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• A combined algorithm based on shape and motion features of human activity.
• A single key pose is used for estimation of shape using edges.
• A single global key pose is extracted from video signal by exploiting local notion.
• The temporal motion feature is computed using R-transform.
• Robustness of the algorithm is demonstrated on the varied dataset.
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a b s t r a c t

The aim of this paper is to present a novel integrated framework for the recognition of human actions
using a spatial distribution of edge gradient (SDEG) of human pose and detailed geometric orientation
of a human silhouette in a video sequence. The combined descriptor endows a wealthy feature vector
dictionary having both the appearance and angular kinematics information that significantly wraps the
local and global information and provides discriminative depiction for the action recognition. The SDEG
is computed on a still image at different levels of resolution of sub-images, and still images of the
human poses are extracted from the input video sequence using fuzzy trapezoidal membership function
based on the normalized histogram distance between the contiguous segment frames. The change of
geometric orientation of human silhouette with time is computed using normalized R-Transform. To
validate the performance of the proposed approach, extensive experiments are conducted on five publicly
available human action datasets i.e. Weizmann, KTH, Ballet Movements, Multi-view i3dPost, and IXMAS.
The recognition accuracy achieved on these datasets demonstrates that the proposed approach has an
abundant discriminating power of recognizing the variety of actions. Moreover, the proposed approach
yields superior results when compared with similar state-of-the-art methods.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Human activity recognition has been an active area of research
in computer vision due to its potential applications in the field of
surveillance, early diagnostic of stroke and rehabilitation of elder
people, sports event analysis, robotics, terrorist activities, content-
based video analysis, and human–computer interactions [1–3].
However, human action recognition is both challenging and
multifaceted due to viewpoint variations, occlusion, cluttered
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background, intra-class motion variability and inter-class motion
ambiguity. The answer to these problems is still a challenging
task. Therefore, day by day researchers are trying to devise a
general, competent and robust method for recognition of human
action.

Over the last few decades, numerous action and activity
recognition techniques have been proposed, which are mainly
based on the local and global representations. Optical flow, point
trajectories, space–time volume, Bag-of-words and sparse interest
points (STIP’s) [4] are common existing techniques used for human
activity recognition. While these methods effectively handle
partial occlusions and make background subtraction superfluous,
almost all of them have their own set of limitations. Optical flow
methodology results in the inaccurate analysis if the video quality
is low and not smooth. Similarly, point trajectories desire an
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efficient tracking of the humanmotion, whereas the distribution of
the interest points around the object should be stable in the STIP’s
approach.

Recently, the concept of still images [5–10] has emerged as
a popular means of detecting human activity or behaviour as it
focuses on the visual appearance of the object. These images do
not require any morphological operation or tracking trajectories.
Therefore, these methods provide the better handling under
occlusion, less computation time, less complexity, and is effective
in noise handling [11].

In earlier approaches [12–15] R-Transform is used to extract
the temporal motion information in terms of orientation features,
and extensively used for representing the human activity, where
the activity is dominated by rotation kinematics like falling on the
ground, vomiting, etc.

Nevertheless, most of the earlier works [16–21] admit that
individual feature based methods are less effective as compared to
the multiple features based methods. However, it is also observed
that a single still image based technique requires effective
positioning of the posture, and it alone does not always provide
enough information for recognizing all kinds of activities given
that it does not encompass the motion information. Furthermore,
it is also observed that R-transform based motion temporal
features are more effective for those activities that have dominant
orientation changes rather than translation like bending, falling on
the ground, and vomiting, etc.
Motivation and contributions of the work:

Over the last few years, the concept of still images [5–11]
based recognition of object has gained popularity. As it focuses
on the visual appearance of the object or human pose, which
does not require the segmentation, morphological operation,
and tracking trajectories. Therefore, by utilizing still images
for the recognition of human activity, a better approach is
framed, which can handle the existing problems of vision based
activity recognition algorithms like occlusion, segmentation, noise,
complexity and speed of computation. Still image has the richness
of shape of an object while for the effective recognition of
human activity, but both the shape and motion information
are needed. Hence, to boost the recognition of human activity,
motion information is incorporated to the still image based
approach by computing the orientation of human silhouettes
using R-Transform. The shape of human pose is extracted by
computing SDEG. Another important principle behind this study
is to analyse and compare the effect of Histogram oriented
gradients (HOG), pyramid of histogram oriented gradients (PHOG),
and R-Transform with the proposed model for the purpose of
human activity recognition. The proposed model consists of a
rich feature vector vocabulary having both the appearance and
angular kinematics information, which overthrows the limitation
of earlier approaches. The pose dictionary yields the human
appearance representation, and sequence of orientation provides
the nature of the activity. The main contributions of the work are
as follows:

• 2-D human body poses are extracted from the video sequence
using the fuzzy logic model based on normalized histogram
distances between the segments of video.

• The structural appearance of human pose is represented by
computing SDEG, which offers the shape information of a
human pose at various orientation bins and decomposition
levels.

