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A Scheme for Resampling, Filtering, and
Subsampling Unevenly Spaced Laser Doppler
Anemometer Data'

Pascale Biron,” André G. Roy,” and James L. Best®

Laser Doppler Anemometry (LDA) has proved a powerful tool for quantifying fluid turbulence and
is increasingly being applied in fields such as fluvial sedimentology and geomorphology. When
operated in the burst-signal processing mode, high-frequency velocity fluctuations are measured at
irregular time intervals. In many situations, there is a need to transform these data to obtain evenly
spaced velocity values but at a lower frequency. However, clear guidelines for this type of data
processing are lacking. Three steps are necessary in order to transform the original files into evenly
spaced data: (1) resampling art the average sampling rate, (2) low-pass filtering with half-power
frequency adjusted to the final sampling frequency, and (3) decimating at the desired Sfrequency.
The decision taken at each step will affect the resulting signal and may cause, if not assessed
carefully, severe problems in the signal such as aliasing errors. This paper examines each stage of
data processing and details the advantages and drawbacks of different techniques in relation to the
effects on turbulence statistics (variance, instantaneous shear stress, eic.). A standard method and
specific guidelines are finally proposed. \
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INTRODUCTION

During the past few years, laser Doppler anemometry has been used extensively
in fluid dynamics (Fu, Tindal, and Yianneskis, 1991; Shahnam and Morris,
1991), and sedimentology and fluvial geomorphology (Agrawal and Aubrey,
1992; Best and Leeder, 1993; Nelson, McLean, and Wolfe, 1993; McLean,
Nelson, and Wolfe, 1994; Bennett and Best, in press). Laser Doppler ane-
mometry (LDA) offers several important advantages over other techniques of
turbulence measurement, principally its high spatial and temporal resolution and
nonintrusive behavior, which make it attractive in research on many important
and unresolved problems involving the interrelationships between flow and sed-
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iment transport. In the earth sciences, it has become increasingly important to
examine the details of turbulent boundary layer structure in order to understand
the interactions between flow, sediment transport, and bedform development
(Leeder, 1983 Best, 1993).

Laser Doppler anemometry (LDA), when operated in the burst-signal pro-
cessing mode, measures velocity only when a seeding particle is detected and
validated in the measuring volume. Therefore, the time interval between two
consecutive velocity measurements is controlled only by the seeding process,
which is random. In many situations, there may be a need to transform the
original signal into a set of evenly spaced data as the irregularity in data spacing
can be problematical for the subsequent analysis.

Firstly, although it is possible to carry out time-series analysis (e.g., au-
tocovariance, spectrum) on randomly sampled data (Parzen, 1984; Press and
Rybicki, 1989; Lee and Sung, 1994), these statistical techniques seldom are
available in existing software (e.g., Dantec, 1992). Secondly, resampling LDA
data at a common frequency may be essential in order to compare the turbulent
structure of the signals. Indeed, the temporal resolution of LDA signals varies
with distance from the wall and with flow velocity (Wei, 1987). Hence, LDA
signals measured at different lateral positions and in changing flow conditions
are characterized by large variations in sampling rates and this further compli-
cates statistical comparisons. For example, high sampling rates give rise to
increasing autocorrelation in the first lags (Robert, Roy, and De Serres, 1993)
and can result in a higher order autoregressive model. Therefore, signals with
similar turbulent behavior but different sampling rates may be described erro-
neously by different models. To avoid this problem, the original signal must be
transformed at a lower, common (evenly spaced) sampling frequency. Finally,
turbulent data may be related to other types of data of lower sampling frequency.,
for instance instantaneous sediment transport measured with video images (30
frames/sec). In these situations, resampling the LDA data at a lower (evenly
spaced) sampling rate is desirable to eliminate high-frequency fluctuations which
may disguise the more important lower frequency turbulent fluctuations.

