n

= 1123; the MLE µ̂ = 1109/1072 = 1.0345. Since µ̂ does not di↵er greatly
from Dion’s estimate �̃2 = 0.84, the Poisson(✓) psod model is assumed.

The counts in Figure 4 show an increasing trend, suggesting explosion. To
evaluate this prediction, first consider the fixed-n testing problem (81) with
Ḣ+

� (eventual extinction) as the null hypothesis and Ḧ+
� (eventual explosion)

as the alternative. Here �2
⌧

= 1, so the EXP and GAM approximations (101)
and (102) for the p-values of the fixed-n prediction procedure (87) are

⇡̇EXP(51; 34) = e�
101
34

⇡ 0.051,(139)

⇡̇GAM(51; 34, 14) = 17
14

�
16
17

�14P14
r=1

�
14
r

�
1

16r Ḡr

�
101
34

�
⇡ 0.086,(140)
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Figure 4: North American whooping crane population counts 1938-1972.

respectively, with ⇡̇GAM expected to be more accurate. This provides modest
support for a prediction of explosion.

By contrast, the sequential prediction procedure SPRT(0.9; 0.05, 1
0.05) would

have stopped in 1964 (n = 26, x
n

= 42 > 40.1) and predicted explosion, while
SPRT(0.9; 0.01, 1

0.01) would have stopped in 1969 (n = 31, x
n

= 56 > 55.3)
and predicted explosion. (The values 40.1 and 55.3 appear in the third tier
of Table 6.) ⇤
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