• The temporal motion content of the human body is represented
by the computation of geometric orientation using normalized
R-Transform and it offers the geometry transformation and
scale invariant.

• A novel integrated model is constructed by combining shape
based appearance and orientation information of the human
body action.

The rest of this paper is structured as follows: Section 2 gives
the glimpses of prior work; Section 3 explains the details of the
proposed methodology, which includes the abstraction of spatial
edge distributions, and angular kinematics information using
normalizedR-transform. Section 4demonstrates the experimental
details and discussion of results.

2. Related work

Usually, human activity recognition methods can be divided
into still images based on visual appearance, the global method
based on the human silhouette, and local feature-based ap-
proaches. The details of prior work based on these approaches are
explained in the subsequent sections, which includes their merits
and demerits.

2.1. Still images based approaches

In recent, the still images based action recognition have grown
tremendously due to its crucial advantages like no need of
background subtraction, robust against occlusion, less complexity,
etc. Initially, [6] introduced the concept of action recognition based
on still images and in these images they have used the canny
edge detector to represent the shape of the human action and
features have clustered into similar body poses. Li and Ma [7]
presented the concept of ‘‘exemplarlet’’ that had adequate visual
information to identify the human action in still images. Shao
et al. [22] used the idea of the random forest decision tree
algorithm to search for the discriminating patches of the human
action region. Li and Fei-Fei [8] represented the integratedmethod
that is based on the appearance information of still image and
occurrence of action scenes. Thurau and Hlavac [23] proposed
the method based on pose information of the human action.
They worked on the ROI images and computed the histogram
of gradients with non-matrix factorization (NMF) to represent
feature vectors. Lopes et al. [9] presented the transfer learning
approach where contextual information from still images applied
to the test video sequence. Zheng et al. [10] combined the poselet
with contextual information for recognizing human action from
still images. Hu et al. [24] introduced the spatial pose based
exemplars to characterize the Human–Object Interaction (HOI)
from still images but it did notwork accurately for complex images.
These approaches do not provide themotion information in a short
or long duration of time and therefore, are scarce in representing
the human action from a video sequence.

2.2. Global approaches

In global approaches, the representation of human action is
done via appearance and motion of the actions based on the
silhouettes and temporal models. Template models signify the
actions in whole video sequence rather than the diminutive
duration of the period. Bobick and Davis [25] were the first
to use the notion of template representation and they formed
MHI/MEI templates for action recognition. Efros et al. [26] perform
recognition on low-resolution videos by correlating the optical
flow measurements. Shao et al. [27] used the combination of
motion and shape information for recognition of activities. They
used the MHI images for the shape representation and Pyramid
of Correlogram (PCOG) for the feature description. Shao et al. [28]
introduced the novel Laplacian pyramid coding descriptor for
the holistic representation of human action. This method is
independent of tracking of features or localization of STIP’s.
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Fig. 1. Workflow diagram of human activity recognition.

Goudelis et al. [29] presented themethod based on Trace transform
for action recognition. It is a complex method but invariant to
scaling, translation, and rotation. Khan and Sohn [13] introduced
the abnormality activity recognition systembased onR-transform.
Jalal et al. [14] represented the human action in-depth silhouette.
For each depth silhouette, Radon Transform is employed, which
provides invariance to the silhouette in terms of scaling and
rotation.

2.3. Local approaches

Local methods depict the actions as a group of local descriptors
or patches. Laptev et al. [30] introduced the concept of interest
points and analysed the image in x–y–t dimensions, to detect the
presence of interest points in space–time volumes. This method of
generation of interest points is not stable and effective in complex
actions. Laptev et al. [31] improved his results by proposing
spatio-temporal histogrammodel. Nibeles et al. [32] presented the
probabilistic latent semantic analysis (PLSA) and Latent Dirichlet
Allocation (LDA) models over the space–time regions to perform
unsupervised action recognition. These models did not provide
the temporal and scale invariance. Later on, Zhao et al. [16]
presented the combined approach representing both structure and
appearance information based on STIP’s. They used cuboids for
representing the appearance information that are extracted from
the STIP’s. Shao et al. [28] presented the spatial–temporal steerable
pyramid (STSP) approach for human action recognition. They used
a Laplacian pyramid approach to decompose the video sequence
and then multilevel steerable filters were used to extract the
features in different directions and scale. Somasundaram et al. [33]
introduced spatio-temporal feature vector based on the sparse
representation for action recognition. Their methodology did not
provide for large storage memory as it worked on the saliency
approach, but the sparse representation made the system scale
invariant. Tran et al. [34] proposed the part based model for the
recognition of human action. This method was robust to partial
occlusion and complex activities. Bregonzio et al. [17] presented
the combination of appearance and distribution information of
interest point for recognition of action. Although these methods
showed improved results, they are not applicable to a dynamic
background that has multiple people performing activities. It can
also be observed that the space–time approaches are not suitable
for recognizing multiple or more complex activities that are
not periodic in nature, sensitive to partial occlusion, background
variations.