Data processing to achieve such a lower frequency regular signal consists
of resampling, filtering, and subsampling the original LDA velocity time series.
Note that in this paper resampling will designate the process of bringing un-
evenly spaced data to a regular interval whereas either subsampling or deci-
mating will refer to reduction of the sampling rate of an already regularly spaced
signal. Although there exists a comprehensive literature on digital sampling and
filtering (see for example Oppenheim and Schafer, 1975; Hamming, 1977, Ben-
dat and Piersol, 1986), no robust rules for unevenly spaced data resampling Or
subsampling are available. This situation forces many LDA users to build their
own procedures (€.8., Wei and Willmarth, 1989). This results in several diffi-
culties: (1) because of the paucity of theoretical background on resampling/
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subsampling unevenly spaced data, clear statistical rules governing such data
manipulations do not seem to exist, (2) the ambiguity surrounding this problem
leads to different ways of resampling and filtering, hindering comparisons be-
tween studies, and (3) the effects on turbulence statistics of post-acquisition data
processing are largely unknown. This makes it difficult to estimate what is left
of the original signal in published data. This point is underestimated greatly and
the effects of the various steps of data processing must be evaluated in order to
reach sound conclusions.

In view of these problems, this paper examines various strategies of pro-
cessing unevenly spaced LDA data, describes their effects on turbulence statis-
tics (such as turbulence intensity, power spectra, instantaneous Reynolds shear
stress, coherent structures time scale), and proposes a methodology to facilitate
comparison between studies.

THE USE OF ORIGINAL RANDOMLY SAMPLED SIGNALS OR
OF RESAMPLED SIGNALS

Original Signals

Using original signals in the burst-signal processor mode implies working
with unevenly spaced data. The moments can be estimated by residence-time
weighting in order to avoid biasing effects (Buchhave, George, and Lumley,
1979) but care must be taken to provide a high, uniform seeding density in the
fluid as the output statistics are a function of the particle arrival rate (Edwards
and Jensen, 1983). However, the drawbacks of using randomly sampled LDA
signals are important. Time-series analysis is complicated by randomly sampled
data and the literature on this subject is scarce, albeit increasing (Parzen, 1984,
Lee and Sung, 1994). It is important to highlight that if time-series analysis is
conducted with data resampled at regular interval, then all the statistics, includ-
ing first- and second-order moments, must be recomputed from the new resam-
pled signals. Also, LDA signals may contain noise contamination either from
optical sources, photodetection effects or electronic system sources (Durrani and
Greated, 1977). It is possible to remove this noise with a notch filter in situations
where the noise is concentrated in a narrow frequency band, but this demands
resampling in order to use regularly spaced data which are required in digital
filters (Hamming, 1977).

The choice of whether to work with the original signals is dependent on
the aims of the study. If only the mean and variance are required, working with
the original signal offers the advantage of avoiding several stages of data pro-
cessing (exporting single files, resampling, filtering, etc.). If a more detailed
analysis is needed, for example in order to examine the turbulent flow structure,
then using regularly spaced data may prove necessary.
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Regularly Spaced Signals

Before examining methods of transforming unevenly spaced data into reg-
ularly spaced data of lower sampling frequency, it is essential to consider the
effects of aliasing in sampling. Aliasing is basic to sampling data at equally
spaced intervals and corresponds to the folding of signal variance at frequencies
higher than the Nyquist frequency (fy = f,/2, where Jp is the sampling rate)
into lower frequencies (Bendat and Piersol, 1986). Folded frequencies thus will
seem confused within the variance of data in the lower frequency range (Fig.
1). The only practical way to avoid aliasing errors is to ensure that all the
information contained at frequencies higher than the Nyquist frequency is re-
moved by low-pass filtering prior to resampling (Bendat and Piersol, 1986).

Aliasing problems principally occur during analog to digital conversion,
where an analog low-pass filter is required, or during decimation of a regularly
spaced digital signal, where a digital low-pass filter is needed (Bendat and
Piersol, 1986). Our problem of resampling unevenly spaced digital data does
not fall into either of these categories, yet it may entail some aliasing effects,
which must be avoided. This problem is more complex than it seems and its
careful examination is necessary if an optimal decision is to be taken. Consider
an original signal with an average sampling rate (number of data/length of the
record) of 400 Hz. The objective, for the sake of argument, is to obtain regularly
spaced data at a lower frequency, say 40 Hz. According to the sampling theo-
rem, we would have to remove all the information contained in frequencies
above the Nyquist frequency ( fy = 20 Hz in this example) prior to resampling.
This operation involves application of a low-pass filter to the original signal but
digital filters can be used only on equally spaced data (Hamming, 1977). There-
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Figure 1. A, Example of aliasing: signal 2 is resampled at its average sampling rate, 856 Hz (solid
line) and at 40 Hz (dashed line); B, blow-up showing folding of higher frequencies present near
Nyquist frequency (fy = 20 Hz) when signal is resampled at 40 Hz (dashed line).
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fore, the signal first must be resampled at regular intervals before it is low-pass
filtered. Only then is it possible to decimate the signal at the desired frequency.