3. Proposed methodology

As the earlier framework for action recognition used in
[16–18,35,36], the proposed framework for action recognition is

illustrated by assimilating the structural and rotational informa-
tion of the action dynamics.

3.1. Overview of framework

The proposed framework is composed of computation of shape
attributes using spatial distribution of edge gradients (SDEGs) of
2D postures and extraction of geometric points i.e. oriented points
of silhouettes using normalized R-transform. Incorporation of
SDEG constructs the final feature vector with orientation features
at the recognition stage. The SDEG feature gives the local region
based level information of pose of action,which is computed on the
still image, whereas the still image is the most optimal key frame
of the activity sequence which is extracted using fuzzy approach
in a video sequence. The temporal motion content of the activity
is computed by applyingR-transform on binary silhouette images.
The overview of theworkflow diagram of the proposed framework
is shown in Fig. 1 and the subsequent sections give the detailed
explanation of every block.

3.1.1. Extraction of single key frame
For the accurate representation of body postures, the key poses

of the activity from the video sequence are extracted and these key
poses are compared on the basis of histogramdistance for selecting
the optimum single key frame for the structural representation of
2D pose of human activity. The extraction of single key pose is as
illustrated in Fig. 2.

For selecting key poses, a stack of frames (FFS1, FFS2, . . . ,
FFSK+1) is formed by selecting the frames after a certain interval
in the video sequence because the deviation in the video
sequence does not vary instantaneously. These stacks of frames
are converted into CIELab colour space because it closely conforms
to human perception of colours and is device independent [37] as
compared to the rest of colour spaces. The normalized histogram
distances (Norm HD) are computed for all the three components L,
a and b using Eq. (1).

HDt = 1 −
1

3(MN)


n

j=1

min

FFStLj , FFS

t+1
Lj



+

n
j=1

min

FFStaj , FFS

t+1
aj


+

n
j=1

min

FFStbj , FFS

t+1
bj


(1)

where FFS, t denote the frames of the stack, and frame number
respectively. The size of frame is M × N and j stands for the
histogram bin number varying from 1 to n, and L, a, b for the
Luminance, and ‘a’ and ‘b’ components. For the selection of most
optimized frame on the basis of normalized histogram distances a
Fuzzy logic model is constructed.
Fuzzy logic model: In the video sequence frame to frame
difference varies greatly so it is not possible to work with a fixed
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Fig. 2. Illustration of optimum single key frame extraction.

Fig. 3. Fuzzy trapezoidal membership function.

threshold for computing the key frames on the basis of normal
histogram distance metric (see Fig. 3). Hence, the fuzzy approach
is used to find the key frames, which is explained as Algorithm 1.
Selection of single key frame: The extracted key frames are
compared internally and ranked according to the normalized
histogram distance values. Histogram difference is typically
considered as a global change in a video sequence and it helps
in detecting abrupt changes in the frames. If the extracted key
frames are represented as ‘‘Key frame (1), Key frame (2). . .Key
frame (N)’’ then the normalized histogram distance between the
successive frames is computed and highest distance key frame is
the optimum single key frame that has the highest pixel variation
for the representation of 2D pose of the activity as shown in
Fig. 4(a), (b).

3.2. Computation of SDEG

The computation of SDEG feature is based on the visual
appearance of human body pose. Human body pose provides a
significant amount of information for nonverbal communication
and based on appearance, certain patterns of body movements
are indicative of specific action. Human body posture hints both
the enduring characteristics of a person (character, temperament,
etc.) and the 2-D representations of the image give the spatial
distribution of posture and characteristics of action or the attitude
of the person.

For the representation of SDEG, the region of interest (ROI) of
key pose is selected and further divided into sub-regions of still
images at multilevel. The orientations of the edges are counted
on the finer scale and expressed in the form vector. The pictorial
representation of SDEG computation and feature representation is
presented as Fig. 5 and stepwise flow is explained in Algorithm 2.

Fig. 6 shows that the SDEG feature vectors are almost
discriminative because the representation of the patterns of the
histograms of different activities is different with an increase in
the degrees. At a lower degree (near zero) the peaks are higher and
more variation inmagnitudewith increase in the degrees, although
amplitude decreases but the peaks are more variant. Hence, these
features are proficient in the representation of human activities
but this representation may be less effective for the recognition
of activities like ‘‘walking’’ and ‘‘jogging’’ because this does not
have temporal information. Hence, to alleviate the limitations
of structural information, it is further moved to incorporate the
kinematics information, which is described in the subsequent
section.

3.3. Computation of orientation of human silhouette

The orientation of silhouettes gives the directional as well as
the temporal information of human body motion and these are
computed using R-transform. The R-transform is computed by
applying the Radon Transform (RT ) on the binary silhouettes of the
human activity.

3.3.1. Extraction of human silhouette
The silhouette is the basic unit of human activity, which is

formed by extracting the foreground object from the rest of the
video sequence. A method for describing different textures as
presented in [38] is used for silhouette extraction. The texture is
always a reliable source of information for scene description and
change detection. Entropy is one of themost important parameters
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a

b

Fig. 4. (a) Illustration of single key pose extraction (b) depiction of single still images of different activities.

Fig. 5. Depicting the flow of computation of SDEG vector at 8-orientation bins.
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Fig. 6. Result of SDEG vector of different activities: Row 1: ROI of still Images, Row 2: Edges of postures, Row 3: Spatial Edge Distribution at level ‘2’.

that describe the texture information in an image and can be
expressed as:

ζ =


i


j

ρ (i, j) log (ρ (i, j)) (2)

where ρ (i, j) =
M(i,j)
i,j M(i,j) is the probability density function;

where i and j are indices to the co-occurrence matrix M . The
entropy of the image is used to describe the complexity of the
background and a higher value indicates greater complexity in the
image background.

The filter matrix is generated for a pixel and its entropy is
calculated in a 9 × 9 neighbourhood mask. Converting this filter
matrix to a binary formgives an imagewithwhite spots at different
areas. Applying this mask over the raw image provides a silhouette
image from this raw image as shown in Fig. 7. The segmented
image may contain different white blocks, but not all of them
are of human silhouettes. By comparing the size of these blocks,
the image with the largest area is selected, which is a human

silhouette. To compute the motion temporal information, 25 key
frames are extracted from the video sequence, which have the
significant amount of energy.

3.3.2. Computation of rotation feature
Consider a sequence of silhouette image It (x, y) of the human

activity, where ‘t ’ is the frame number and subsequently R-
Transform is defined via R(θ) as follows:

R (θ) =


∞

−∞

R2
T (ρ, θ)∂ρ. (3)

Radon Transform (RT ) gives the directional features in the range of
angle (0–179°) and is defined as the integral of a silhouette image
I (x, y) from −∞ to ∞, denoted as:

RT (ρ, θ) =


∞

−∞


∞

−∞

I (x, y) δ (ρ − x cos θ − sin θ) ∂x∂y (4)
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Fig. 7. Flow of steps for extraction of binary silhouette image.

a b

Fig. 8. (a) Illustrates the projection of lines over 2-D function I(x, y), (b) shows the position of the projection line.

where δ(.) is defined as the Dirac delta function which is zero
everywhere except at the origin, where it approaches infinity.
The perpendicular distance ρ from the origin to the radon line is
defined as Eq. (5) and shown in Fig. 8(a), (b).

ρ = x cos θ + y sin θ for (0 ≤ θ ≤ π) , (−∞ ≤ ρ ≤ ∞) (5)

where ‘θ ’ is the angle between horizontal axis and the projection
line.

RT cannot restore all the parameters of the original geometric
transformation when the image is translated, rotated, or scaled.
Hence, [39] introduced the R-transform which is invariant
to translation and scaling parameters but with orientations it
provides sufficient discriminative change.

The normalized R-transform (Rnorm (θ)) improves the similar-
ity measure and compactness of feature representation, which is
defined as:

Rnorm (θ) =


∞

−∞
R (θ) dθ

max (R (θ))
. (6)

Properties of R-Transform: The fundamental properties of R-
transform are described by Tabbone et al. [39] which shows that it
is invariant against the scaling and translation but sensitive against
the rotational characteristics. These properties are proved in work
by taking bending activity silhouette as shown in Fig. 9 for the
human activity sequence under scaling, translation and rotation.

In Fig. 9, rotation in the image shows more variation in the
brighter portion of RT when compared to other images because
in the rotation, there is more deviation in the pixel values
corresponding to projection lines. The magnitude of the translated
image varies as compared to the scaled image, but the signal
representation of R-transform remains the same. The rotational
sensitivity of R-transform is used for the representation of motion
temporal information of different activities. The R-transform
representation of different actions is as shown in Fig. 10.

Fig. 10 shows the normalized R-transform signal representa-
tion of different activities and it is observed that the representation
is significantly different for various actions. The geometrical pro-
files of normalized R-transform for jogging and walking actions
look similar due to the similar postures of the actions. Hence, it
can be clinched that R-transform representation is capable of de-
scribing the motion characteristics of the human action but alone
it cannot sufficiently provide the information for distinguishing
the actions. The R-transform of a single frame of the human sil-
houette is not much effective in representing the temporal mo-
tion information as compared to the set of frames of silhouette,
but it results in a high dimension. For effective and compact rep-
resentation of R-transform, the local linear embedding (LLE) [40]
unsupervised manifold learning non-linear dimension reduction
method is used. Non-linear dimensionality reduction in compari-
son to the linear dimension reduction techniquediscards the corre-
lated information and works on the maximization of information.
Linear dimension reduction technique principal component anal-
ysis (PCA) [41] when applied to the dataset gives resulting values
which are not well organized. Therefore, to reduce the dimension
of feature set the non-linear LLE approach is used.

3.4. Final feature vector computation

The final feature descriptor is constructed by assimilating
the SDEG and normalized R-transform, which gives a novel
integrated structure for the representation of human activity.
This assimilation gives a rich descriptor having both spatial and
temporal information. The flow of assimilation is as shown in
Fig. 11,which is based on the experiment data used in the proposed
approach.