However, this method may have problems because aliasing errors will
occur during the first step (i.e., resampling) as all the variance in the resampled
signal contained in frequencies higher than fy will be folded back into frequen-
cies lower than fy. This therefore demands that the resampling rate is high
enough so there is virtually no variance left above the Nyquist frequency of the
resampled signal or that the resampling rate be greater than the original average
sampling rate. The latter solution, however, may prove impractical with high
original average sampling rates because of subsequent problems of computation
with extremely large datasets. A more realistic approach is to use the fact that
there is less and less variance left as frequency increases. Therefore, even if the
original signal is resampled at its average sampling rate (Wei and Willmarth,
1989), expected aliasing will be limited to frequencies close to fy (see Fig. 1).
In other words, negligible aliasing errors may be assumed in the range of fre-
quencies lower than the subsampling rate Nyquist frequency. The corollary of
this is that original signals must be collected at average sampling rates high
enough to allow the assumption of negligible aliasing at low frequencies to be
.. true. This will ensure that the data density (sampling rate times the flow char-
- acteristic time scale) is high enough for the resampling method to work (Edwards
and Jensen, 1983).

Once the resampling rate has been established, a decision must be made
on the resampling technique. Two techniques are examined here: linear inter-
polation and ‘‘windowing.’’ Linear interpolation is used widely (Wei and Will-
marth, 1989; Dantec 1992) and offers two principal advantages, namely sim-
plicity and that, in relation to aliasing errors, it creates a damping of high-
frequency fluctuations (Wei, 1987) which reduces folding in the low frequencies
(Fig. 2A). The principal disadvantage of linear interpolation is that new velocity
data are generated which are not present in the original signal. An alternative
method to linear interpolation is “‘windowing’’ which entails selecting velocity
values in the original signal with arrival times closest to the regularly spaced
time lags. This technique is similar to the stretching/compression procedure
(Veynante and Candel, 1988) with the difference that not all the data points are
retained. The main advantage of windowing over linear interpolation is that only
the truly measured velocities present in the raw signal are kept. Although win-
dowing gives rise to small time errors which are equal to the difference between
regular time lags and arrival times, this technique preserves most of the ampli-
tude of velocity fluctuations, contrary to linear interpolation (compare Figs. 2A
and 2B), but, as for stretching and compression, it shifts the resulting signal
laterally on the x-axis.

Once the original signal has been resampled it may be low-pass filtered
according to the desired subsampling rate. An extensive literature exists on
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b~ Velocity (m/s)

Figure 2. Effects of resampling at regular inter-
vals randomly sampled (fictive) trace: A, by lin-
ear interpolation; B, by windowing. Solid lines
represent original traces and dashed lines resam-
pled traces. Shaded areas in A highlight losses
of variance in high-frequency fluctuations.

oW Velocity (nvs)

digital filters (e.g., Oppenheim and Schafer, 1975; Hamming, 1977) and a wide
selection of filtering designs is available. Two criteria particularly are important
in the selection of filter: (1) it is desirable to avoid filters that will produce a
reversal in polarity and create a 180° phase shift of the waves (Holloway, 1958).
Running mean and exponential filters are examples of such phase shifting filters,
and, (2) the design of the filter should allow both replicability and generality.
The Gaussian smoothing function, w(f), was selected in this study because it
complies with both criteria. It is defined as:

w(t) = 2ma?) exp (—£/20%) (1)

where ¢ is the standard deviation of the normal curve.

Ideally, a low-pass filter should preserve all the frequencies lower than the
cutoff frequency (fy in our situation) and remove all the information above that
threshold. In reality, there exists a transition zone between the frequency where
the filter starts affecting the amplitude of waves and the frequency where all the
information is removed. This is illustrated by the frequency response of the filter
which is defined as the ratio of the magnitude of the modified vector to the
magnitude of the unit vector (Holloway, 1958). For the normal curve filter, the
frequency response at a given frequency (f) is:

R(f) = exp (—27°0’f?) )

This frequency response has a long rolloff (i.e., a wide transition zone), which
then necessitates a somewhat arbitrary criterion to estimate the proper standard