The dimension of feature vector obtained by R-Transform on
one frame of size 50×50 is 2500×180 and in the proposed scheme
25 key frames are used to compute the rotation feature. Hence,
the final dimension of the R-Transform is very high. Therefore, a
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Fig. 9. Shows R-Transform is variant to the rotation and invariant to scaling and translation Column 1: silhouette images at various conditions, Column 2: Radon Transform
(RT ), Column 3: R-Transform signal, Column 4: Normalized R-Transform signal.

dimension reduction technique LLE is used and which gives the
size of R-Transform feature as 1 × 25. Similarly, for the SDEG
computation, there are 8-orientation bins and decomposition
level-2 is used in the proposed approach, which gives the size of
1×168 as explained in the computation of SDEG section. The final
feature vector is obtained by concatenation of these two feature
vectors together. Hence, the size of the feature vector is [1×168+

1 × 25 = 1 × 193].

4. Experimental result and discussion

In order to demonstrate the effectiveness of the proposed
approach, an extensive experiment is conducted on five pub-
licly available and widely used human action datasets—the
Weizmann [42], KTH [43], Ballet movement [44], Multi-view

id3Post [45] and IXMAS [46] datasets. The sole reason behind the
use of these datasets is to show the robustness of the proposed ap-
proach against the variation of illumination, viewing angle, inter-
class similarity, and intra-class dissimilarity of the activities. The
performance is measured in terms of classification accuracy us-
ing Multi-class SVM classifier in leave-one-out cross validation
(LOOCV) routine.
Weizmann dataset: The dataset was introduced by Gorelick
et al. [42] and comprises of 90 videos with a frame rate of 25 fps
and each frame having a size of 144 × 180. There are 9 people
(male, female), who have performed 10 different actions and
categorized as ‘Run’, ‘sideways jump’, ‘Skip’, ‘jumping’, ‘jump in
place’, ‘bending’, ‘jumping jack’, ‘walk’, ‘one hand wave (Wave 1)’,
and ‘two hand (Wave 2)’. The sample image postures of these
activities are as shown in Fig. 12.



D.K. Vishwakarma et al. / Robotics and Autonomous Systems ( ) – 9
N

or
m

. R
-T

ra
ns

fo
rm 1

0.8

0.6

0.4
0 45 90

Theta(deg.)
135 180

N
or

m
. R

-T
ra

ns
fo

rm 1

0.8

0.6

0.4
0 45 90

Theta(deg.)
135 180

N
or

m
. R

-T
ra

ns
fo

rm 1

0.9

0.8

0.7
0 45 90

Theta(deg.)
135 180

N
or

m
. R

-T
ra

ns
fo

rm 1

0.8

0.6

0.4
0 45 90

Theta(deg.)
135180

N
or

m
. R

-T
ra

ns
fo

rm 1

0.8

0.6

0.2

0.4

0 45 90
Theta(deg.)

135 180
N

or
m

. R
-T

ra
ns

fo
rm

1

0.8

0.6

0.2

0.4

0 45 90
Theta(deg.)

135180

N
or

m
. R

-T
ra

ns
fo

rm 1

0.8

0.6

0.4
0 45 90

Theta(deg.)
135180

0 45 90
Theta(deg.)

135 180N
or

m
. R

-T
ra

ns
fo

rm 1
0.95
0.9

0.85
0.8

0.75

0.65

N
or

m
. R

-T
ra

ns
fo

rm 1

0.8

0.6

0.4
0 45 90

Theta(deg.)
135180

0 45 90
Theta(deg.)

135 180N
or

m
. R

-T
ra

ns
fo

rm 1
0.9

0.8

0.7

0.6

0.5

N
or

m
. R

-T
ra

ns
fo

rm 1

0.8

0.6

0.4
0 45 90

Theta(deg.)
135180

0 45 90
Theta(deg.)

135 180

N
or

m
. R

-T
ra

ns
fo

rm 1
0.95
0.9

0.85
0.8

0.75
0.7

0.65

(a) Running. (b) Hand wave. (c) Clapping. (d) Walking. (e) Boxing. (f) Jogging.

Fig. 10. Representation of R-transform for different activities: Row 1: 50 × 50 Silhouette Image, Row 2: R-transform, Row 3: R-transforms of few key frames.

Fig. 11. Illustration of formation of final feature vector.

Fig. 12. Sample frames of Weizmann human action dataset.

KTH dataset: The dataset was introduced by Schuldt et al. [43]
and it is a more challenging dataset as compared to theWeizmann
dataset. The dataset consists of six basic activities that are named as
‘hand-clapping’, ‘hand-waving’, ‘jogging’, ‘jumping’, ‘running’, and
‘walking’. There are 100 videos of each activity in four different
scenarios, which comprise the variations of recording conditions
like illumination, indoor, outdoor, zoom-in and zoom-out. All these
video sequences are recorded in a backgroundwith a static camera
of frame rate 25 fps and which is further down-sampled to the
spatial resolution of 160 × 120 pixels. The sample images of the
datasets are shown as in Fig. 13.
Ballet dataset: Ballet dataset [44] is one of the highly complex
human action dataset due to the intra-class difference and inter-
class similarity. The dataset comprises of eight ballet human
movements i.e. ‘Left-to-right hand (B1)’, ‘Right-to-left hand

opening (B2)’, ‘Standing hand opening (B3)’, ‘Leg Swinging (B4)’,
‘Jumping (B5)’, ‘Turning (B6)’, ‘Hopping(B7)’, and ‘Standing still
(B8)’. The sample image of different actions of the dataset are as
shown in Fig. 14.
i3DPost dataset: The i3DPost Multi-View database [45] consists of
12 human actions i.e. ‘Walk (P1)’, ‘Run (P2)’, ‘Jump(P3)’, ‘Bend (P4)’,
‘Hand-Wave(P5)’, ‘Jump in Place(P6)’, ‘Sit–stand-up (P7)’, ‘Run–Fall
(P8)’, ‘Walk–Sit (P9)’, ‘Run–Jump–Walk (P10)’, ‘Handshake (P11)’,
and ‘Pull (P12)’ with high resolutions of 1920 × 1080, frame rate
of 25 fps, where 6 actions (walk, run, jump, bend, hand-wave
and jump-in-place) belong to the single action category, 4 actions
(sit–stand-up, run–fall, walk–sit, and run–jump–walk) fit into the
combined action and 2 actions (handshake, pull) belong to the
interaction category. For each activity of the dataset, 8 persons
performed the action, and it is recorded from 8 different view-
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Fig. 13. Sample frames of KTH dataset.

Fig. 14. Images of the Ballet dataset depicting eight movement of actions.

Fig. 15. Sample frames of id3Post data of ‘Running’ activity from eight different views.

angles hence total 64 videos for the single action. The sample
frames of the dataset are as depicted in Fig. 15.
Inria Xmas Motion Acquisition Sequence (IXMAS) dataset:
INRIA Xmas Motion Acquisition Sequences (IXMAS) database is
introduced by Weinland et al. [46], which is one of widely used
dataset for the multi-view/3D analysis of the human actions and
recorded through 5 cameras at different positions. A total of 13
daily living activities are recorded and labelled as ‘check watch’,
‘cross arms’, ‘scratch head’, ‘sit down’, ‘get up’, ‘turn and around’,
‘walk’, ‘wave’, ‘punch’, ‘kick’, ‘pointing’, ‘pickup’ and ‘throw’. These
activities are performed3 times by 12 actors surroundedwith fixed
5 cameras, each capturing 23 fps with 390×291 spatial resolution.
The actors performing the activities are different in body size,
clothing, sex and execution rate. The sample frames of activities
of the dataset are as shown in Fig. 16.

4.1. Performance evaluation on dataset

The performance of the proposed approaches is evaluated
in terms of the average recognition accuracy (ARA) on five
different benchmarked of the datasets. The recognition accuracy is

Table 1
Shows the ARA (%) achieved with the similar methods on different benchmark of
the datasets.

Method Datasets
Weizmann KTH Ballet i3dpost IXMAS

PHOG 52.88 45.44 27.98 33.60 48.96
HOG + R 90.10 80.22 64.33 55.66 69.45
R-Transform 84.77 72.23 45.65 60.90 51.36
SDEG + R 100 95.5 93.25 92.92 85.5

computed through the proposed approach (SDEG+R) aswell as the
similar techniques like pyramid of histogram oriented gradients
(PHOG) [5], Histogram of oriented gradients (HOG) [47], and R-
Transform [39]. The ARA evaluated for each method is shown in
Table 1.

As it is seen from Table 1, the ARA achieved through HOG + R
is lower than the SDEG + R due to less structural information
and more textural variations. Due to some similar representations
for different actions HOG + R may produce false recognition
for an action. The R-Transform provides good motion temporal
information of the activity but when the activities are very similar
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Fig. 16. Sample frames of IXMAS dataset of five different Camera.

Fig. 17. Shows the comparison of ARA (%) with different approaches on different
datasets.

in nature, it is unable to discern and thus, the recognition accuracy
is inferior as compared to the SDEG + R. PHOG approach provides
only the shape information of the object while for the activity
recognition shape and temporal both are the essential information
hence ARA is less as compared to the SDEG+R. Therefore, the high
ARA shows that SDEG+ R is an effective model for the recognition
of human activity.

The ARA achieved through proposed approach is compared
with the similar techniques on different datasets, which is shown
in Fig. 17 and for each dataset, the ARA achieved through proposed
method is highest in comparison with other approaches. Hence,
the proposed approach is more effective in the recognition of
human activities as verified under the variegated conditions
presented in the datasets.

The ARA achieved on Weizmann dataset is 100% due to the
less variation in intra-class activity, and the clean background.
Due to clean background the accurate extraction of silhouette is
accomplished which favours in achieving high accuracy.