Laser Doppler Anemometer Data 737

deviation for use in (1) so almost all the information above Sy is removed. A
suitable selection could be the ‘‘time constant type’” filter that is used in Elec-
tromagnetic Current Meters (e.g., Marsh-McBimey ECMs) where the half-power
period of the RC filter (where 50% of the variance is lost) is equal to six times
the time constant of the instrument. Because the frequency response is equal to
the ratio of magnitudes of the modified and original signals, the ratio of variances
of the modified and original signals can be computed using the square of the
frequency response, that is, a 50% loss in variance corresponds to:

[R(HOF = 0.5,  R(f) = 05" 3)

If we assume the subsampling interval to be equivalent to a ECM time constant,
then the half-power frequency ( f5o) is equal to f;,/6 (where f, is the subsampling
frequency). From (2) and (3), the standard deviation of the filter, o (in seconds)
then can be computed as:

o = (In 0.5"2/(=27%2,))'2 @)

Use of (2) and (4) shows that 0.2% of the variance will be left at fn. Thus this
filter completely eliminates variance at frequencies above fv and severely reduces
that at frequencies below but close to f. Although a less severe filter may be
selected, the use of the Gaussian smoothing function again minimizes aliasing
errors that may be present close to fy of the subsampled signal.

The final stage in data processing is to decimate or subsample the filtered
signal. Decimation of the dth order consists of keeping every dth data value and
discarding all other values (Bendat and Piersol, 1986). When possible, it is
preferable to use decimation rather than subsampling at a given frequency rate
where further linear interpolation would be required. The selection of a subsam-
pling rate is, once again, a function of the study objectives: higher subsampling
rates will produce a larger signal frequency bandwidth. Ideally, a priori knowl-
edge of the frequency band of interest for a specific problem is desirable to
guide the selection of the subsampling rate. Additionally, because the sampling
interval is known to affect some statistics, such as correlation (Robert, Roy, and
De Serres, 1993), it is preferable to use a common decimation rate for all
signals.

To summarize, three distinct stages are needed in order to transform an
original irregularly spaced LDA signal into a regularly spaced signal of sampling
frequency fp. (1) Resampling either by linear interpolation or windowing at the
average sampling rate of the raw signal, (2) low-pass filtering with half-power
at fp/6, and (3) signal decimation at the desired frequency, fp. It is, however,
then necessary to quantify how each of these stages affects the original
signal.
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EFFECTS OF RESAMPLING, FILTERING, AND SUBSAMPLING
ON SELECTED EXAMPLES

In this study, we used a fibre optic LDA (DANTEC) with Flow Velocity
Analyser (FVA) burst type correlation processors to examine the effects of
resampling, filtering, and subsampling on velocity signals. A 161 mm focal
length front lens was used with a beam separation of 38 mm and a measuring
volume of 0.16 mm’. Sampling rate was set through optimisation of the high
voltage supply, seeding density, and burst threshold detection levels to produce
sampling rates between 200 and 900 Hz. Data were collected using FVA com-
puter software (DANTEC) which does not have a routine for unevenly spaced
data. The LDA was used to measure the streamwise (U) and vertical (V) ve-
locities in a 10 m long, 0.30 m wide recirculating flume. Seeding particles of
titanium had a diameter of 1 um. Flow depth (Y) was 0.16 m, Reynolds number
6520, and Froude number 0.12.

Two, 1-minute long samples from a turbulent flow over a smooth boundary
will be examined here (Signals 1 and 2). Signal 1 was taken at a nondimensional
height (Yp) (height of measurement/mean flow depth) of 0.03 with an average
sampling rate of 241 Hz whereas Signal 2 was measured near the water surface
(Yp = 0.81) with an average sampling rate of 856 Hz. In both situations, the
thickness of the turbulent boundary layer (6 = 0.99 Vi, where V;is the free-
stream velocity) was 6/Y = 0.6.- Thus, Signal 1 is located in the turbulent
boundary layer whereas Signal 2 is above it.

The subsampling rate has been fixed at 40 Hz, keeping in mind an eventual
correlation of turbulence data with other types of data (e.g., sediment motion)
of lower sampling frequency. Moreover, both original sampling rates (241 Hz
and 856 Hz for signal 1 and 2, respectively) are higher than the final frequency,
thus minimizing risks of aliasing. Using (3), the standard deviation of the normal
curve filter for a subsampling rate of 40 Hz is 0.0199 sec.