The KTH dataset is more challenging as compared toWeizmann
dataset due to variations in lighting conditions, camera angle
and human size within the sequence. Therefore, the silhouette
extraction is quite difficult as compared to previous dataset. Hence,
the less ARA (95.50%) is achieved as compared to Weizmann
dataset.

The Balletmovement dataset is highly complex dataset in terms
of intra-class dissimilarities like execution, speed, clothing, etc.
The ARA achieved on this dataset is 93.25% which is less than
the Weizmann and KTH dataset due to the complex actions. The
maximum error is caused due to high similarity between the
hopping and jumping action. In some actions it was observed that
there is occlusion in the extracted silhouette frames, which poses

difficulties in the computations of orientation features from theR-
transform but the multiple fusion of the orientation and spatial
distribution gives significant improvement in the recognition
accuracy. SDEG feature vector greatly improves the accuracy in the
ballet dataset as it gives distinguishable features, which are more
variant as compared to the R-Transform characteristics. For the
computation of rotation feature, the silhouette is required and the
extraction of silhouette is difficult in some cases where hands and
body parts which are occluded.

The id3Post dataset is multi-view dataset in which the same
action is recorded from8different angles. The ARA achieved on this
dataset is 92.92%, verifying the robustness of proposed approach
against the variation in viewing angle. The effect of R-transform
coefficients is not much contrasting for the activities like Jump in
Place, Sit–stand-up or Run and Run–Jump–Walk.

The recognition accuracy achieved on the IXMAS dataset for
13 activities from five Cameras (1, 2, 3, 4 and 5) is 83.23%,
81.49%, 78.01%, 85.80% and 74.84 respectively and the recognition
accuracy achieved on the videos of all the cameras is significant,
which shows the robustness of the proposed algorithms against the
view variant. The higher recognition accuracy achieved by cameras
1 and 4 is due to the location of the camera and similarity of the
actions but the variation of recognition accuracy is very minute.

4.2. Comparison of results

To know the effectiveness of the proposed approach in
comparison to the techniques put forward by others, a comparative
study is done and as presented in Tables 2–6 for different human
action datasets. The classification strategies used in the different
techniques are quite similar but named in the different form as
leave-one-out cross validation (LOOCV), leave-one-sequence-out
cross validation (LOSOCV), leave-one-video-out cross validation
(LOVOCV) and leave-one-person-out cross validation (LOPOCV).

For the Weizmann dataset the experiment setting used in
this experiment is similar to the Gorelick et al. [42] and other
techniques in respect to the input conditions, classification model
and classification strategies. Hence, the comparison given in
Table 2 is reasonably fair.

The experimental setup used for the evaluation ARA on KTH
dataset is similar to the original paper [43] onKTHdataset. The vital
cause for achieving high ARA is the effective silhouette extraction,
which is a tough task for this dataset because of the illumination
change and zooming and zoom out of camera. The recognition
accuracy achieved in [55] is very close to the proposed approach
due to the effective textural features and the large amount of
training.
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Table 2
Comparison of ARA with the techniques of others on Weizmann dataset.

Method Input Classifiers Test scheme ARA (%)

Gorelick et al. [42] Silhouettes KNN LOOCV 97.5
Nibeles et al. [32] Images pLSA LOOCV 90
Rahman et al. [48] Silhouettes NN LOOCV 100
Chaaraoui et al. [49] Silhouettes KNN LOSOCV 92.8
Wu and Shao [50] Silhouettes SVM LOSOCV 97.78
Goudelis et al. [29] Silhouettes SVM LOPOCV 95.42
Touati and Mignotte [51] Silhouettes KNN LOOCV 92.3
Cai et al. [52] Silhouettes Max/sum pooling LOOCV 97.85
Proposed method Silhouettes, image SVM LOOCV 100

Table 3
Comparison of ARA with the techniques of others on KTH dataset.

Method Input Classifiers Test scheme ARA (%)

Sadek et al. [53] Silhouettes SVM – 93.30
Saghafi and Rajan [54] Silhouettes KNN LOOCV 92.6
Goudelis et al. [29] Silhouettes SVM LOPOCV 93.14
Melfi et al. [55] Silhouettes SVM LOOCV 95.25
Rahman et al. [56] Silhouettes KNN LOOCV 94.49
Benmokhtar [57] Images SVM LOOCV 92.5
Proposed method Silhouettes, images SVM LOOCV 95.50

Table 4
Comparison of ARA with the techniques of others on Ballet dataset.

Method Input Classifiers Test scheme ARA (%)

Fathi and Mori [44] Silhouettes SVM – 51
Wang and Mori [58] Silhouettes KNN LOO 91.3
Guha and Ward [59] Silhouettes SVM LOO 91.1
Ming et al. [60] Silhouettes SVM LOO 90.8
Iosifidis et al. [61] Silhouettes KNN LOVOCV 91.1
Vishwakarma and Kapoor [62] Silhouettes SVM LOOCV 92.75
Proposed method Silhouettes, images SVM LOOCV 93.25

Table 5
Comparison of ARA with the techniques of others on Multi-view i3dPost dataset.