The effects of the various steps of data processing on a portion of signal 1
are displayed in Figure 3. The results from the two resampling techniques (Fig.
3B, 3C) illustrate that only subtle changes in the shape of the time series are
generated at this stage. However, filtering (Fig. 3D) clearly modifies the signal
and removes all high-frequency fluctuations, permitting a better visualization of
the lower frequency turbulent structure. The shape of the signal is virtually
identical after the subsampling stage (Fig. 3E).

Variance

Table 1 shows the effects of each step (resampling, filtering, and subsam-
pling) on the signal variance of the U (streamwise) and V (vertical) components
together with results comparing the two different resampling techniques (inter-
polation and windowing). Resampling by windowing does not affect the variance
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Figure 3. Time series of portion of streamwise () component fluctuations
in signal 1 after various stages of data processing: A, original signal; B,
resampled by windowing; C, resampled by linear interpolation; D, resam-
pled by linear interpolation and filtered (0 = 0.0199 sec); E, resampled
by linear interpolation, filtered, and subsampled at 40 Hz. Trace is 7
seconds long.
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Table 1. Effects of Data Processing on Variance of LDA Signal (Signal 1)

Mean u Mean v Variance #  Variance v Lossinu Lossin v

(m/s) (m/s) (m?*/s%) (m?*/s%) variance  variance

Processing stages 107 1072 107* 107* (%) (%)
Original signal

(241 Hz) 18.05 —-0.01 2.11 0.49 - —
Resampled by window

(241 Hz) 18.06 -0.02 2.12 0.48 ~0.5 2.0
Resampled by

interpolation

(241 Hz) 18.06 -0.02 2.01 0.43 4.7 12.2
Resampled (window),

filtered (241 Hz) 18.06 -0.02 1.54 0.27 27.0 44.9
Resampled

(interpolation),

filtered (241 Hz) 18.06 -0.02 1.53 0.25 7.5 49.0
Resampled (window),

filtered, subsampled

(40 Hz) 18.06 ~0.02 1.54 0.27 27.0 44.9
Resampled

(interpolation),

filtered, subsampled,

(40 Hz) 18.06 -0.02 1.53 0.25 0. 5 (R )

of the original U signal (it actually is slightly higher than the original signal)
and creates a small loss (2%) in the vertical component. As expected, linear
interpolation dampens high-frequency fluctuations and results in minor losses
for U (4.7%) but more important losses for the V component (12.2%). Note
that regardless of the resampling technique, the vertical component of velocity
is affected to a greater degree than the streamwise component. This may be
ascribed to the fact that a greater proportion of the variance in V is contained
in the high frequencies (Heathershaw, 1979). The losses in variance caused by
resampling are negligible if compared to those caused through filtering. The
differences between the resampling techniques vanish for the U component after
filtering and are present, although lessened, for the vertical velocity. Finally,
decimation or subsampling does not modify the variance of the signal. It is
important to note that the mean velocities are not affected by this data processing.
Because filtering is clearly the prevailing cause of any loss in variance, modi-
fying the standard deviation of the Gaussian filter or selecting another type of
low-pass filter will affect statistics such as the turbulence intensity (Table 2). It
then becomes difficult to make reliable comparisons between data that have not
been filtered in an identical manner.
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Table 2. Effects of Standard Deviation of Gaussian Filter on Variance
(Signal 1)*

Loss in u Loss in v

variance variance
Type of Gaussian filter (%) (%)
Half-power at fp/6 . 49.0
Half-power at fp/4 22.0 422
Half-power at fp/2 151 32.2

a1 oss in variance is computed for signals resampled by interpolation,
filtered, and subsampled at 40 Hz.

Spectra

Losses in variance at high frequencies are better visualized by examining
the power spectrum of the signals as low-pass filtering creates a rolloff in the
inertial range (Fig. 4). The rolloff is obviously the same for all the signals
filtered with an equivalent standard deviation, in the situation of a Gaussian
filter, or with an identical distribution of weights for other filters (e.g., expo-
nential, moving average). Comparisons of spectral characteristics of different
samples therefore are limited to those frequencies which are not affected by the
filter. Because a low-pass filter affects a wide range of frequencies lower than
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the cutoff frequency, a more realistic approach is to limit comparisons of spectral
characteristics to a bandwidth between the lowest frequency (f,., = T~ ', where

T is the total length of the signal, in sec) and the half-power frequency ( fsq,
equal to f5/6 in this example).

Instantaneous Reynolds Shear Stress

Resampling and filtering will affect high fluctuations and, therefore, high
instantaneous Reynolds shear stress, 7, (1 = —puwv, where p is the water density,
u and v are the streamwise and vertical velocity fluctuations, respectively). This
is of importance in studies which are concerned with the links between turbu-
lence and sediment transport because high magnitude events, despite their in-
termittence, play a major role in sediment entrainment and transport (Williams,
Thorne, and Heathershaw, 1989). Examination of Signal 1 (Fig. 5) reveals the
predominance of quadrant 2 (v < 0, v > 0, ejections) and quadrant 4 (¥ > 0,
v < 0, sweeps) events expected in a turbulent boundary layer (Willmarth and
Lu, 1972). It is evident that filtering produces a decrease in the average Reynolds
shear stress per quadrant (Fig. 5), although the shear stress distribution by
quadrant is virtually unchanged. The mean Reynolds shear stress also is affected;
for Signal 1, the loss due to resampling, filtering and subsampling is 14.7%.

+v'’

0.002 N/m2

-y’

Figure 5. Reynolds shear stress divided by number of
occurrences for each quadrant for Signal 1. Solid line
represents original signal and dashed line resampled, fil-
tered, and subsampled at 40 Hz signal.
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Table 3. Losses in High Instantaneous Reynolds Shear Stress at Different Stages of Data Processing

Signal description % case > 0.25 N.m™? % case > 0.5 N.m™?

Original (241 Hz) 4.58 0.76
Resampled by window 241 Hz 4.46 - 083
Resampled by interpolation 241 Hz 4.02 0.58
Resampled by window, filtered and

subsampled at 40 Hz 1.92 0.25
Resampled by interpolation, filtered and

subsampled at 40 Hz 1.62 0.25

Table 3 details the influence of resampling and filtering on the relative
number of occurrences of high instantaneous Reynolds shear stress. Linear in-
terpolation dampens out the higher frequency fluctuations and produces fewer
high instantaneous Reynolds shear stress values than when the original signal is
resampled using windowing. Also, as was demonstrated when examining the
signal variance, any differences between resampling techniques tend to vanish
after filtering, especially for the highest shear stress events (>0.5 N.m~ -
Finally, the effect of filtering is greatest for the highest shear stresses, where
the percentage of cases above 0.5 N.m™? in the original signal is more than
three times greater than in the filtered signal. This original: filtered signal ratio
is 2.4 and 2.8 at a threshold of 0.25 N.m 2 for signals filtered after using the
window technique and linear interpolation, respectively.

Scales of Coherent Structures

Autocorrelation functions of U and V and cross-correlation functions of UV
are plotted for both signals before and after filtering and subsampling in Figure
6. Signal 1 (Fig. 6A) is characterized by the typical turbulent boundary layer
cross-correlation coefficient at lag O of approximately —0.4, again illustrating
the anisotropic behavior of this velocity signal taken near the bed (Willmarth
and Lu, 1972). The cross-correlation coefficient for signal 2 at lag 0 is 0 and
reflects the isotropy of the U and V signals above the turbulent boundary layer.

One important statistic derived from autocorrelation functions is the integral
time scale which, by Taylor’s hypothesis (Lumley and Panofsky, 1964), can be
transferred into an integral length scale and yield estimates of the average size
of coherent structures. The integral time scale is defined as:

1= S o() dt (5)

t=0
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i) Resampled by interpolation 41) Filtered and subsampled at 40 Hz
80 time scale = 0.423 s U 80 time scale = 0.144 s U
length scale = 2.229 cm length scale = 2.5896 cm

time scale = 0.051 s time scale = 0.078 s

Signel 1

time scale = 0.0B81 s U time scale = 0.097 s U
length scale = 2.599 cm length scale = 3.4107 cm