Method Actions ARA (%)

Gkalesis et al. [45] 5 single actions (walk, run, jump in place, jump forward and bend) 90.00

Holte et al. [63] 5 single actions (excluding run) 97.00
10 actions (single + combined) 80.00 (3D MC)

Iosifidis et al. [64] 5 single actions (excluding run) 97.80
8 actions(6 single + 2-interactions) 96.34

Proposed method
5 (single actions) excluding run 97.50
6 (single actions) including run 95.56
10 actions (single + combined) 92.92

Table 6
Comparison of ARA with the techniques of others on IXMAS multi-view dataset.

Method Camera Number of actions Classifier/test scheme ARA (%)

Chaaraoui et al. [49] 5 12 KNN/LOSOCV 85.86
Wu et al. [65] 4 12 SVM/LOSOCV 89.4
Weinland et al. [46] 5 11 PCA + M/LOOCV 93.33
Yang et al. [66] 5 13 SVM/10-fold 84.55
Zhang et al. [67] 5 11 SVM/LOACOCV 83.5
Proposed method 5 13 SVM/LOOCV 85.80

The Ballet dataset is considered to be toughest dataset set in
respect of the complexity of human activity performed, but the
silhouette extraction for the dataset is reasonably easy due to
stable environmental conditions. The experimental setting used
in this experiment is as used by creator [44] of the dataset. The
ARA achieved in [62] is close to the proposed method due to the
similar approach used for the silhouette extraction, though in the
proposed approach ARA is slightly higher than the Vishwakarma
and Kapoor [62] due to the additional information of rotation of
human silhouette.

Table 5, shows the comparison of recognition accuracy achieved
on i3dPost dataset with the techniques of others. The comparison
is quite limited due to less number of the work reported on this
dataset. The recognition accuracy computed on this dataset is in
three different categories and these are created on the basis of
similarities between the different classes. The recognition accuracy
reported in the three categories is varying due to the similarity
between the classes and when highly similar classes are clubbed
together then the recognition accuracy achieved is the highest.
The action classes which have high similarity are ‘Run’, ‘Walk’,
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‘Jump’, ‘Run–Jump–Walk’, and ‘Run–fall’ and for these classes the
performance of SDEG feature vector is less effective as compared to
theR-transform. The overall ARA achieved for all ten classes is less
as compared to the grouped similar classes but in comparisonwith
the techniques of others, the achieved ARA is still encouraging.

Table 6, presents the comparison of the ARA achieved on
IXMAS dataset by the proposed approach with the quite similar
approaches. The comparison is marginally different in respect of
the number action classes, number camera, classifier and test
strategy used. The per class recognition accuracy achieved by
proposed approach is reasonably high as compared to other
techniques. Recognizing 13 actions is difficult as compared to
recognizing 11 actions due to more confusion, while in this work
the 13 actions are classified.

The experimental result and comparison with the similar state-
of-the-art methods show few interesting observations, which are
as follows:
• As the number of levels for the computation of SDEG features

increases, the dimension of SDEG feature vector increases but
the recognition accuracy does not increase significantly.

• As the number of key poses increases for the computation
of temporal information, the recognition accuracy increases
slightly, but it results in high feature vector dimension. Thismay
lead to system complexity and increases in cost.

• It is also observed that R-transform is most effective for those
activities which have high orientation like bending, crouching,
etc.

5. Conclusion

In this paper, human activity recognition based upon the
fusion of SDEG of human poses and orientation of key poses of
human silhouettes is presented, which is executed separately but
sequentially. SDEG is computed using a single frame representing
the 2D posture of the activity while R-transform is used for
the computation of orientation features providing the temporal
information of human silhouettes. A single frame of the activity
is extracted from a video sequence using histogram distances
between the key frames. The SDEG is computed at different levels
and orientations of bins. As the number of levels increases, a
better quality of spatial distribution is achieved, but the complexity
of the system increases because of the increase in the number
of vectors. It is also inferred that with an increase in the
levels, the magnitude of the spatial gradient vectors across the
degrees decreases, which further diminishes the significance of
discriminating characteristics of features vectors due to lower
values. R-transform gives the orientation feature of human
activity, which is computed on the silhouettes of the activities
and silhouettes are extracted using texture-based segmentation
method. The orientation provides the knowledge about the flow
of action relating to time and the global change in the object. It
is also inferred that increasing the number of frames not only
increases the robustness, but also increases the computation time
significantly. The advantage of this fusion approach is to offer a
numerous distinctive feature vector, which leads us to robust and
noise free action modelling.

In future, the number of key poses used for orientation
estimation, the number of levels and orientations bins used for
description of still poses may be optimized to get better results
in terms of the recognition rate, and faster computation with
less complexity. Another possible direction of future work is to
incorporate a dynamic model having multiple objects perform
simultaneously and in front of a dynamic crowded background
since it is an action classification method.

For the application point of view using this approach an
intelligent systemcanbedeveloped for the purpose of surveillance,
prohibited area notification, gait recognition, face animation,
abnormal activity monitoring of elderly people, and to provide
assistance for physical exercise, etc.
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