oY)
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Figure 6. u, v autocorrelation and uv cross-correlation (in %) as function of lag (in seconds): A,
signal 1: (i) resampled by interpolation, (ii) filtered and subsampled at 40 Hz.; B, signal 2, (i) and
(ii) as in A.
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(Lumley and Panofsky, 1964) where p(7) is the autocorrelation function. The
integral length scale is simply equal to this value times the mean velocity.
Filtering has for a long time been recognized as affecting time-series autocor-
relation function (Slutzky-Yule effects; Slutzky, 1927; Yule, 1927). The com-
bined effects of filtering and subsampling (Fig. 6A(ii)) a signal already resam-
pled at 241 Hz (Fig. 6A(i)) show the streamwise integral time scale to increase
from 0.123 sec to 0.1445 sec (+18%) whereas the vertical time scale increases
from 0.051 sec to 0.078 sec (+53%). It is worthy to note that the streamwise
time scale is approximately twice that of the vertical velocity component, illus-
trating the more coherent behavior of the streamwise signal. A similar increase
in time scale is present in signal 2 (Fig. 6B) although differences between the
nonfiltered and filtered vertical signals are greater than for signal 1 (137%).
This shows that the influence of the filter is greater for the less coherent original
signals in the outer flow. As expected, the integral length scale of signal 2 is
also greater than that of signal 1 and reflects the measurement point higher in
the flow where the eddies are larger (Soulsby, 1980). The cross-correlation is
affected by filtering, particularly for signal 1 where the value of the first lag
coefficient increases after filtering and becomes closer to the value of —0.4
expected in turbulent boundary layers (Willmarth and Lu, 1972).

DISCUSSION

The preceding analysis has shown that both resampling and filtering affect
the original signal in several important ways and that these effects cannot be
ignored, even for simple second-order moments (variance) which are statistics
used extensively in turbulence studies. If only the moments are required, then
the best solution lays in working with the original signal, although this neces-
sarily limits data analysis by excluding statistics that more easily derive from
evenly spaced data (e.g., time-series analysis). Biasing problems in the original
sample may be solved by residence time weighting.

This study has limited comparison of resampling techniques to linear in-
terpolation and windowing because they represent two extremes: the former
method can dampen considerably high magnitude fluctuations whereas the latter
leaves them intact. Several methods of interpolation exist (e.g., polynomial
interpolation, cubic spline) which are more accurate than linear interpolation for
a turbulent velocity signal. However, given the fact that filtering greatly atten-
uates differences between resampling techniques, the current analysis suggests
that use of a more sophisticated interpolation procedure does not warrant the
associated complexities and delays in computation. Although the selection of
resampling technique is somewhat academic, this study suggests windowing
may be more favorable because the measured data remain intact.
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Once it has been established that regularly spaced data are required, the
results presented here suggest that it is preferable to set high original average
sampling rates in order to subsample all the signals at a common frequency
which is determined by the lowest original sampling rate. The common fre-
quency may be dictated by the sampling rates of other measurements where
velocity data are allied with other data, such as sediment transport rates or
records of changing bed morphology. Whatever common frequency is selected,
it is important to adjust properly the standard deviation of the Gaussian filter to
the new subsampling frequency in order to avoid aliasing.

In data processing, it becomes dangerous to reach a point where the digital
signal no longer gives a true representation of the original continuous signal. If
a standard processing scheme is adopted, then it is possible to limit the dis-
crepancies between different sources of data, whether between different LDA
measurements data or when comparing LDA data with other measuring instru-
ments. It should not be forgotten that nearly all turbulence measurements are
filtered at some stage. For example, ECM signals are filtered routinely with a
hardware low-pass RC or Butterworth filter which are a function of the time
constant of the instrument. Most ECM data, however, requires only analog low-
pass filtering prior to digitization whereas unevenly spaced LDA signals are
filtered after digitization.

The use of laser Doppler anemometry is relatively new in earth sciences
but is likely to have many new applications in the next few years. This prospect
necessitates that some standards for data processing are applied and, perhaps
more importantly, that data-processing routines are clearly stated in publications.

Otherwise, comparison between results and the more widespread use of an LDA
database will remain problematical.

NOTATION

f = frequency, Hz
fp = sampling frequency, Hz
fmin = lowest frequency, Hz
fv = Nyquist frequency, Hz
= half-power frequency, Hz

"
|

I

integral time scale, s

frequency response

I,

R

T = total length of a signal, s

V = streamwise and vertical instantaneous velocity, m/s
v

= streamwise and vertical velocity fluctuations, m/s
V, = freestream velocity, m/s
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Y = mean flow depth, m
Yp = nondimensional height (height of measurement/Y)
w(t) = Gaussian smoothing function
5 = boundary layer thickness, m
p = water density, kg/m3
p() = autocorrelation function
o = standard deviation of the normal curve filter, s
+ = instantaneous Reynolds shear stress, N/m*
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